Cardiometabolic Risk in a University Community: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Setting and Study Subjects
2.2. Data Collection
2.3. Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marrugat, J.; Subirana, I.; Ramos, R.; Vila, J.; Marín-Ibañez, A.; Guembe, M.J.; Rigo, F.; Díaz, M.J.T.; Moreno-Iribas, C.; Cabré, J.J.; et al. Derivation and validation of a set of 10-year cardiovascular risk predictive functions in Spain: The FRESCO Study. Prev. Med. 2014, 61, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Cuende, J.I.; Cuende, N.; Calaveras-Lagartos, J. How to calculate vascular age with the SCORE project scales: A new method of cardiovascular risk evaluation. Eur. Heart J. 2010, 31, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
- Conroy, R. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef] [PubMed]
- Dawber, T.R.; Meadors, G.F.; Moore, F.E. Epidemiological Approaches to Heart Disease: The Framingham Study. Am. J. Public Health Nations Health 1951, 41, 279–286. [Google Scholar] [CrossRef]
- Mostaza, J.M.; Pintó, X.; Armario, P.; Masana, L.; Ascaso, J.F.; Valdivielso, P.; Velilla, T.A.; de Lípidos, B.U.; Calmarza, P.; Cebollada, J.; et al. Estándares SEA 2019 para el control global del riesgo cardiovascular. Clínica E Investig. En Arterioscler. 2019, 31, 1–43. [Google Scholar] [CrossRef]
- Buckley, J.P.; Hedge, A.; Yates, T.; Copeland, R.J.; Loosemore, M.; Hamer, M.; Bradley, G.; Dunstan, D.W. The sedentary office: An expert statement on the growing case for change towards better health and productivity. Br. J. Sports Med. 2015, 49, 1357–1362. [Google Scholar] [CrossRef]
- Fountaine, C.J.; Piacentini, M.; Liguori, G.A. Occupational Sitting and Physical Activity Among University Employees. Int. J. Exerc. Sci. 2014, 7, 295–301. [Google Scholar]
- Costa Moreira, O.; Aparecida Rodrigues de Oliveira, R.; Patrocínio Oliveira, C.E.; Aparecida Doimo, L.; dos Santos Amorim, P.R.; Camaroti Laterza, M.; Monteiro, W.D.; Marins, J.C.B. Risk factors for cardiovascular disease in professors from a public university. Investig. Educ. Enferm. 2014, 32, 280–290. [Google Scholar] [CrossRef]
- Olga Alicia Nieto Cárdenas, M.G.L.R.N. Prevalence and Cardiovascular Risk Factors at a University Community in Armenia, Colombia. Int. J. Collab. Res. Intern. Med. Public Health 2016, 8, 576–591. [Google Scholar]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef]
- Craig, C.; Marshall, A.; Sjöström, M.; Bauman, A.; Booth, M.; Ainsworth, B. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Hankins, M. The reliability of the twelve-item general health questionnaire (GHQ-12) under realistic assumptions. BMC Public Health 2008, 8, 355. [Google Scholar] [CrossRef] [PubMed]
- Cobas B 101 System. Diagnostics ROCHE. 2021. Available online: https://diagnostics.roche.com/global/en/products/instruments/cobas-b-101.html (accessed on 1 June 2024).
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA J. Am. Med. Assoc. 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence (NICE). Community Engagement: Improving Health and Wellbeing (QS148). 2017. Available online: https://wwwniceorguk/Guidance/Qs148 (accessed on 1 June 2024).
- Newton, J.; Dooris, M.; Wills, J. Healthy universities: An example of a whole-system health-promoting setting. Glob. Health Promot. 2016, 23, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, R.A.; Sikora, A.; Siahpush, M.; Singh, G.K. Occupational variations in obesity, smoking, heavy drinking, and non-adherence to physical activity recommendations: Findings from the 2010 National Health Interview Survey. Am. J. Ind. Med. 2015, 58, 77–87. [Google Scholar] [CrossRef]
- Pelletier, K.R. A Review and Analysis of the Clinical and Cost-effectiveness Studies of Comprehensive Health Promotion and Disease Management Programs at the Worksite. J. Occup. Environ. Med. 2011, 53, 1310–1331. [Google Scholar] [CrossRef]
- Gimbel, S.; Kohler, P.; Mitchell, P.; Emami, A. Creating academic structures to promote nursing’s role in global health policy. Int. Nurs. Rev. 2017, 64, 117–125. [Google Scholar] [CrossRef]
- van Oostveen, C.J.; Goedhart, N.S.; Francke, A.L.; Vermeulen, H. Combining clinical practice and academic work in nursing: A qualitative study about perceived importance, facilitators and barriers regarding clinical academic careers for nurses in university hospitals. J. Clin. Nurs. 2017, 26, 4973–4984. [Google Scholar] [CrossRef]
- Melariri, H.; Osoba, T.A.; Williams, M.M.; Melariri, P. An assessment of nurses’ participation in Health Promotion: A knowledge, perception, and practice perspective. J. Prev. Med. Hyg. 2022, 63, E27–E34. [Google Scholar] [CrossRef]
- Alkhatib, A. Sedentary Risk Factors across Genders and Job Roles within a University Campus Workplace: Preliminary Study. J. Occup. Health 2013, 55, 218–224. [Google Scholar] [CrossRef]
- Norte Navarro, A.I.; Sansano Perea, M.; Martínez Sanz, J.M.; Sospedra López, I.; Hurtado Sánchez, J.A.; Ortiz Moncada, R. Estudio de factores de riesgo de enfermedad cardiovascular en trabajadores universitarios españoles. Nutr. Hosp. 2016, 33, 644–648. [Google Scholar] [CrossRef]
- Sanjurjo, S.C.; Caro, J.L.; García, A.B.; García, J.P.; Zancada, S.V.; Roca, G.R.; Pérez, R.M.; Sánchez, V.M.; Díaz, M.P. Descripción de la muestra, diseño y métodos del estudio para la identificación de la población española de riesgo cardiovascular y renal (IBERICAN). Med. Fam. SEMERGEN 2020, 46, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Grau, M.; Elosua, R.; de León, A.C.; Guembe, M.J.; Baena-Díez, J.M.; Alonso, T.V.; Félix, F.J.; Zorrilla, B.; Rigo, F.; Lapetra, J.; et al. Factores de riesgo cardiovascular en España en la primera década del siglo xxi: Análisis agrupado con datos individuales de 11 estudios de base poblacional, estudio DARIOS. Rev. Esp. Cardiol. 2011, 64, 295–304. [Google Scholar] [CrossRef]
- Alkhatib, A. High prevalence of sedentary risk factors amongst university employees and potential health benefits of campus workplace exercise intervention. Work 2015, 52, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, K.; Rawal, S.; Parrott, J.S.; Byham-Gray, L.D.; Touger-Decker, R.; Radler, D.R. The Relationships Between Physical Activity and Cardiometabolic Risk Factors Among Women Participating in a University-Based Worksite Wellness Program. J. Occup. Environ. Med. 2018, 60, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Radler, D.R.; Marcus, A.F.; Griehs, R.; Touger-Decker, R. Improvements in Cardiometabolic Risk Factors Among Overweight and Obese Employees Participating in a University Worksite Wellness Program. Health Promot. Pract. 2015, 16, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Butler, C.E.; Clark, B.R.; Burlis, T.L.; Castillo, J.C.; Racette, S.B. Physical Activity for Campus Employees: A University Worksite Wellness Program. J. Phys. Act. Health 2015, 12, 470–476. [Google Scholar] [CrossRef]
- Anderson, L.M.; Quinn, T.A.; Glanz, K.; Ramirez, G.; Kahwati, L.C.; Johnson, D.B.; Buchanan, L.R.; Archer, W.R.; Chattopadhyay, S.; Kalra, G.P.; et al. The Effectiveness of Worksite Nutrition and Physical Activity Interventions for Controlling Employee Overweight and Obesity. Am. J. Prev. Med. 2009, 37, 340–357. [Google Scholar] [CrossRef]
- Aldana, S.G.; Pronk, N.P. Health Promotion Programs, Modifiable Health Risks, and Employee Absenteeism. J. Occup. Environ. Med. 2001, 43, 36–46. [Google Scholar] [CrossRef]
- García-González, M.A.; Torrano, F.; García-González, G. Analysis of Stress Factors for Female Professors at Online Universities. Int. J. Environ. Res. Public Health 2020, 17, 2958. [Google Scholar] [CrossRef]
- Ortega-Jiménez, D.; Ruisoto, P.; Bretones, F.D.; Ramírez, M.d.R.; Vaca Gallegos, S. Psychological (In)Flexibility Mediates the Effect of Loneliness on Psychological Stress. Evidence from a Large Sample of University Professors. Int. J. Environ. Res. Public Health 2021, 18, 2992. [Google Scholar] [CrossRef] [PubMed]
- Kivimäki, M.; Kawachi, I. Work Stress as a Risk Factor for Cardiovascular Disease. Curr. Cardiol. Rep. 2015, 17, 74. [Google Scholar] [CrossRef] [PubMed]
- Gilson, N.; McKenna, J.; Puig-Ribera, A.; Brown, W.; Burton, N. The International Universities Walking Project: Employee step counts, sitting times and health status. Int. J. Workplace Health Manag 2008, 1, 152–161. [Google Scholar] [CrossRef]
- Pedersen, S.J.; Cooley, P.D.; Mainsbridge, C. An e-health intervention designed to increase workday energy expenditure by reducing prolonged occupational sitting habits. Work 2014, 49, 289–295. [Google Scholar] [CrossRef]
- Backé, E.-M.; Seidler, A.; Latza, U.; Rossnagel, K.; Schumann, B. The role of psychosocial stress at work for the development of cardiovascular diseases: A systematic review. Int. Arch. Occup. Environ. Health 2012, 85, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cepeda, M.; Frangaj, B.; Shimbo, D. The Burden of Cardiovascular Disease in the Post-COVID Era. Prim. Care Clin. Off. Pract. 2024, 51, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Guedes, D.; Félix, J.; Pereira, S.; Santos, R. Physical Activity, Readiness, and Cardiovascular Risk Stratification in the Polytechnics Communities of the Northern Region of Portugal Integrated in Mobility as a Service Concept. Healthcare 2023, 11, 3145. [Google Scholar] [CrossRef]
- Motevalli, M.; Drenowatz, C.; Wirnitzer, K.; Tanous, D.; Wirnitzer, G.; Kirschner, W.; Ruedl, G. Changes in physical activity during the COVID-19 lockdown based on the sociodemographic profile of 5569 students and academic staff of Austrian universities. Public Health 2023, 219, 102–109. [Google Scholar] [CrossRef]
- Marinacci, L.X.; Bartlett, V.; Zheng, Z.; Mein, S.; Wadhera, R.K. Health Care Access and Cardiovascular Risk Factor Management Among Working-Age US Adults During the Pandemic. Circ. Cardiovasc. Qual. Outcomes 2023, 16, e010516. [Google Scholar] [CrossRef]
Variable Number (%) | Total 101 (100) | University Campus Administrators 34 (33.7) | University Academics 67 (66.3) | Test Statistics p-Value |
---|---|---|---|---|
Gender | ||||
Males | 39 (38.6) | 7 (6.9) | 32 (31.7) | χ2 = 7.026 * p = 0.723 |
Females | 62 (61.4) | 27 (26.7) | 35 (34.7) | |
Age a | 41.3 years ± 9.4 | 39.2 years ± 9.3 | 42.4 years ± 9.3 | p = 0.107 ** |
Males | 43.3 years ± 9.7 | 40.0 years ± 11.0 | 44.0 years ± 9.5 | p = 0.335 ** |
Females | 40.1 years ± 9.0 | 39.04 years ± 9.0 | 41.0 years ± 9.0 | p = 0.399 ** |
University time dedication | ||||
Full-time dedication | 72 (71.3) | 31 (91.2) | 41 (61.2) | χ2 = 7.026 * p = 0.08 |
Partial-time dedication | 27 (26.7) | 3 (8.8) | 24 (35.8) | |
Guest lecturers | 2 (2.0) | 0 (0) | 2 (3.0) |
Variable Number (%) | Total | Males | Females | Statistics | University Campus Administrators | University Academics | Statistics |
---|---|---|---|---|---|---|---|
Smoking Status | 101 (100) | 39 (38.5) | 62 (61.4) | 34 (33.7) | 67 (66.3) | ||
Number of cigarettes a | 8.2 ± 6.9 | 9.1 ± 7.5 | 7.7 ± 6.7 | p = 0.602 *** | 9.0 ± 6.9 | 7.9 ± 7.2 | p = 0.539 *** |
Smoker | 22 (21.8) | 7 (17.9) | 15 (24.2) | χ2 = 0.649 * p = 0.723 0.080 ** | 8 (23.5) | 14 (20.9) | χ2 = 0.465 * p = 0.792 0.067 ** |
Non-smoker | 51 (50.5) | 20 (51.3) | 31 (50) | χ2 = 0.649 * p = 0.723 0.080 ** | 18 (52.9) | 33 (49.3) | |
Ex-smoker | 28 (27.7) | 12 (30.8) | 16 (25.8) | 8 (23.5) | 20 (29.9) | ||
Adherence to Mediterranean diet | 101 (100) | 39 (38.5) | 62 (61.4) | 34 (33.7) | 67 (66.3) | ||
Yes | 54 (54,5) | 19 (48.7) | 32 (51.6) | χ2 = 0.080 * p = 0.431 0.777 ** | 11 (32.4) | 40 (59.7) | χ2 = 6.748 * p = 0.009 0.258 ** |
No | 47 (46.5) | 20 (51.3) | 30 (48.4) | 23 (67.6) | 27 (40.3) | ||
IPAQ questionnaire | 101 (100) | 39 (38.5) | 62 (61.4) | 34 (33.7) | 67 (66.3) | ||
Vigorous | 40 (39.6) | 20 (51.3) | 20 (32.3) | χ2 = 4.528 * p = 0.104 0.210 ** | 14 (41.2) | 26 (38.8) | χ2 = 1.032 * p = 0.597 0.101 ** |
Moderate | 33 (32.7) | 12 (30.8) | 21 (33.9) | 9 (26.5) | 24 (35.8) | ||
Low or inactive | 28 (27.7) | 7 (17.9) | 21 (33.9) | 11 (32.4) | 17 (25.4) | ||
Number of hours seated a | 6.7 h ± 2.5 | 5.6 h ± 2.5 | 7.3 h± 2.3 | p = 0.07 *** | 7.2 h ± 2.2 | 6.4 h ± 2.6 | p = 0.264 *** |
GHQ-12 | 101 (100) | 39 (38.5) | 62 (61.4) | 34 (33.7) | 67 (66.3) | ||
No emotional risk | 68 (67.3) | 28 (71.8) | 40 (64.5) | χ2 = 0.577 * p = 0.448 0.076 ** | 23 (67.6) | 45 (67.2) | χ2 = 0.002 * p = 1.00 0.005 ** |
With emotional risk | 33 (32.7) | 11 (28.2) | 22 (35.5) | 11 (32.4) | 22 (32.8) | ||
Obesity level (BMI) b | 52 (51,5) | 18 (34.6) | 34 (65.4) | 22 (42.3) | 30 (57.7) | ||
Normal weight c | 29 (28.7) | 10 (55.6) | 19 (55.9) | χ2 = 2.987 * p = 0.560 0.228 ** | 13 (59.1) | 16 (53.3) | χ2 = 5.447 * p = 0.244 0.324 ** |
Overweight class I d | 7 (6.9) | 4 (22.2) | 3 (8.8) | 1 (4.5) | 6 (20) | ||
Overweight class II e | 9 (8.9) | 2 (11.1) | 7 (20.6) | 3 (13.6) | 6 (20) | ||
Obesity class I f | 6 (5.9) | 2 (11.1) | 4 (11.8) | 4 (18.2) | 2 (6.7) | ||
Obesity class III g | 1 (1) | 0 (0) | 1 (2.9) | 1 (4.5) | 0 (0) | ||
Abdominal Obesity | 52 (51.5) | 18 (34.6) | 34 (65.4) | 22 (42.3) | 30 (57.7) | ||
Yes h | 16 (15.8) | 3 (16.7) | 13 (38.2) | χ2 = 2.739 * p = 0.098 0.222 ** | 7 (31.8) | 9 (30) | χ2 = 0.020 * p = 0.888 0.019 ** |
No | 36 (35.6) | 15 (83.3) | 21 (61.8) | 15 (68.2) | 21 (70) | ||
Blood Pressure | 52 (51.5) | 18 (34.6) | 34 (65.4) | 22 (42.3) | 30 (57.7) | ||
Optimal | 31 (30.7) | 8 (44.4) | 23 (67.6) | χ2 = 2.769 * p = 0.049 0.232 ** | 12 (54.5) | 19 (63.3) | χ2 = 7.869 * p = 0.049 0.389 ** |
Normal | 12 (11.9) | 6 (33.3) | 6 (17.6) | 4 (18.2) | 8 (26.7) | ||
High normal | 5 (5) | 2 (11.1) | 3 (8.8) | 5 (22.7) | 0 (0) | ||
Gr. 1 hypertension | 4 (4) | 2 (11.1) | 2 (5.9) | 1 (4.5) | 3 (10) |
Variables | Total N (%) | Males | Females | Statistics | University Campus Administrators | University Academics | Statistics |
---|---|---|---|---|---|---|---|
Family Cardiovascular Risk | 101 (100) | 39 (38.5) | 62 (61.4) | 34 (33.7) | 67 (66.3) | ||
Yes | 92 (91.1) | 35 (89.7) | 57 (91.9) | χ2 = 0.140 * p = 0.709 0.037 ** | 32 (94.1) | 60 (89.6) | χ2 = 0.579 * p = 0.447 0.076 ** |
No | 9 (8.95) | 4 (10.3) | 5 (8.1) | 2 (5.9) | 7 (10.4) | ||
Hypertension | 101 (100) | 39 (38.5) | 62 (61.4) | 34 (33.7) | 67 (66.3) | ||
Yes | 8 (7.9) | 6 (15.4) | 2 (3.2) | χ2 = 4.853 * p = 0.028 0.219 ** | 5 (14.7) | 3 (4.5) | χ2 = 3.235 * p = 0.07 0.179 ** |
No | 93 (92.1) | 33 (84.6) | 60 (96.8) | 29 (85.3) | 64 (95.5 | ||
Sleep Apnea Syndrome | 101 (100) | 39 (38.5) | 62 (61.4) | 34 (33.7) | 67 (66.3) | ||
Yes | 5 (5) | 3 (7.7) | 2 (3.2) | χ2 = 0.982 * p = 0.322 0.100 ** | 3 (8.8) | 2 (3.0) | χ2 = 1.526 * p = 0.217 0.127 ** |
No | 96 (95) | 36 (92.3) | 60 (96.8) | 31 (91.2) | 65 (97) | ||
Hypercholesterolemia | 52 (51.5) | 18 (34.6) | 34 (65.4) | 22 (42.3) | 30 (57.7) | ||
Yes a | 12 (10.9) | 5 (27.8) | 7 (20.6) | χ2 = 0.057 * p = 0.811 0.034 ** | 4 (18.2) | 8 (26.7) | χ2 = 0.265* p = 0.606 0.072 ** |
No b | 40 (39.6) | 13 (72.2) | 27 (79.4) | 18 (81.8) | 22 (73.3) | ||
Hypertriglyceridemia | 52 (51.5) | 18 (34.6) | 34 (65.4) | 22 (42.3) | 30 (57.7) | ||
Yes c | 27 (26.7) | 9 (50) | 19 (55.9) | χ2 = 0.354 * p = 0.552 0.083 ** | 13 (59.8) | 15 (50) | χ2 = 0.587 * p = 0.443 0.107 ** |
No d | 24 (23.8) | 9 (50) | 15 (44.1) | 9 (40.9) | 15 (50) | ||
Relative Cardiovascular Risk e | 27 (26.7) | 9 (33.3) | 18 (66.7) | 14 (51.8) | 13 (48.2) | ||
Low Risk | 19 (18.8) | 6 (66.7) | 13 (72.2) | χ2 = 0.872 * p = 0.647 0.144 ** | 3 (21.4) | 8 (61.5) | χ2 = 2.751 * p = 0.253 0.295 ** |
Moderate Risk | 8 (7.9) | 3 (33.3) | 5 (27.8) | 11 (78.6) | 5 (38.5) | ||
Vascular Age f | 24 (23.8) | 8 (33.3) | 16 (66.7) | 8 (33.3) | 16 (66.7) | ||
Lower vascular age vs. age years | 6 (5.9) | 2 (25) | 4 (25) | χ2 = 10.277 * p = 0.506 0.274 ** | 2 (25) | 4 (25) | χ2 = 8.595 * p = 0.659 0.292 ** |
Greater vascular age vs. age years | 15 (14.9) | 5 (62.5) | 10 (62.5) | 2 (25) | 11 (68.8) | ||
Same vascular age vs. age years | 3 (3) | 1 (12.5) | 2 (12.5) | 4 (50) | 1 (6.3) | ||
Absolute Cardiovascular Risk f | 24 (23.8) | 8 (33.3) | 16 (66.7) | 8 (33.3) | 16 (66.7) | ||
Low Risk | 21 (20.8) | 5 (62.5) | 16 (100) | χ2 = 6.857 * p = 0.009 0.535 ** | 7 (87.5) | 14 (87.5) | χ2 = 0.000 * p = 1.000 0.000 ** |
Moderate Risk | 3 (3) | 3 (37.5) | 0 (0) | 1 (12.5) | 2 (12.5) | ||
High or very high risk | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
Cardiovascular Riskby comorbidity | 52 (51.5) | 18 (34.6) | 34 (65.4) | 22 (42.3) | 30 (57.7) | ||
Cardiovascular Risk added | 38 (37.6) | 14 (82.4) | 24 (70.6) | χ2 = 863 * p = 0.353 0.127 ** | 25 (83.3) | 13 (61.9) | χ2 = 2.957 * p = 0.086 0.242 ** |
No Cardiovascular Risk added | 14 (13.9) | 3 (17.6) | 10 (29.4) | 5 (16.7) | 8 (38.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Manchón, D.; Barrio-Cortes, J.; Vicario-Merino, A.; Mayoral-Gonzalo, N.; Ruiz-López, M.; Corral-Pugnaire, E.; Blanco-Hermo, P.; Ruiz-Zaldibar, C. Cardiometabolic Risk in a University Community: An Observational Study. Healthcare 2024, 12, 1756. https://doi.org/10.3390/healthcare12171756
Pérez-Manchón D, Barrio-Cortes J, Vicario-Merino A, Mayoral-Gonzalo N, Ruiz-López M, Corral-Pugnaire E, Blanco-Hermo P, Ruiz-Zaldibar C. Cardiometabolic Risk in a University Community: An Observational Study. Healthcare. 2024; 12(17):1756. https://doi.org/10.3390/healthcare12171756
Chicago/Turabian StylePérez-Manchón, David, Jaime Barrio-Cortes, Angel Vicario-Merino, Noemí Mayoral-Gonzalo, Montserrat Ruiz-López, Eduardo Corral-Pugnaire, Patricia Blanco-Hermo, and Cayetana Ruiz-Zaldibar. 2024. "Cardiometabolic Risk in a University Community: An Observational Study" Healthcare 12, no. 17: 1756. https://doi.org/10.3390/healthcare12171756
APA StylePérez-Manchón, D., Barrio-Cortes, J., Vicario-Merino, A., Mayoral-Gonzalo, N., Ruiz-López, M., Corral-Pugnaire, E., Blanco-Hermo, P., & Ruiz-Zaldibar, C. (2024). Cardiometabolic Risk in a University Community: An Observational Study. Healthcare, 12(17), 1756. https://doi.org/10.3390/healthcare12171756