The Effects of Osteopathic Manipulative Treatment on Brain Activity: A Scoping Review of MRI and EEG Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Question
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Selection Process, Data Collection and Data Items
3. Results
3.1. OMT Intervention
3.2. Instrumented Evaluation: MRI and EEG
3.3. Brain Activity Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
MRI Parameters | Description |
---|---|
Time of echo (TE) | TE (measured in milliseconds) refers to the time between applying a radiofrequency excitation pulse and the peak of the signal induced in the coil. |
Repetition time (TR) | TR (measured in milliseconds) is the time from applying an excitation pulse to the application of the next pulse. |
Field of view (FOV) | FOV refers to the body region scanned during MRI. It is generally expressed in units of centimeters or millimeters. |
Matrix | A matrix is an array of numbers in rows and columns and it is used in MRI to determine the scan resolution. |
Voxel | Voxel is the basic unit of MR reconstruction and it represents a cube of brain tissue in a 3D image. |
Flip angle | The flip angle or tip angle consists of the amount of rotation the net magnetization experiences during the application of a radiofrequency pulse. It can be measured in degrees or radians. |
References
- Tramontano, M.; Tamburella, F.; Dal Farra, F.; Bergna, A.; Lunghi, C.; Innocenti, M.; Cavera, F.; Savini, F.; Manzo, V.; D’Alessandro, G. International Overview of Somatic Dysfunction Assessment and Treatment in Osteopathic Research: A Scoping Review. Healthcare 2021, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Harris, K.; Outen, B.; Bukvic, A.; Smith, B.; Schultz, A.; Bergman, S.; Mondal, D. Osteopathic Manipulative Medicine: A Brief Review of the Hands-On Treatment Approaches and Their Therapeutic Uses. Medicines 2022, 9, 33. [Google Scholar] [CrossRef]
- Bergna, A.; Vismara, L.; Parravicini, G.; Dal Farra, F. A New Perspective for Somatic Dysfunction in Osteopathy: The Variability Model. J. Bodyw. Mov. Ther. 2020, 24, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Lunghi, C.; Consorti, G.; Tramontano, M.; Esteves, J.E.; Cerritelli, F. Perspectives on Tissue Adaptation Related to Allostatic Load: Scoping Review and Integrative Hypothesis with a Focus on Osteopathic Palpation. J. Bodyw. Mov. Ther. 2020, 24, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Baroni, F.; Schleip, R.; Arcuri, L.; Consorti, G.; D’Alessandro, G.; Zegarra-Parodi, R.; Vitali, A.M.; Tramontano, M.; Lunghi, C. Functional Neuromyofascial Activity: Interprofessional Assessment to Inform Person-Centered Participative Care—An Osteopathic Perspective. Healthcare 2023, 11, 2886. [Google Scholar] [CrossRef]
- Bonanno, M.; Calabrò, R.S. Back to the Future: An Appraisal of the Role of Osteopathic Manipulative Treatment in Patients with Neurological Diseases. Innov. Clin. Neurosci. 2023, 20, 8–10. [Google Scholar]
- McParlin, Z.; Cerritelli, F.; Rossettini, G.; Friston, K.J.; Esteves, J.E. Therapeutic Alliance as Active Inference: The Role of Therapeutic Touch and Biobehavioural Synchrony in Musculoskeletal Care. Front. Behav. Neurosci. 2022, 16, 897247. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.M.; Giuffrida, A.; King, J.; Skinner, E.; Scotter, J.; Musty, R.E. Cannabimimetic Effects of Osteopathic Manipulative Treatment. J. Am. Osteopath. Assoc. 2005, 105, 283–291. [Google Scholar] [PubMed]
- Kreuder, A.-K.; Wassermann, L.; Wollseifer, M.; Ditzen, B.; Eckstein, M.; Stoffel-Wagner, B.; Hennig, J.; Hurlemann, R.; Scheele, D. Oxytocin Enhances the Pain-Relieving Effects of Social Support in Romantic Couples. Hum. Brain Mapp. 2019, 40, 242–251. [Google Scholar] [CrossRef]
- Aghabati, N.; Mohammadi, E.; Pour Esmaiel, Z. The Effect of Therapeutic Touch on Pain and Fatigue of Cancer Patients Undergoing Chemotherapy. Evid. Based Complement. Altern. Med. 2010, 7, 375–381. [Google Scholar] [CrossRef]
- Rechberger, V.; Biberschick, M.; Porthun, J. Effectiveness of an Osteopathic Treatment on the Autonomic Nervous System: A Systematic Review of the Literature. Eur. J. Med. Res. 2019, 24, 36. [Google Scholar] [CrossRef]
- Navid, M.S.; Niazi, I.K.; Holt, K.; Nedergaard, R.B.; Amjad, I.; Ghani, U.; Kumari, N.; Shafique, M.; Duehr, J.; Trager, R.J.; et al. The Effects of Chiropractic Spinal Adjustment on EEG in Adults with Alzheimer’s and Parkinson’s Disease: A Pilot Randomised Cross-over Trial. J. Integr. Neurosci. 2024, 23, 98. [Google Scholar] [CrossRef] [PubMed]
- Isenburg, K.; Mawla, I.; Loggia, M.L.; Ellingsen, D.-M.; Protsenko, E.; Kowalski, M.H.; Swensen, D.; O’Dwyer-Swensen, D.; Edwards, R.R.; Napadow, V.; et al. Increased Salience Network Connectivity Following Manual Therapy Is Associated with Reduced Pain in Chronic Low Back Pain Patients. J. Pain 2021, 22, 545–555. [Google Scholar] [CrossRef]
- Škoch, A.; Rehák Bučková, B.; Mareš, J.; Tintěra, J.; Sanda, P.; Jajcay, L.; Horáček, J.; Španiel, F.; Hlinka, J. Human Brain Structural Connectivity Matrices-Ready for Modelling. Sci. Data 2022, 9, 486. [Google Scholar] [CrossRef] [PubMed]
- Babaeeghazvini, P.; Rueda-Delgado, L.M.; Gooijers, J.; Swinnen, S.P.; Daffertshofer, A. Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Front. Hum. Neurosci. 2021, 15, 721206. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, Y.; Shan, X.; Wei, H.-L.; Guo, Y.; Chen, L.; Erkoyuncu, J.A.; Sarrigiannis, P.G. Brain Functional and Effective Connectivity Based on Electroencephalography Recordings: A Review. Hum. Brain Mapp. 2022, 43, 860–879. [Google Scholar] [CrossRef]
- Son, S.; Nagahama, K.; Lee, J.; Jung, K.; Kwak, C.; Kim, J.; Noh, Y.W.; Kim, E.; Lee, S.; Kwon, H.-B.; et al. Real-Time Visualization of Structural Dynamics of Synapses in Live Cells in Vivo. Nat. Methods 2024, 21, 353–360. [Google Scholar] [CrossRef]
- Glover, G.H. Overview of Functional Magnetic Resonance Imaging. Neurosurg. Clin. N. Am. 2011, 22, 133–139, vii. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Y.; Zhang, L.; Jiang, W.; Liu, Y.; Tang, Q.; Cai, X.; Li, J.; Wang, L.; Tao, C.; et al. Structural and Functional Imaging of Brains. Sci. China Chem. 2023, 66, 324–366. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic Review or Scoping Review? Guidance for Authors When Choosing between a Systematic or Scoping Review Approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell. Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Cella, M.; Acella, E.; Aquino, A.; Pisa, V. Cranial Osteopathic Techniques and Electroencephalogram (EEG) Alpha Power: A Controlled Crossover Trial. J. Osteopath. Med. 2022, 122, 401–409. [Google Scholar] [CrossRef]
- Miana, L.; Hugo Do Vale Bastos, V.; Machado, S.; Arias-Carrión, O.; Nardi, A.E.; Almeida, L.; Ribeiro, P.; Machado, D.; King, H.; Silva, J.G. Changes in Alpha Band Activity Associated with Application of the Compression of Fourth Ventricular (CV-4) Osteopathic Procedure: A qEEG Pilot Study. J. Bodyw. Mov. Ther. 2013, 17, 291–296. [Google Scholar] [CrossRef]
- Gay, C.W.; Robinson, M.E.; George, S.Z.; Perlstein, W.M.; Bishop, M.D. Immediate Changes After Manual Therapy in Resting-State Functional Connectivity as Measured by Functional Magnetic Resonance Imaging in Participants With Induced Low Back Pain. J. Manip. Physiol. Ther. 2014, 37, 614–627. [Google Scholar] [CrossRef]
- Tamburella, F.; Piras, F.; Piras, F.; Spanò, B.; Tramontano, M.; Gili, T. Cerebral Perfusion Changes After Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Front. Physiol. 2019, 10, 403. [Google Scholar] [CrossRef]
- Tramontano, M.; Cerritelli, F.; Piras, F.; Spanò, B.; Tamburella, F.; Piras, F.; Caltagirone, C.; Gili, T. Brain Connectivity Changes after Osteopathic Manipulative Treatment: A Randomized Manual Placebo-Controlled Trial. Brain Sci. 2020, 10, 969. [Google Scholar] [CrossRef] [PubMed]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Perrucci, M.G.; Barassi, G.; Visciano, C.; Bellomo, R.G.; Saggini, R.; Ferretti, A. Effect of Manual Approaches with Osteopathic Modality on Brain Correlates of Interoception: An fMRI Study. Sci. Rep. 2020, 10, 3214. [Google Scholar] [CrossRef] [PubMed]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Ferretti, A. Effect of Continuous Touch on Brain Functional Connectivity Is Modified by the Operator’s Tactile Attention. Front. Hum. Neurosci. 2017, 11, 368. [Google Scholar] [CrossRef]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Saggini, R.; Perrucci, M.G.; Ferretti, A. Osteopathy Modulates Brain–Heart Interaction in Chronic Pain Patients: An ASL Study. Sci. Rep. 2021, 11, 4556. [Google Scholar] [CrossRef]
- Dal Farra, F.; Bergna, A.; Lunghi, C.; Bruini, I.; Galli, M.; Vismara, L.; Tramontano, M. Reported Biological Effects Following Osteopathic Manipulative Treatment: A Comprehensive Mapping Review. Complement. Ther. Med. 2024, 82, 103043. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R. Pain and the Neuromatrix in the Brain. J. Dent. Educ. 2001, 65, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Ponzo, V.; Cinnera, A.M.; Mommo, F.; Caltagirone, C.; Koch, G.; Tramontano, M. Osteopathic Manipulative Therapy Potentiates Motor Cortical Plasticity. J. Am. Osteopath. Assoc. 2018, 118, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, M.; Papa, D.; Cerasa, A.; Maggio, M.G.; Calabrò, R.S. Psycho-Neuroendocrinology in the Rehabilitation Field: Focus on the Complex Interplay between Stress and Pain. Medicina 2024, 60, 285. [Google Scholar] [CrossRef]
- Mohamadi, M.; Rojhani-Shirazi, Z.; Assadsangabi, R.; Rahimi-Jaberi, A. Can the Positional Release Technique Affect Central Sensitization in Patients With Chronic Tension-Type Headache? A Randomized Clinical Trial. Arch. Phys. Med. Rehabil. 2020, 101, 1696–1703. [Google Scholar] [CrossRef] [PubMed]
- Salomons, T.V.; Johnstone, T.; Backonja, M.-M.; Shackman, A.J.; Davidson, R.J. Individual Differences in the Effects of Perceived Controllability on Pain Perception: Critical Role of the Prefrontal Cortex. J. Cogn. Neurosci. 2007, 19, 993–1003. [Google Scholar] [CrossRef]
- Yang, S.; Chang, M.C. Chronic Pain: Structural and Functional Changes in Brain Structures and Associated Negative Affective States. Int. J. Mol. Sci. 2019, 20, 3130. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.; Sharp, D.J. The Role of the Posterior Cingulate Cortex in Cognition and Disease. Brain 2014, 137, 12–32. [Google Scholar] [CrossRef]
- Lewis, R.G.; Florio, E.; Punzo, D.; Borrelli, E. The Brain’s Reward System in Health and Disease. Adv. Exp. Med. Biol. 2021, 1344, 57–69. [Google Scholar] [CrossRef]
- Schmidt, E.R.E.; Polleux, F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front. Neural Circuits 2022, 15, 787164. [Google Scholar] [CrossRef]
- Voss, P.; Thomas, M.E.; Cisneros-Franco, J.M.; de Villers-Sidani, É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front. Psychol. 2017, 8, 274878. [Google Scholar] [CrossRef]
- Damoiseaux, J.S. Effects of Aging on Functional and Structural Brain Connectivity. NeuroImage 2017, 160, 32–40. [Google Scholar] [CrossRef]
- Alfano, V.; Cavaliere, C.; Di Cecca, A.; Ciccarelli, G.; Aiello, M.; Federico, G. Sex Differences in Functional Brain Networks Involved in Interoception: An fMRI Study. Front. Neurosci. 2023, 17, 1130025. [Google Scholar] [CrossRef]
- Liljencrantz, J.; Olausson, H. Tactile C Fibers and Their Contributions to Pleasant Sensations and to Tactile Allodynia. Front. Behav. Neurosci. 2014, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Butti, N.; Urgesi, C.; McGlone, F.P.; Oldrati, V.; Montirosso, R.; Cazzato, V. To Touch or to Be Touched? Comparing Pleasantness of Vicarious Execution and Reception of Interpersonal Touch. PLoS ONE 2023, 19, e0293164. [Google Scholar] [CrossRef]
- Cerritelli, F.; Esteves, J.E. An Enactive–Ecological Model to Guide Patient-Centered Osteopathic Care. Healthcare 2022, 10, 1092. [Google Scholar] [CrossRef]
- D’Alessandro, G.; Ruffini, N.; Aquino, A.; Galli, M.; Innocenti, M.; Tramontano, M.; Cerritelli, F. Correction: Differences between Experimental and Placebo Arms in Manual Therapy Trials: A Methodological Review. BMC Med. Res. Methodol. 2023, 23, 48. [Google Scholar] [CrossRef]
- Cerritelli, F.; Verzella, M.; Cicchitti, L.; D’Alessandro, G.; Vanacore, N. The Paradox of Sham Therapy and Placebo Effect in Osteopathy. Medicine 2016, 95, e4728. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
Database | Search Query | Search Fields | Filters |
---|---|---|---|
PubMed | ((“osteopathic manipulative treatment”) OR (“manual therapy”)) AND ((“brain connectivity”) OR (“fmri”)) | All fields | Date from 2013 to 2023 |
Google Scholar | “osteopathic manipulative treatment” OR “manual therapy” AND “brain connectivity” | NA | Date from 2013 to 2023 Study type: scientific articles |
OSTEOMED.DR | osteopathic manipulative treatment OR manual therapy AND brain connectivity | All fields | Date from 2013 to 2023 |
Scopus | osteopathic AND manipulative AND treatment AND brain AND connectivity | Article title, Abstract, Keywords | Date from 2013 to 2023 |
Science Direct | “osteopathic manipulative treatment” or “manual therapy” and brain connectivity | Article title, Abstract, Keywords | Date from 2013 to 2023 |
Web of Science | osteopathic manipulative treatment AND brain connectivity | All fields | Date from 2013 to 2023 |
Reference | Study Design | Study Sample * | Intervention | Instrumented Evaluation ** | Major Findings |
---|---|---|---|---|---|
(Tamburella et al., 2019) [26] | RCT single blinded | 30 asymptomatic healthy adults EG: 15; age: 28.0 ± 5.5; CG: 15, age: 28.0 ± 5.5; | EG: OMT:
|
| OMT produced significantly effects on:
|
(Tramontano et al., 2020) [27] | RCT single blinded | 24 asymptomatic healthy adults with SDs EG: 12; age: 28.0 ± 5.5; CG: 12, age: 25.4 ± 3.2; | EG: OMT:
|
| OMT produced a specific functional and reversible connectivity re-arrangement of:
|
(Cerritelli et al., 2020) [28] | RCT | 29 right-handed patients with CLBP EG: 15, age: 41.8 ± 6.6; CG: 14, age: 42.7 ± 8.0; | EG: four sessions, per week, of OMT, lasting 30 min each, consisting of:
or procedure). |
| OMT elicited a specific BOLD activity in targeted areas related to interoception. OMT produced effects on
|
(Cerritelli et al., 2021) [30] | RCT | 29 right-handed patients with CLBP EG: 15, 41.8 ± 6.6; CG: 14, 42.7 ± 8.0; | EG: four sessions, per week, of OMT, lasting 30 min each; CG: sham treatment. |
| OMT significantly changed CBF:
|
(Cerritelli et al., 2017) [29] | RCT single blinded | 40 healthy adults; OTA: 20, age: 27.0 ± 5.4; OAA: 20; age: 27.0 ± 5.4; | Participants randomly attended two groups: operator tactile attention (OTA) or the operator auditory attention (OAA) group. |
| The findings indicated that extended periods of continuous and focused tactile touch from an operator led to a notable rise in anti-correlation between certain brain regions, such as PCC and the rINS, as well as IFG. However, these changes were distinct between OTA and OAA, and were observed only after 15 min of continuous touching. |
(Gay et al., 2014) [25] | RCT single blinded | 24 healthy adults and were randomly divided into 3 groups: MOB: 8, age: 21.1 ± 3.2; SMT: 6, age 20.7 ± 1.8; TT: 10, age: 22.5 ± 5.9; |
|
| MT produced effects on FC between brain regions, including:
|
(Cella et al., 2022) [23] | Cross-over trial | 40 healthy volunteers; age: 20–30; | Participants underwent two techniques (CV4 plus sCV4; ST plus sST), in a random sequence. The sham maneuvers lasted for 10 min, while the active techniques were sustained until the release of the still point, typically lasting for 6 to 8 min. EEG recordings were continuously conducted throughout the techniques and a subsequent hands-off period, totaling approximately 50 min per session. | EEG placement with the 20-channel EEG System PLUS EVOLUTION (Micromed, Italy). The EEG signal was derived from the occipital O1 and O2 electrodes: electrode impedance < 10 kΩ, signals were band-filtered 0.01–100 Hz, and notch-filtered (50 Hz). The EEG was continuously recorded during each technique. | The CV4 technique notably elevated the alpha band power in the occipital area, compared to resting state data. |
(Miana et al., 2013) [24] | Pilot study | 10 healthy adults, age: 28 ± 3; | Participants received the CV4, sham CV4, and no-treat control conditions in a random order, once a week. | 20-channel EEG system Braintech-3000 (EMSA, Medical Instruments, Rio de Janeiro, Brazil). | There was a significant increase in the alpha band power after the administration of the CV-4 technique. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonanno, M.; Papa, G.A.; Ruffoni, P.; Catalioto, E.; De Luca, R.; Maggio, M.G.; Calabrò, R.S. The Effects of Osteopathic Manipulative Treatment on Brain Activity: A Scoping Review of MRI and EEG Studies. Healthcare 2024, 12, 1353. https://doi.org/10.3390/healthcare12131353
Bonanno M, Papa GA, Ruffoni P, Catalioto E, De Luca R, Maggio MG, Calabrò RS. The Effects of Osteopathic Manipulative Treatment on Brain Activity: A Scoping Review of MRI and EEG Studies. Healthcare. 2024; 12(13):1353. https://doi.org/10.3390/healthcare12131353
Chicago/Turabian StyleBonanno, Mirjam, Giuseppe Alfredo Papa, Paola Ruffoni, Emanuele Catalioto, Rosaria De Luca, Maria Grazia Maggio, and Rocco Salvatore Calabrò. 2024. "The Effects of Osteopathic Manipulative Treatment on Brain Activity: A Scoping Review of MRI and EEG Studies" Healthcare 12, no. 13: 1353. https://doi.org/10.3390/healthcare12131353
APA StyleBonanno, M., Papa, G. A., Ruffoni, P., Catalioto, E., De Luca, R., Maggio, M. G., & Calabrò, R. S. (2024). The Effects of Osteopathic Manipulative Treatment on Brain Activity: A Scoping Review of MRI and EEG Studies. Healthcare, 12(13), 1353. https://doi.org/10.3390/healthcare12131353