The Mixed Role of Sleep and Time of Day in Working Memory Performance of Older Adults with Mild Cognitive Impairment
Abstract
:1. Introduction
1.1. Mild Cognitive Impairment (MCI) in Older Adults
1.2. The Role of Sleep and Sleep Deprivation in Cognition and, Especially, in Working Memory Capacity
1.3. Sleep Changes, Time of Day, and Cognitive Functioning in Aging
1.4. Sleep in MCI Patients
1.5. The Aim of This Study
2. Methods
2.1. Design
2.2. Participants
2.3. Ethical Standards
2.4. Procedure
2.5. Instrument
- The first condition (3a) includes seven (7) virtual pads, i.e., six (6) white lights and one (1) green, which are lighted one after the other, while the participant has been given the instruction to remember only the location of the green light. Then, the lights turn off and light on again one by one. The participant is required to detect and click, with the computer’s mouse, the green light if it appears to the right of its initial position. The correct answer scores one (1) point, while the wrong answer scores zero (0) points.
- The same procedure is followed in this condition as well, but here the six (6) white lights are replaced with different colors (white, red, blue, magenta, cyan, and yellow). The participant must remember and click with the computer’s mouse the green light only if it appears two (2) places to the right of its initial position. The score procedure in this condition remains the same.
- The 3c condition follows the same line as the previous one, but now the participant needs to remember both the place of green and red lights and click on the virtual pads in that case that the lights appear two (2) places to the right of their initial position. The maximum score here is two (2), if the participant correctly detects the place of both lights, one (1) if they detect only one, and zero (0) for no correct detections.
- The next condition follows the same pattern, but the participant is required to detect and click on the green light only if it appears two (2) places to the right of its initial position, and the red light only if it appears two (2) places to the left of its initial position. Scoring here remains the same.
- This condition consists of only green and red lights, while the participant is instructed to remember the last position where a green light appeared. This position changes continuously throughout the task and the participant needs to click on each green light if it appears two (2) positions to the right of where the last green light appeared. This condition includes seven (7) red and eight (8) green lights, of which three (3) are correct.
- The last condition also follows the same pattern. The only difference here is that the participant must remember the last position and click on both green and red lights every time they appear two (2) places to the right from where the last green and red lights appear. There are seven (7) red lights and eight (8) green ones, from which five (5) are correct [37].
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Limitations and Further Research
7. Applications in Clinical Practice and Everyday Life
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sabri, S.M.; Annuar, N.; Rahman, N.L.A.; Musairah, S.K.; Mutalib, H.A.; Subagja, I.K. Major Trends in Ageing Population Research: A Bibliometric Analysis from 2001 to 2021. Int. Acad. Symp. Soc. Sci. 2022, 82, 19. [Google Scholar] [CrossRef]
- Lyons, M.M.; Bhatt, N.; Pack, A.I.; Magalang, U.J. Global burden of sleep-disordered breathing and its implications. Respirology 2020, 25, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Sanford, A.M.; Morley, J.E.; Berg-Weger, M.; Lundy, J.; Little, M.O.; Leonard, K.C.; Malmstrom, T.K. High prevalence of geriatric syndromes in older adults. PLoS ONE 2020, 15, e0233857. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.D. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019, 24, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, M.; Gkioka, M.; Verykouki, E.; Galoutzi, N.; Kavalou, E.; Pattakou-Parasyri, V. Prevalence of Dementia, Depression, and Mild Cognitive Impairment in a Rural Area of the Island of Crete, Greece. Am. J. Alzheimer’s Dis. Other Dement. 2017, 32, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Velayudhan, L. Neuropsychiatric Symptoms in Mild Cognitive Impairment: A literature review. Dement. Geriatr. Cogn. Disord. 2020, 49, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Bradfield, N.I. Mild Cognitive impairment: Diagnosis and subtypes. Clin. EEG Neurosci. 2021, 54, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Yang, Y.; Gao, J. Cognitive assessment tools for mild cognitive impairment screening. J. Neurol. 2019, 268, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Kirova, A.; Bays, R.B.; Lagalwar, S. Working Memory and Executive Function Decline across Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. BioMed Res. Int. 2015, 2015, 748212. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, Y.; Cai, X.; Peng, Z.; Zhang, L.; Shao, Y.; Wang, C.X. Effects of Sleep Deprivation on Working Memory: Change in Functional Connectivity Between the Dorsal Attention, Default Mode, and Fronto-Parietal Networks. Front. Hum. Neurosci. 2020, 14, 360. [Google Scholar] [CrossRef]
- Frenda, S.J.; Fenn, K.M. Sleep less, think worse: The effect of sleep deprivation on working memory. J. Appl. Res. Mem. Cogn. 2016, 5, 463–469. [Google Scholar] [CrossRef]
- Almarzouki, A.F.; Mandili, R.L.; Salloom, J.; Kamal, L.K.; Alharthi, O.; Alharthi, S.; Khayyat, N.; Baglagel, A.M. The Impact of Sleep and Mental Health on Working Memory and Academic Performance: A Longitudinal Study. Brain Sci. 2022, 12, 1525. [Google Scholar] [CrossRef] [PubMed]
- García, A.; Del Angel, J.; Borrani, J.; Ramirez, C.; Valdez, P. Sleep deprivation effects on basic cognitive processes: Which components of attention, working memory, and executive functions are more susceptible to the lack of sleep? Sleep Sci. 2021, 14, 107–118. [Google Scholar]
- Gerhardsson, A.; Akerstedt, T.; Axelsson, J.; Fischer, H.; Lekander, M.; Schwarz, J. Effect of sleep deprivation on emotional working memory. J. Sleep Res. 2019, 28, e12744. [Google Scholar] [CrossRef]
- Mishra, P.; Panigrahi, M.; Ankit, D. Cognition and Alertness in Medical Students: Effects of a Single Night of Partial Sleep Deprivation. Ann. Neurosci. 2020, 27, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Short, M.A.; Chee, M.W.L. Adolescent Sleep Restriction Effects on Cognition and Mood. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–71. [Google Scholar]
- Bishir, M.; Bhat, A.; Essa, M.M.; Ekpo, O.; Ihunwo, A.O.; Veeraraghavan, V.P.; Mohan, S.K.; Mahalakshmi, A.M.; Ray, B.; Tuladhar, S.; et al. Sleep Deprivation and Neurological Disorders. BioMed Res. Int. 2020, 2020, 5764017. [Google Scholar] [CrossRef]
- Ioannou, M.; Wartenberg, C.; Greenbrook, J.T.V.; Larson, T.; Magnusson, K.; Schmitz, L.; Sjögren, P.; Stadig, I.; Szabó, Z.; Steingrimsson, S. Sleep Deprivation as Treatment for Depression: Systematic Review and Meta-analysis. Acta Psychiatr. Scand. 2020, 143, 22–35. [Google Scholar] [CrossRef]
- Varsamis, A.; Georgoudas, M.; Moraitou, D. Effects of sleep deprivation on working memory functioning: A systematic review. Hell. J. Psychol. 2023, 20, 78–98. [Google Scholar] [CrossRef]
- Martínez-Cancino, D.P.; Azpiroz-Leehan, J.; Jiménez-Angeles, L. The Effects of Sleep Deprivation in Working Memory Using the N-Back Task. In IFMBE Proceedings; Springer: Cham, Switzerland, 2015; pp. 421–424. [Google Scholar]
- Baddeley, A.D.; Hitch, G. Working Memory. In The Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 1974; pp. 47–89. [Google Scholar]
- Miller, E.K. Balancing Flexibility and Interference in Working Memory. Annu. Rev. Vis. Sci. 2021, 7, 367–388. [Google Scholar] [CrossRef]
- Barkus, E. Effects of working memory training on emotion regulation: Transdiagnostic review. PsyCh J. 2020, 9, 258–279. [Google Scholar] [CrossRef]
- Cowan, N. Working Memory Underpins Cognitive Development, Learning, and Education. Educ. Psychol. Rev. 2013, 26, 197–223. [Google Scholar] [CrossRef]
- Li, S. Working memory and second language writing: A systematic review. Stud. Second. Lang. Acquis. 2023, 45, 647–679. [Google Scholar] [CrossRef]
- Hitch, G.J.; Allen, R.J.; Baddeley, A.D. Attention and binding in visual working memory: Two forms of attention and two kinds of buffer storage. Atten. Percept. Psychophys. 2019, 82, 280–293. [Google Scholar] [CrossRef]
- Cianfanelli, B.; Esposito, A.; Spataro, P.; Santirocchi, A.; Cestari, V.; Rossi-Arnaud, C.; Costanzi, M. The binding of negative emotional stimuli with spatial information in working memory: A possible role for the episodic buffer. Front. Neurosci. 2023, 17, 1112805. [Google Scholar] [CrossRef]
- Bika, E.; Moraitou, D.; Masoura, E.; Kolios, G.; Papantoniou, G.; Sofologi, M.; Papaliagkas, V.; Ntritsos, G. The Association between the Binding Processes of Working Memory and Vascular Risk Profile in Adults. Brain Sci. 2021, 11, 1140. [Google Scholar] [CrossRef]
- Tsentidou, G.; Μoraitou, D.; Tsolaki, M.; Masoura, E.; Papaliagkas, V. Trajectories of Cognitive Impairment in Adults Bearing Vascular Risk Factors, with or without Diagnosis of Mild Cognitive Impairment: Findings from a Longitudinal Study Assessing Executive Functions, Memory, and Social Cognition. Diagnostics 2022, 12, 3017. [Google Scholar] [CrossRef]
- Belleville, S.; Sylvain-Roy, S.; De Boysson, C.; Ménard, M.-C. Chapter 23 Characterizing the Memory Changes in Persons with Mild Cognitive Impairment. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2008; pp. 365–375. [Google Scholar]
- Facal, D.; Juncos-Rabadán, O.; Pereiro, A.X.; Lojo-Seoane, C. Working memory span in mild cognitive impairment. Influence of processing speed and cognitive reserve. Int. Psychogeriatr. 2013, 26, 615–625. [Google Scholar] [CrossRef]
- Greene, N.R.; Naveh-Benjamin, M.; Cowan, N. Adult age differences in working memory capacity: Spared central storage but deficits in ability to maximize peripheral storage. Psychol. Aging 2020, 35, 866–880. [Google Scholar] [CrossRef]
- Kessels, R.P.; Overbeek, A.; Bouman, Z. Assessment of verbal and visuospatial working memory in mild cognitive impairment and Alzheimer’s dementia. Dement. Neuropsychol. 2015, 9, 301–305. [Google Scholar] [CrossRef]
- Yeung Chehrehnegar, N.; Nejati, V.; Shati, M.; Rashedi, V.; Lotfi, M.; Adelirad, F.; Foroughan, M. Early detection of cognitive disturbances in mild cognitive impairment: A systematic review of observational studies. Psychogeriatrics 2019, 20, 212–228. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Hong, W.; Fu, T.; Cai, X.; Zhu, Q.; Guo, L.; Zhu, Y. Physical activity improves the visual–spatial working memory of individuals with mild cognitive impairment or Alzheimer’s disease: A systematic review and network meta-analysis. Front. Public Health 2024, 12, 1365589. [Google Scholar] [CrossRef] [PubMed]
- Zunini, R.A.L.; Knoefel, F.; Lord, C.; Dzuali, F.; Breau, M.; Sweet, L.; Goubran, R.; Taler, V. Event-related potentials elicited during working memory are altered in mild cognitive impairment. Int. J. Psychophysiol. 2016, 109, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Poptsi, E.; Tsardoulias, E.; Μoraitou, D.; Symeonidis, A.L.; Tsolaki, M. REMEDES for Alzheimer-R4ALZ Battery: Design and development of a new tool of Cognitive Control assessment for the diagnosis of minor and major neurocognitive disorders. J. Alzheimer’s Dis. 2019, 72, 783–801. [Google Scholar] [CrossRef] [PubMed]
- Poptsi, E.; Μoraitou, D.; Tsardoulias, E.; Symeonidisd, A.L.; Tsolaki, M. Is the Discrimination of Subjective Cognitive Decline from Cognitively Healthy Adulthood and Mild Cognitive Impairment Possible? A Pilot Study Utilizing the R4Alz Battery. J. Alzheimer’s Dis. 2020, 77, 715–732. [Google Scholar] [CrossRef]
- Borkowska, A.; Drozdz, W.; Jurkowski, P.; Rybakowski, J.K. The Wisconsin Card Sorting Test and the N-back test in mild cognitive impairment and elderly depression. World J. Biol. Psychiatry 2009, 10, 870–876. [Google Scholar] [CrossRef]
- Migo, E.; Mitterschiffthaler, M.; O’Daly, O.; Dawson, G.; Dourish, C.; Craig, K.; Simmons, A.; Wilcock, G.; McCulloch, E.; Jackson, S.; et al. Alterations in working memory networks in amnestic mild cognitive impairment. Neuropsychol. Dev. Cognition. Sect. B Aging Neuropsychol. Cogn. 2014, 22, 106–127. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Li, X.; Chen, Y.; Ma, C.; Zhang, J.; Zhang, Z. Reduced Frontal Activation during a Working Memory Task in Mild Cognitive Impairment: A Non-Invasive Near-Infrared Spectroscopy Study. CNS Neurosci. Ther. 2012, 19, 125–131. [Google Scholar] [CrossRef]
- Parra, M.A.; Calia, C.; García, A.F.; Olazarán-Rodríguez, J.; Hernandez-Tamames, J.A.; Alvarez-Linera, J.; Della Sala, S.; Guinea, S.F. Refining memory assessment of elderly people with cognitive impairment: Insights from the short-term memory binding test. Arch. Gerontol. Geriatr. 2019, 83, 114–120. [Google Scholar] [CrossRef]
- Castegnaro, A.; Howett, D.; Li, A.; Harding, E.; Chan, D.; Burgess, N.; King, J. Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus 2022, 32, 660–678. [Google Scholar] [CrossRef]
- Tsokanaki, P.; Moraitou, D.; Papantoniou, G. The Combined Effect of Sleep and Time of Day on Emotion Decoding from Dynamic Visual Cues in Older Adults. Neuropsychiatr. Dis. Treat. 2016, 12, 2283–2291. [Google Scholar] [PubMed]
- Ohayon, M.M.; Vecchierini, M.F. Normative sleep data, cognitive function and daily living activities in older adults in the community. Sleep 2005, 28, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Alshabibi, A.S.; Suleiman, M.E.; Tapia, K.A.; Brennan, P.C. Effects of Time of Day on Radiological Interpretation. Clin. Radiol. 2020, 75, 148–155. [Google Scholar] [CrossRef]
- Bougard, C.; Moussay, S.; Espié, S.; Davenne, D. The Effects of Sleep Deprivation and Time of Day on Cognitive Performance. Biol. Rhythm Res. 2016, 47, 401–415. [Google Scholar] [CrossRef]
- Williamson, A.; Friswell, R. Investigating the Relative Effects of Sleep Deprivation and Time of Day on Fatigue and Performance. Accid. Anal. Prev. 2011, 43, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Yaremenko, S.; Sauerland, M.; Hope, L. Time-of-Day Effects on Eyewitness Reports in Morning and Evening Types. Psychiatry Psychol. Law 2022, 29, 718–730. [Google Scholar] [CrossRef]
- Martínez-Lozano, N.; Barraco, G.M.; Rios, R.; Ruiz, M.J.; Tvarijonaviciute, A.; Fardy, P.; Madrid, J.A.; Garaulet, M. Evening Types Have Social Jet Lag and Metabolic Alterations in School-Age Children. Sci. Rep. 2020, 10, 16747. [Google Scholar] [CrossRef]
- Tandoc, M.C.; Bayda, M.; Poskanzer, C.; Cho, E.; Cox, R.; Stickgold, R.; Schapiro, A.C. Examining the Effects of Time of Day and Sleep on Generalization. PLoS ONE 2021, 16, e0255423. [Google Scholar] [CrossRef]
- Garaulet, M.; Vizmanos, B.; Muela, T.; Betancourt-Núñez, A.; Bonmatí-Carrión, M.; Vetter, C.; Dashti, H.S.; Saxena, R.; Scheer, F.A.J.L. Evening Types as Determined by Subjective and Objective Measures Are More Emotional Eaters. Obesity 2023, 31, 1192–1203. [Google Scholar] [CrossRef]
- West, R.; Murphy, K.J.; Armilio, M.L.; Craik, F.I.M.; Stuss, D.T. Effects of Time of Day on Age Differences in Working Memory. J. Gerontol. Ser. B 2002, 57, P3–P10. [Google Scholar] [CrossRef]
- Monk, T.H.; Buysse, D.J. Chronotype, Bed Timing and Total Sleep Time in Seniors. Chronobiol. Int. 2014, 31, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Hicks, H.; Meyer, K.; Watts, A. Differential Effects of Chronotype on Physical Activity and Cognitive Performance in Older Adults. Front. Epidemiol. 2023, 3, 1029221. [Google Scholar] [CrossRef]
- Johnson, R. Aging and the Remembering of Text. Dev. Rev. 2003, 23, 261–346. [Google Scholar] [CrossRef]
- Rabi, R.; Chow, R.; Paracha, S.; Hasher, L.; Gardner, S.; Anderson, N.D.; Alain, C. The Effects of Aging and Time of Day on Inhibitory Control: An Event-Related Potential Study. Front. Aging Neurosci. 2022, 14, 821043. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, S.; Murphy, K.J.; Baird, A.D.; West, R.; Armilio, M.; Craik, F.I.M.; Stuss, D.T. Interacting Effects of Age and Time of Day on Verbal Fluency Performance and Intraindividual Variability. Neuropsychol. Dev. Cognition. Sect. B Aging Neuropsychol. Cogn. 2015, 23, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.; Buffington, A.L.H.; Welsh-Bohmer, K.A.; Brandt, J. Time of Day Affects Episodic Memory in Older Adults. Neuropsychol. Dev. Cognition. Sect. B Aging Neuropsychol. Cogn. 2008, 15, 146–164. [Google Scholar] [CrossRef] [PubMed]
- Montaruli, A.; Castelli, L.; Mulè, A.; Scurati, R.; Esposito, F.; Galasso, L.; Roveda, E. Biological Rhythm and Chronotype: New Perspectives in Health. Biomolecules 2021, 11, 487. [Google Scholar] [CrossRef]
- Hood, S.; Amir, S. The Aging Clock: Circadian Rhythms and Later Life. J. Clin. Investig. 2017, 127, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Elkhadem, A.R.; Duffy, J.F. Circadian Rhythm Sleep–Wake Disorders in Older Adults. Sleep Med. Clin. 2022, 17, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Scholtens, R.M.; Van Munster, B.C.; Van Kempen, M.F.; De Rooij, S.E.J.A. Physiological Melatonin Levels in Healthy Older People: A Systematic Review. J. Psychosom. Res. 2016, 86, 20–27. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Logan, R.W.; Ma, T.; Lewis, D.A.; Tseng, G.C.; Sibille, E.; McClung, C.A. Effects of Aging on Circadian Patterns of Gene Expression in the Human Prefrontal Cortex. Proc. Natl. Acad. Sci. USA 2015, 113, 206–211. [Google Scholar] [CrossRef]
- Jan, M.; O’Hara, B.F.; Franken, P. Recent Advances in Understanding the Genetics of Sleep. F1000Research 2020, 9, 214. [Google Scholar] [CrossRef]
- Da Silva, R.M. Sleep disturbances and mild cognitive impairment: A review. Sleep Sci. 2015, 8, 36–41. [Google Scholar] [CrossRef] [PubMed]
- D’Rozario, A.L.; Chapman, J.I.; Phillips, C.L.; Palmer, J.R.; Hoyos, C.M.; Mowszowski, L.; Duffy, S.L.; Marshall, N.S.; Benca, R.M.; Mander, B.A.; et al. Objective measurement of sleep in mild cognitive impairment: A systematic review and meta-analysis. Sleep Med. Rev. 2020, 52, 101308. [Google Scholar] [CrossRef] [PubMed]
- Basta, M.; Vgontzas, A.N.; Fernandez-Mendoza, J.; Antypa, D.; Li, Y.; Zaganas, I.; Panagiotakis, S.; Karagkouni, E.; Simos, P.G. Basal Cortisol Levels Are Increased in Patients with Mild Cognitive Impairment: Role of Insomnia and Short Sleep Duration. J. Alzheimer’s Dis. 2022, 87, 933–944. [Google Scholar] [CrossRef]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, M.; Poptsi, E.; Aggogiatou, C.; Markou, N.; Zafeiropoulos, S.; Kounti, F. Computer-Based Cognitive Training versus Paper and Pencil Training: Which is more effective? A Randomized Controlled Trial in People with Mild Cognitive Impairment. JSM Alzheimer’s Dis. Relat. Dement. 2017, 4, 1032. [Google Scholar]
- Poptsi, E.; Moraitou, D.; Tsardoulias, E.; Symeonidis, A.L.; Papaliagkas, V.; Tsolaki, M. R4Alz-Revised: A Tool Able to Strongly Discriminate ‘Subjective Cognitive Decline’ from Healthy Cognition and ‘Minor Neurocognitive Disorder’. Diagnostics 2023, 13, 338. [Google Scholar] [CrossRef]
- Aurtenetxe, S.; García-Pacios, J.; Del Río, D.; López, M.G.V.; Pineda-Pardo, J.A.; Marcos, A.; Losada, M.C.; López-Frutos, J.M.; Maestú, F. Interference Impacts Working Memory in Mild Cognitive Impairment. Front. Neurosci. 2016, 10, 443. [Google Scholar] [CrossRef]
- Chatzikostopoulos, A.; Moraitou, D.; Tsolaki, M.; Masoura, E.; Papantoniou, G.; Sofologi, M.; Papaliagkas, V.; Kougioumtzis, G.; Papatzikis, E. Episodic Memory in Amnestic Mild Cognitive Impairment (aMCI) and Alzheimer’s Disease Dementia (ADD): Using the “Doors and People” Tool to Differentiate between Early aMCI—Late aMCI—Mild ADD Diagnostic Groups. Diagnostics 2022, 12, 1768. [Google Scholar] [CrossRef]
- Forsberg, A.; Adams, E.J.; Cowan, N. The Role of Working Memory in Long-Term Learning: Implications for Childhood Development. In The Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 2021; pp. 1–45. [Google Scholar]
- Pasula, E.Y.; Brown, G.G.; McKenna, B.S.; Mellor, A.; Turner, T.H.; Anderson, C.; Drummond, S.P. Effects of sleep deprivation on component processes of working memory in younger and older adults. Sleep 2018, 41, zsx213. [Google Scholar] [CrossRef]
- Artuso, C.; Cavallini, E.; Bottiroli, S.; Palladino, P. Updating working memory: Memory load matters with aging. Aging Clin. Exp. Res. 2016, 29, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A.D.; Allen, R.J.; Hitch, G.J. Binding in visual working memory: The role of the episodic buffer. Neuropsychologia 2011, 49, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Artuso, C.; Palladino, P. Content–Context Binding in Verbal Working Memory Updating: On-Line and off-Line Effects. Acta Psychol. 2011, 136, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Lechuga, M.T.; Pelegrina, S.; Pelaez, J.L.; Martin-Puga, M.E.; Justicia, M.J. Working Memory Updating as a Predictor of Academic Attainment. Educ. Psychol. 2014, 36, 675–690. [Google Scholar] [CrossRef]
- Twick, M.; Levy, D.A. Fractionating the episodic buffer. Brain Cogn. 2021, 154, 105800. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.N.; Van Dongen, H.P.A.; Honn, K.A. Sleep deprivation, vigilant attention, and brain function: A review. Neuropsychopharmacology 2019, 45, 21–30. [Google Scholar] [CrossRef]
- Matysiak, O.; Kroemeke, A.; Brzezicka, A. Working memory capacity as a predictor of cognitive training efficacy in the elderly population. Front. Aging Neurosci. 2019, 11, 126. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Yu, K.; Wang, L.; Xu, L.; Xu, M.; Peng, Z.; Dai, C.; Wang, H.; Yang, T.; Shao, Y.; et al. Total sleep deprivation triggers greater activation in the parietal brain in the visual working memory updating Processes: An Event-Related Potentials Study. Front. Neurosci. 2022, 16, 736437. [Google Scholar] [CrossRef]
- Killgore, W.D.S. Effects of Sleep Deprivation on Cognition. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2010; pp. 105–129. [Google Scholar]
- Sullan, M.J.; Drummond, S.P.A.; Granholm, E. Sleep deprivation and compensatory cognitive effort on a visual information processing task. Sleep 2020, 44, zsaa177. [Google Scholar] [CrossRef]
- Buschman, T.J.; Miller, E.K. Top-Down versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices. Science 2007, 315, 1860–1862. [Google Scholar] [CrossRef]
- Berlingeri, M.; Bottini, G.; Basilico, S.; Silani, G.; Zanardi, G.; Sberna, M.; Colombo, N.; Sterzi, R.; Scialfa, G.; Paulesu, E. Anatomy of the Episodic Buffer: A Voxel-Based Morphometry Study in Patients with Dementia. Behav. Neurol. 2008, 19, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Havekes, R.; Abel, T. The tired hippocampus: The molecular impact of sleep deprivation on hippocampal function. Curr. Opin. Neurobiol. 2017, 44, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Van Someren, E.J.; Oosterman, J.; Van Harten, B.; Vogels, R.; Gouw, A.; Weinstein, H.; Poggesi, A.; Scheltens, P.; Scherder, E. Medial temporal lobe atrophy relates more strongly to sleep-wake rhythm fragmentation than to age or any other known risk. Neurobiol. Learn. Mem. 2019, 160, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Kurinec, C.A.; Whitney, P.; Hinson, J.M.; Hansen, D.A.; Van Dongen, H.P.A. Sleep Deprivation Impairs Binding of Information with Its Context. Sleep 2021, 44, zsab113. [Google Scholar] [CrossRef] [PubMed]
- Gohar, A.; Adams, A.B.; Gertner, E.; Sackett-Lundeen, L.; Heitz, R.P.; Engle, R.W.; Haus, E.; Bijwadia, J. Working Memory Capacity is Decreased in Sleep-Deprived Internal Medicine Residents. J. Clin. Sleep Med. 2009, 5, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shao, Y.; Liu, Z.; Li, C.; Chen, Y.; Zhou, Q. Decreased Information Replacement of working memory after sleep deprivation: Evidence from an Event-Related Potential Study. Front. Neurosci. 2019, 13, 408. [Google Scholar] [CrossRef]
- Blair, M.; Vadaga, K.K.; Shuchat, J.; Li, K. The role of age and inhibitory efficiency in working memory processing and storage components. Q. J. Exp. Psychol. 2011, 64, 1157–1172. [Google Scholar] [CrossRef]
- Nir-Cohen, G.; Kessler, Y.; Egner, T. Neural substrates of working memory updating. J. Cogn. Neurosci. 2020, 32, 2285–2302. [Google Scholar] [CrossRef]
- Pini, L.; Wennberg, A.; Mitolo, M.; Meneghello, F.; Burgio, F.; Semenza, C.; Venneri, A.; Mantini, D.; Vallesi, A. Quality of sleep predicts increased frontoparietal network connectivity in patients with mild cognitive impairment. Neurobiol. Aging 2020, 95, 205–213. [Google Scholar] [CrossRef]
- Talebi, M.N.; Moradi, A.; Kazemi, K.; Khazaie, H.; Nami, M.; Fathi, M.; Farahimanesh, S. The effect of sleep deprivation on brain network connectivity, as revealed by graph theory: A systematic review. Scand. J. Sleep Med. 2021, 1, 109–119. [Google Scholar]
- Hausman, H.K.; Hardcastle, C.; Albizu, A.; Kraft, J.N.; Evangelista, N.D.; Boutzoukas, E.M.; Langer, K.; O’Shea, A.; Van Etten, E.J.; Bharadwaj, P.K.; et al. Cingulo-opercular and frontoparietal control network connectivity and executive functioning in older adults. GeroScience 2021, 44, 847–866. [Google Scholar] [CrossRef] [PubMed]
- Pengsuwankasem, N.; Sittiprapaporn, P.; Rattanabun, W.; Sangmanee, N.; Wongsuphasawat, K.; Rintra, J.; Nararatwanchai, T.; Sarikaphuti, A.; Pandii, W. The Effect of Short Daytime Napping on Cognitive Function, Sleep Quality, and Quality of Life in Mild Cognitive Impairment Patients. Neurosci. Lett. 2023, 817, 137449. [Google Scholar] [CrossRef] [PubMed]
- Sattari, N.; Whitehurst, L.N.; Ahmadi, M.; Mednick, S.C. Does Working Memory Improvement Benefit from Sleep in Older Adults? Neurobiol. Sleep Circadian Rhythm. 2019, 6, 53–61. [Google Scholar] [CrossRef]
- Stepan, M.E.; Altmann, E.M.; Fenn, K.M. Slow-Wave Sleep during a Brief Nap Is Related to Reduced Cognitive Deficits during Sleep Deprivation. Sleep 2021, 44, zsab152. [Google Scholar] [CrossRef]
Working Memory Components’ Mean Scores | Morning after Night Sleep | Afternoon after Many Hours Since Night Sleep | ||||||
---|---|---|---|---|---|---|---|---|
M | SD | Minimum | Maximum | M | SD | Minimum | Maximum | |
WM storage | 3.94 | 0.73 | 2 | 6 | 3.84 | 0.71 | 2 | 6 |
WM processing | 3.18 | 0.71 | 1 | 4 | 3.00 | 0.67 | 1 | 4 |
WM updating * | 9.44 | 2.7 | 2 | 14 | 6.34 | 2.9 | 1 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Georgoudas, M.; Moraitou, D.; Poptsi, E.; Tsardoulias, E.; Kesanli, D.; Papaliagkas, V.; Tsolaki, M. The Mixed Role of Sleep and Time of Day in Working Memory Performance of Older Adults with Mild Cognitive Impairment. Healthcare 2024, 12, 1622. https://doi.org/10.3390/healthcare12161622
Georgoudas M, Moraitou D, Poptsi E, Tsardoulias E, Kesanli D, Papaliagkas V, Tsolaki M. The Mixed Role of Sleep and Time of Day in Working Memory Performance of Older Adults with Mild Cognitive Impairment. Healthcare. 2024; 12(16):1622. https://doi.org/10.3390/healthcare12161622
Chicago/Turabian StyleGeorgoudas, Michael, Despina Moraitou, Eleni Poptsi, Emmanouil Tsardoulias, Despina Kesanli, Vasileios Papaliagkas, and Magda Tsolaki. 2024. "The Mixed Role of Sleep and Time of Day in Working Memory Performance of Older Adults with Mild Cognitive Impairment" Healthcare 12, no. 16: 1622. https://doi.org/10.3390/healthcare12161622