Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature
Abstract
:1. Introduction
2. Methods
2.1. Formulation of the Research Question
- Population: Disaster survivors;
- Intervention: Environmental disasters;
- Comparison: Not required for this review;
- Outcome: Autoimmune disease development.
2.2. Development of the Review Protocol
2.3. Inclusion and Exclusion Criteria
2.4. Search Strategy—Data Source
2.5. Data Extraction, Disagreement Resolution and Results
3. Pathways Linking Climate-Induced Environmental Disasters to Autoimmune Diseases
4. Specific Environmental Disasters and Autoimmune Disease Risk
4.1. Heat Stress and Autoimmune Responses
4.2. Wildfires and Immune System Impact
4.3. Earthquakes and Particulate Matter
4.4. Desert Dust Storms and Health Risks
4.5. Volcanic Eruptions and Immune Triggers
5. Triggering Autoimmune Diseases through Environmental Disasters
5.1. Vector-Borne Diseases
5.2. Waterborne and Foodborne Diseases
5.3. Rodent-Borne Diseases
6. Post-Disaster Stress and Autoimmune Disease Exacerbation
7. Public Health Implications
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhary, M.T.; Piracha, A. Natural Disasters—Origins, Impacts, Management. Encyclopedia 2021, 1, 1101–1131. [Google Scholar] [CrossRef]
- Smith, D.F.Q.; Casadevall, A. Disaster Microbiology—A New Field of Study. mBio 2022, 13, e0168022. [Google Scholar] [CrossRef] [PubMed]
- Requia, W.J.; Jhun, I.; Coull, B.A.; Koutrakis, P. Climate impact on ambient PM2.5 elemental concentration in the United States: A trend analysis over the last 30 years. Environ. Int. 2019, 131, 104888. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Shiga, H.; Kinouchi, Y.; Takahashi, S.; Tominaga, G.; Takahashi, H.; Takagi, S.; Obana, N.; Kikuchi, T.; Omori, S.; et al. Long-term course of inflammatory bowel disease after the Great East Japan Earthquake. J. Gastroenterol. Hepatol. 2018, 33, 1956–1960. [Google Scholar] [CrossRef]
- Wu, W.J.H.; Zegarra-Ruiz, D.F.; Diehl, G.E. Intestinal Microbes in Autoimmune and Inflammatory Disease. Front. Immunol. 2020, 11, 597966. [Google Scholar] [CrossRef] [PubMed]
- Skevaki, C.; Nadeau, K.C.; Rothenberg, M.E.; Alahmad, B.; Mmbaga, B.T.; Masenga, G.G.; Sampath, V.; Christiani, D.C.; Haahtela, T.; Renz, H. Impact of climate change on immune responses and barrier defense. J. Allergy Clin. Immunol. 2024, 153, 1194–1205. [Google Scholar] [CrossRef]
- Ray, C.; Ming, X. Climate Change and Human Health: A Review of Allergies, Autoimmunity and the Microbiome. Int. J. Environ. Res. Public Health 2020, 17, 4814. [Google Scholar] [CrossRef]
- Flores-Chávez, A.; Brito-Zerón, P.; Ng, W.F.; Szántó, A.; Rasmussen, A.; Priori, R.; Baldini, C.; Armagan, B.; Özkiziltaş, B.; Praprotnik, S.; et al. Influence of exposure to climate-related hazards in the phenotypic expression of primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2023, 41, 2437–2447. [Google Scholar] [CrossRef]
- Ilchmann-Diounou, H.; Menard, S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front. Immunol. 2020, 11, 1823. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Suter, M.A.; Aagaard, K.M. Natural disasters resulting from climate change: The impact of hurricanes and flooding on perinatal outcomes. Semin. Perinatol. 2023, 47, 151840. [Google Scholar] [CrossRef]
- Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol. Lett. 2018, 15, 7506–7514. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, C. Comparison of particle lung doses from the fine and coarse fractions of urban PM-10 aerosols. Inhal. Toxicol. 1999, 11, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Celebi Sozener, Z.; Özbey Yücel, Ü.; Altiner, S.; Ozdel Oztürk, B.; Cerci, P.; Türk, M.; Gorgülü Akin, B.; Akdis, M.; Yilmaz, I.; Ozdemir, C.; et al. The External Exposome and Allergies: From the Perspective of the Epithelial Barrier Hypothesis. Front. Allergy 2022, 3, 887672. [Google Scholar] [CrossRef]
- Misiukiewicz-Stepien, P.; Paplinska-Goryca, M. Biological effect of PM10 on airway epithelium-focus on obstructive lung diseases. Clin. Immunol. 2021, 227, 108754. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Smargiassi, A.; Chen, H.; Widdifield, J.; Bernatsky, S. Systemic autoimmune rheumatic diseases and multiple industrial air pollutant emissions: A large general population Canadian cohort analysis. Environ. Int. 2023, 174, 107920. [Google Scholar] [CrossRef]
- Zhao, N.; Smargiassi, A.; Jean, S.; Gamache, P.; Laouan-Sidi, E.A.; Chen, H.; Goldberg, M.S.; Bernatsky, S. Long-term exposure to fine particulate matter and ozone and the onset of systemic autoimmune rheumatic diseases: An open cohort study in Quebec, Canada. Arthritis Res. Ther. 2022, 24, 151. [Google Scholar] [CrossRef]
- Bernatsky, S.; Smargiassi, A.; Johnson, M.; Kaplan, G.G.; Barnabe, C.; Svenson, L.; Brand, A.; Bertazzon, S.; Hudson, M.; Clarke, A.E.; et al. Fine particulate air pollution, nitrogen dioxide, and systemic autoimmune rheumatic disease in Calgary, Alberta. Environ. Res. 2015, 140, 474–478. [Google Scholar] [CrossRef]
- Folberth, G.A.; Butler, T.M.; Collins, W.J.; Rumbold, S.T. Megacities and climate change—A brief overview. Environ. Pollut. 2015, 203, 235–242. [Google Scholar] [CrossRef]
- Huang, X.; Hall, A.D.; Berg, N. Anthropogenic warming impacts on today’s Sierra Nevada snowpack and flood risk. Geophysical Res. Lett. 2018, 45, 6215–6222. [Google Scholar] [CrossRef]
- Higuera, P.E.; Shuman, B.N.; Wolf, K.D. Rocky Mountain subalpine forests now burning more than any time in recent millennia. Proc. Natl. Acad. Sci. USA 2021, 118, e2103135118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Fan, B. Exploring the Relationship between Rising Temperatures and the Number of Climate-Related Natural Disasters in China. Int. J. Environ. Res. Public Health 2021, 18, 745. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Chang, C.P.; Xuan, Y. The impacts of climate change on bank performance: What’s the mediating role of natural disasters? Econ. Chang. Restruct. 2022, 55, 1913–1952. [Google Scholar] [CrossRef]
- Turner, M.M.; Ghayoomi, M.; Duderstadt, K.; Brewer, J.; Kholodov, A. Climate change and seismic resilience: Key considerations for Alaska’s infrastructure and built environment. PLoS ONE 2023, 18, e0292320. [Google Scholar] [CrossRef]
- Feng, X.; Duan, L.; Kurylyk, B.L.; Cai, T. Impacts of permafrost thaw on streamflow recession in a discontinuous permafrost watershed of northeastern China. Sci. Total Environ. 2022, 847, 157624. [Google Scholar] [CrossRef]
- Smith, D.F.Q.; Casadevall, A. Disaster mycology. Biomedica 2023, 43, 267–277. [Google Scholar] [CrossRef]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 2019, 10, 10–1128. [Google Scholar] [CrossRef]
- Huisse, M.G.; Pease, S.; Hurtado-Nedelec, M.; Arnaud, B.; Malaquin, C.; Wolff, M.; Gougerot-Pocidalo, M.A.; Kermarrec, N.; Bezeaud, A.; Guillin, M.C.; et al. Leukocyte activation: The link between inflammation and coagulation during heatstroke. A study of patients during the 2003 heat wave in Paris. Crit. Care Med. 2008, 36, 2288–2295. [Google Scholar] [CrossRef]
- Patel, J.; Boyer, N.; Mensah, K.; Haider, S.; Gibson, O.; Martin, D.; Walter, E. Critical illness aspects of heatstroke: A hot topic. J. Intensive Care Soc. 2023, 24, 206–214. [Google Scholar] [CrossRef]
- Hall, D.M.; Buettner, G.R.; Oberley, L.W.; Xu, L.; Matthes, R.D.; Gisolfi, C.V. Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. Am. J. Physiol.-Heart Circ. Physiol. 2001, 280, H509–H521. [Google Scholar] [CrossRef] [PubMed]
- Ziska, L.H.; Makra, L.; Harry, S.K.; Bruffaerts, N.; Hendrickx, M.; Coates, F.; Saarto, A.; Thibaudon, M.; Oliver, G.; Damialis, A.; et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. Lancet Planet. Health 2019, 3, e124–e131. [Google Scholar] [CrossRef]
- Sözener, Z.C.; Cevhertas, L.; Nadeau, K.; Akdis, M.; Akdis, C.A. Environmental factors in epithelial barrier dysfunction. J. Allergy Clin. Immunol. 2020, 145, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, T.T.; Monteleone, G. Immunity, inflammation, and allergy in the gut. Science 2005, 307, 1920–1925. [Google Scholar] [CrossRef] [PubMed]
- Kinashi, Y.; Hase, K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front. Immunol. 2021, 12, 673708. [Google Scholar] [CrossRef]
- Zeglinski, M.R.; Turner, C.T.; Zeng, R.; Schwartz, C.; Santacruz, S.; Pawluk, M.A.; Zhao, H.; Chan, A.W.H.; Carlsten, C.; Granville, D.J. Soluble Wood Smoke Extract Promotes Barrier Dysfunction in Alveolar Epithelial Cells through a MAPK Signaling Pathway. Sci. Rep. 2019, 9, 10027. [Google Scholar] [CrossRef]
- Roscioli, E.; Hamon, R.; Lester, S.E.; Jersmann, H.P.A.; Reynolds, P.N.; Hodge, S. Airway epithelial cells exposed to wildfire smoke extract exhibit dysregulated autophagy and barrier dysfunction consistent with COPD. Respir. Res. 2018, 19, 234. [Google Scholar] [CrossRef]
- Yazici, D.; Ogulur, I.; Kucukkase, O.; Li, M.; Rinaldi, A.O.; Pat, Y.; Wallimann, A.; Wawrocki, S.; Sozener, Z.C.; Buyuktiryaki, B.; et al. Epithelial barrier hypothesis and the development of allergic and autoimmune diseases. Allergo J. Int. 2022, 31, 91–102. [Google Scholar] [CrossRef]
- Vojdani, A.; Pollard, K.M.; Campbell, A.W. Environmental triggers and autoimmunity. Autoimmune Dis. 2014, 2014, 798029. [Google Scholar] [CrossRef]
- Buscarinu, M.C.; Fornasiero, A.; Romano, S.; Ferraldeschi, M.; Mechelli, R.; Reniè, R.; Morena, E.; Romano, C.; Pellicciari, G.; Landi, A.C.; et al. The Contribution of Gut Barrier Changes to Multiple Sclerosis Pathophysiology. Front. Immunol. 2019, 10, 1916. [Google Scholar] [CrossRef]
- Taraz, T.; Mahmoudi-Ghehsareh, M.; Asri, N.; Nazemalhosseini-Mojarad, E.; Rezaei-Tavirani, M.; Jahani-Sherafat, S.; Naseh, A.; Rostami-Nejad, M. Overview of the compromised mucosal integrity in celiac disease. J. Mol. Histol. 2024, 55, 15–24. [Google Scholar] [CrossRef]
- Wiegman, C.H.; Li, F.; Ryffel, B.; Togbe, D.; Chung, K.F. Oxidative Stress in Ozone-Induced Chronic Lung Inflammation and Emphysema: A Facet of Chronic Obstructive Pulmonary Disease. Front. Immunol. 2020, 11, 1957. [Google Scholar] [CrossRef]
- Camelo, J.; Mayo, T.L.; Gutmann, E.D. Projected Climate Change Impacts on Hurricane Storm Surge Inundation in the Coastal United States. Front. Built Environ. 2020, 6, 588049. [Google Scholar] [CrossRef]
- Ozdemir, C.; Kucuksezer, U.C.; Ogulur, I.; Pat, Y.; Yazici, D.; Agache, I.; Jutel, M.; Nadeau, K.C.; Akdis, M.; Akdis, C.A. How does global warming contribute to disorders originating from an impaired epithelial barrier? Ann. Allergy Asthma Immunol. 2023, 131, 703–712. [Google Scholar] [CrossRef]
- Andhikaputra, G.; Lin, Y.H.; Wang, Y.C. Effects of temperature, rainfall, and El Niño Southern Oscillations on dengue-like-illness incidence in Solomon Islands. BMC Infect. Dis. 2023, 23, 206. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Lin, H.-H.; Chang, S.-A.; Chen Wang, T.-C.; Chen, J.-C.; Chen, Y.-S. Do Weather Conditions Still Have an Impact on the COVID-19 Pandemic? An Observation of the Mid-2022 COVID-19 Peak in Taiwan. Microorganisms 2024, 12, 947. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wen, B.; Li, S.; Guo, Y. Sand and dust storms in Asia: A call for global cooperation on climate change. Lancet Planet. Health 2021, 5, e329–e330. [Google Scholar] [CrossRef] [PubMed]
- Kok, J.F.; Parteli, E.J.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed]
- Gat, D.; Mazar, Y.; Cytryn, E.; Rudich, Y. Origin-Dependent Variations in the Atmospheric Microbiome Community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. 2017, 51, 6709–6718. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
- Kasperkiewicz, M. COVID-19, heat shock proteins, and autoimmune bullous diseases: A potential link deserving further attention. Cell Stress Chaperones 2021, 26, 1–2. [Google Scholar] [CrossRef]
- Danieli, M.G.; Antonelli, E.; Piga, M.A.; Claudi, I.; Palmeri, D.; Tonacci, A.; Allegra, A.; Gangemi, S. Alarmins in autoimmune diseases. Autoimmun. Rev. 2022, 21, 103142. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Y.; Ye, T.; Gasparrini, A.; Tong, S.; Overcenco, A.; Urban, A.; Schneider, A.; Entezari, A.; Vicedo-Cabrera, A.M.; et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study. Lancet. Planet. Health 2021, 5, e415–e425. [Google Scholar] [CrossRef] [PubMed]
- Cascio, W.E. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Panumasvivat, J.; Sapbamrer, R.; Sittitoon, N.; Khacha-ananda, S.; Kiratipaisarl, W.; Sirikul, W.; Insian, W.; Assavanopakun, P. Exploring the adverse effect of fine particulate matter (PM2.5) on wildland firefighters’ pulmonary function and DNA damage. Sci. Rep. 2024, 14, 7932. [Google Scholar] [CrossRef]
- Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 2021, 12, 1493. [Google Scholar] [CrossRef] [PubMed]
- Bowman, W.S.; Schmidt, R.J.; Sanghar, G.K.; Thompson, G.R., III; Ji, H.; Zeki, A.A.; Haczku, A. “Air That Once Was Breath” Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation—“Climate Change, Allergy and Immunology” Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int. Arch. Allergy Immunol. 2024, 185, 600–616. [Google Scholar] [CrossRef] [PubMed]
- Dilger, M.; Orasche, J.; Zimmermann, R.; Paur, H.R.; Diabaté, S.; Weiss, C. Toxicity of wood smoke particles in human A549 lung epithelial cells: The role of PAHs, soot and zinc. Arch. Toxicol. 2016, 90, 3029–3044. [Google Scholar] [CrossRef]
- O’Driscoll, C.A.; Mezrich, J.D. The Aryl Hydrocarbon Receptor as an Immune-Modulator of Atmospheric Particulate Matter-Mediated Autoimmunity. Front. Immunol. 2018, 9, 2833. [Google Scholar] [CrossRef]
- Veldhoen, M.; Hirota, K.; Westendorf, A.M.; Buer, J.; Dumoutier, L.; Renauld, J.C.; Stockinger, B. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008, 453, 106–109. [Google Scholar] [CrossRef]
- Pollard, K.M.; Cauvi, D.M.; Mayeux, J.M.; Toomey, C.B.; Peiss, A.K.; Hultman, P.; Kono, D.H. Mechanisms of Environment-Induced Autoimmunity. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 135–157. [Google Scholar] [CrossRef]
- Bernstein, J.A.; Alexis, N.; Barnes, C.; Bernstein, I.L.; Bernstein, J.A.; Nel, A.; Peden, D.; Diaz-Sanchez, D.; Tarlo, S.M.; Williams, P.B. Health effects of air pollution. J. Allergy Clin. Immunol. 2004, 114, 1116–1123. [Google Scholar] [CrossRef]
- Blaskievicz, P.H.; Silva, A.M.C.; Fernandes, V.; Junior, O.B.P.; Shimoya-Bittencourt, W.; Ferreira, S.M.B.; da Silva, C.A.L. Atmospheric Pollution Exposure Increases Disease Activity of Systemic Lupus Erythematosus. Int. J. Environ. Res. Public Health 2020, 17, 1984. [Google Scholar] [CrossRef] [PubMed]
- Ritz, S.A. Air pollution as a potential contributor to the “epidemic” of autoimmune disease. Med. Hypotheses 2010, 74, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, R.; Shi, M.; Cai, J.; Shi, J.; Yang, C.; Li, H.; Lin, Z.; Meng, X.; Liu, C.; et al. Possible Mediation by Methylation in Acute Inflammation Following Personal Exposure to Fine Particulate Air Pollution. Am. J. Epidemiol. 2018, 187, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Zeft, A.S.; Spalding, S.J. Autoinflammatory syndromes: Fever is not always a sign of infection. Cleve. Clin. J. Med. 2012, 79, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Vidotto, J.P.; Pereira, L.A.A.; Braga, A.L.F.; Silva, C.A.; Sallum, A.M.; Campos, L.M.; Martins, L.C.; Farhat, S.C.L. Atmospheric pollution: Influence on hospital admissions in paediatric rheumatic diseases. Lupus 2012, 21, 526–533. [Google Scholar] [CrossRef]
- Rezayat, A.A.; Jafari, N.; Mir Nourbakhsh, S.H.; Hasheminezhad Hoseini, F.S.; Hooshmand, N.; Ghasemi Nour, M.; Handjani, F.; Tabrizi, R. The effect of air pollution on systemic lupus erythematosus: A systematic review and meta-analysis. Lupus 2022, 31, 1606–1618. [Google Scholar] [CrossRef]
- Goulart, M.F.G.; Alves, A.G.F.; Farhat, J.; Braga, A.L.F.; Pereira, L.A.A.; de Faria Coimbra Lichtenfels, A.J.; de Arruda Campos, L.M.; da Silva, C.A.A.; Elias, A.M.; Farhat, S.C.L. Influence of air pollution on renal activity in patients with childhood-onset systemic lupus erythematosus. Pediatr. Nephrol. 2020, 35, 1247–1255. [Google Scholar] [CrossRef]
- Farhat, S.C.L.; Ejnisman, C.; Alves, A.G.F.; Goulart, M.F.G.; de Faria Coimbra Lichtenfels, A.J.; Braga, A.L.F.; Pereira, L.A.A.; Maluf Elias, A.; Silva, C.A. Air pollution influence on serum inflammatory interleukins: A prospective study in childhood-onset systemic lupus erythematous patients. Lupus 2021, 30, 2268–2275. [Google Scholar] [CrossRef]
- Yariwake, V.Y.; Torres, J.I.; dos Santos, A.R.P.; Freitas, S.C.F.; De Angelis, K.; Farhat, S.C.L.; Câmara, N.O.S.; Veras, M.M. Chronic exposure to PM2.5 aggravates SLE manifestations in lupus-prone mice. Part. Fibre Toxicol. 2021, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Hsu, C.C.; Muo, C.H.; Hsu, C.Y.; Liu, H.C.; Kao, C.H.; Chen, C.Y.; Chang, M.Y.; Hsu, Y.C. Air pollution exposure increases the risk of rheumatoid arthritis: A longitudinal and nationwide study. Environ. Int. 2016, 94, 495–499. [Google Scholar] [CrossRef]
- Hart, J.E.; Källberg, H.; Laden, F.; Costenbader, K.H.; Yanosky, J.D.; Klareskog, L.; Alfredsson, L.; Karlson, E.W. Ambient air pollution exposures and risk of rheumatoid arthritis. Arthritis Care Res. 2013, 65, 1190–1196. [Google Scholar] [CrossRef]
- Chen, H.; Wu, J.; Wang, M.; Wang, S.; Wang, J.; Yu, H.; Hu, Y.; Shang, S. Association between ambient fine particulate matter and adult outpatient visits for rheumatoid arthritis in Beijing, China. Int. J. Biometeorol. 2023, 67, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Choi, S.; Kim, K.; Chang, J.; Kim, S.M.; Kim, S.R.; Lee, G.; Son, J.S.; Kim, K.H.; Lee, E.Y.; et al. Association of particulate matter with autoimmune rheumatic diseases among adults in South Korea. Rheumatology 2021, 60, 5117–5126. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, J.; Yang, R.; Yu, H.; Shang, S.; Hu, Y. Ambient fine particulate matter is associated with daily outpatient visits for ankylosing spondylitis: A time-series analysis in Beijing, China. Heliyon 2024, 10, e28933. [Google Scholar] [CrossRef]
- Wu, J.; Chen, H.; Yang, R.; Yu, H.; Shang, S.; Hu, Y. Short-term exposure to ambient fine particulate matter and psoriasis: A time-series analysis in Beijing, China. Front. Public Health 2022, 10, 1015197. [Google Scholar] [CrossRef]
- Adami, G.; Pontalti, M.; Cattani, G.; Rossini, M.; Viapiana, O.; Orsolini, G.; Benini, C.; Bertoldo, E.; Fracassi, E.; Gatti, D.; et al. Association between long-term exposure to air pollution and immune-mediated diseases: A population-based cohort study. RMD Open 2022, 8, e002055. [Google Scholar] [CrossRef]
- Hopkins, A.J.M.; Brace, A.J.; Bruce, J.L.; Hyde, J.; Fontaine, J.B.; Walden, L.; Veber, W.; Ruthrof, K.X. Drought legacy interacts with wildfire to alter soil microbial communities in a Mediterranean climate-type forest. Sci. Total Environ. 2024, 915, 170111. [Google Scholar] [CrossRef]
- Nelson, A.R.; Narrowe, A.B.; Rhoades, C.C.; Fegel, T.S.; Daly, R.A.; Roth, H.K.; Chu, R.K.; Amundson, K.K.; Young, R.B.; Steindorff, A.S.; et al. Wildfire-dependent changes in soil microbiome diversity and function. Nat. Microbiol. 2022, 7, 1419–1430. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Pingree, M.R.A.; Larson, H.; Dreaden, T.J.; Green, S.; Smith, J.A. Pyroaerobiology: The aerosolization and transport of viable microbial life by wildland fire. Ecosphere 2018, 9, e02507. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Thompson, G.R., III. Wildfire smoke, a potential infectious agent. Science 2020, 370, 1408–1410. [Google Scholar] [CrossRef]
- Kobziar, L.N.; Lampman, P.; Tohidi, A.; Kochanski, A.K.; Cervantes, A.; Hudak, A.T.; McCarley, R.; Gullett, B.; Aurell, J.; Moore, R.; et al. Bacterial Emission Factors: A Foundation for the Terrestrial-Atmospheric Modeling of Bacteria Aerosolized by Wildland Fires. Environ. Sci. Technol. 2024, 58, 2413–2422. [Google Scholar] [CrossRef]
- Mulliken, J.S.; Hampshire, K.N.; Rappold, A.G.; Fung, M.; Babik, J.M.; Doernberg, S.B. Risk of systemic fungal infections after exposure to wildfires: A population-based, retrospective study in California. Lancet Planet. Health 2023, 7, e381–e386. [Google Scholar] [CrossRef] [PubMed]
- Schneider, E.; Hajjeh, R.A.; Spiegel, R.A.; Jibson, R.W.; Harp, E.L.; Marshall, G.A.; Gunn, R.A.; McNeil, M.M.; Pinner, R.W.; Baron, R.C.; et al. A Coccidioidomycosis Outbreak Following the Northridge, Calif, Earthquake. JAMA 1997, 277, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Chow, N.A.; Kangiser, D.; Gade, L.; McCotter, O.Z.; Hurst, S.; Salamone, A.; Wohrle, R.; Clifford, W.; Kim, S.; Salah, Z.; et al. Factors Influencing Distribution of Coccidioides immitis in Soil, Washington State, 2016. mSphere 2021, 6, e0059821. [Google Scholar] [CrossRef] [PubMed]
- Tobin, K.J.; Pokharel, S.; Bennett, M.E. Coccidioidomycosis (Valley Fever), Soil Moisture, and El Nino Southern Oscillation in California and Arizona. Int. J. Environ. Res. Public Health 2022, 19, 7262. [Google Scholar] [CrossRef]
- Porter, W.T.; Gade, L.; Montfort, P.; Mihaljevic, J.R.; Bowers, J.R.; Willman, A.; Klimowski, B.A.; LaFleur, B.J.; Sunenshine, R.H.; Collins, J.; et al. Understanding the exposure risk of aerosolized Coccidioides in a Valley fever endemic metropolis. Sci. Rep. 2024, 14, 1311. [Google Scholar] [CrossRef]
- Guarneri, F.; Guarneri, B.; Vaccaro, M.; Guarneri, C. The human Ku autoantigen shares amino acid sequence homology with fungal, but not bacterial and viral, proteins. Immunopharmacol. Immunotoxicol. 2011, 33, 329–333. [Google Scholar] [CrossRef]
- Kakoullis, L.; Parperis, K.; Papachristodoulou, E.; Panos, G. Infection-induced myeloperoxidase specific antineutrophil cytoplasmic antibody (MPO-ANCA) associated vasculitis: A systematic review. Clin. Immunol. 2020, 220, 108595. [Google Scholar] [CrossRef]
- Balbay, E.G.; Kayalar, Ö.; Balbay, Ö.; Dikensoy, Ö.; Arbak, P.; Bayram, H. Impact of Earthquakes on Lung Health. Thorac. Res. Pract. 2024, 25, 89–98. [Google Scholar] [CrossRef]
- Fee, L.; Kumar, A.; Tighe, R.M.; Foster, M.H. Autoreactive B cells recruited to lungs by silica exposure contribute to local autoantibody production in autoimmune-prone BXSB and B cell receptor transgenic mice. Front. Immunol. 2022, 13, 933360. [Google Scholar] [CrossRef] [PubMed]
- Fireman, E.M.; Fireman Klein, E. Association between silicosis and autoimmune disease. Curr. Opin. Allergy Clin. Immunol. 2024, 24, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Yamanda, S.; Kobayashi, S.; Hanagama, M.; Sato, H.; Suzuki, S.; Ueda, S.; Takahashi, T.; Yanai, M. Two Cases of Tsunami Dust Pneumonia: Organizing Pneumonia Caused by the Inhalation of Dried Tsunami Sludge after the 2011 Great East Japan Earthquake. Intern. Med. 2016, 55, 3645–3653. [Google Scholar] [CrossRef] [PubMed]
- Stolt, P.; Källberg, H.; Lundberg, I.; Sjögren, B.; Klareskog, L.; Alfredsson, L.; EIRA Study Group. Silica exposure is associated with increased risk of developing rheumatoid arthritis: Results from the Swedish EIRA study. Ann. Rheum. Dis. 2005, 64, 582–586. [Google Scholar] [CrossRef]
- Yamazaki, S.; Yoshiike, F.; Hirai, K.; Kakegawa, T.; Ikeda, M.; Nagata, A.; Saito, G.; Nishimura, H.; Hosaka, N.; Ehara, T. Silica-associated systemic lupus erythematosus in an elderly man. Intern. Med. 2007, 46, 1867–1871. [Google Scholar] [CrossRef]
- Costallat, L.T.L.; De Capitani, E.M.; Zambon, L. Pulmonary silicosis and systemic lupus erythematosus in men: A report of two cases. Jt. Bone Spine 2002, 69, 68–71. [Google Scholar] [CrossRef]
- Abdelghani, K.B.; Fazaa, A.; Souabni, L.; Zakraoui, L. Association of pulmonary silicosis and systemic sclerosis. BMJ Case Rep. 2015, 2015, bcr2013202509. [Google Scholar] [CrossRef]
- Gómez-Puerta, J.A.; Gedmintas, L.; Costenbader, K.H. The association between silica exposure and development of ANCA-associated vasculitis: Systematic review and meta-analysis. Autoimmun. Rev. 2013, 12, 1129–1135. [Google Scholar] [CrossRef]
- Lee, S.; Hayashi, H.; Kumagai-Takei, N.; Matsuzaki, H.; Yoshitome, K.; Nishimura, Y.; Uragami, K.; Kusaka, M.; Yamamoto, S.; Ikeda, M.; et al. Clinical evaluation of CENP-B and Scl-70 autoantibodies in silicosis patients. Exp. Ther. Med. 2017, 13, 2616–2622. [Google Scholar] [CrossRef]
- Fukushima, K.; Uchida, H.A.; Fuchimoto, Y.; Mifune, T.; Watanabe, M.; Tsuji, K.; Tanabe, K.; Kinomura, M.; Kitamura, S.; Miyamoto, Y.; et al. Silica-associated systemic lupus erythematosus with lupus nephritis and lupus pneumonitis: A case report and a systematic review of the literature. Medicine 2022, 101, e28872. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Pérez, J.J.; Arnalich-Montiel, V.; Salgado-Barreira, Á.; Alvarez-Moure, M.A.; Caldera-Díaz, A.C.; Melero-Gonzalez, R.; Pallarés-Sanmartín, A.; Fernandez-Villar, A.; González-Barcala, F.J. Prevalence and clinical impact of systemic autoimmune rheumatic disease in patients with silicosis. Arch. Bronconeumol. 2021, 57, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Saito, A.; Ojima, Y.; Kagaya, S.; Fukami, H.; Sato, H.; Matsuda, K.; Nagasawa, T. The influence of the Great East Japan earthquake on microscopic polyangiitis: A retrospective observational study. PLoS ONE 2017, 12, e0177482. [Google Scholar] [CrossRef]
- Yashiro, M.; Muso, E.; Itoh-Ihara, T.; Oyama, A.; Hashimoto, K.; Kawamura, T.; Ono, T.; Sasayama, S. Significantly high regional morbidity of MPO-ANCA—Related angitis and/or nephritis with respiratory tract involvement after the 1995 great earthquake in Kobe (Japan). Am. J. Kidney Dis. 2000, 35, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, H.J.; McGettigan, B.; Chapman, P.T.; O’Donnell, J.L.; Frampton, C.; Stamp, L.K. Incidence of anti-neutrophil cytoplasmic antibody-associated vasculitis before and after the February 2011 Christchurch Earthquake. Intern. Med. J. 2017, 47, 57–61. [Google Scholar] [CrossRef]
- Fussell, J.C.; Kelly, F.J. Mechanisms underlying the health effects of desert sand dust. Environ. Int. 2021, 157, 106790. [Google Scholar] [CrossRef]
- Saiyed, H.N.; Sharma, Y.K.; Sadhu, H.G.; Norboo, T.; Patel, P.D.; Patel, T.S.; Venkaiah, K.; Kashyap, S.K. Non-occupational pneumoconiosis at high altitude villages in central Ladakh. Occup. Environ. Med. 1991, 48, 825–829. [Google Scholar] [CrossRef]
- Osornio-Vargas, A.R.; Hernández-Rodríguez, N.A.; Yáñez-Buruel, A.G.; Ussler, W.; Overby, L.H.; Brody, A.R. Lung cell toxicity experimentally induced by a mixed dust from Mexicali, Baja California, Mexico. Environ. Res. 1991, 56, 31–47. [Google Scholar] [CrossRef]
- Schweitzer, M.D.; Calzadilla, A.S.; Salamo, O.; Sharifi, A.; Kumar, N.; Holt, G.; Campos, M.; Mirsaeidi, M. Lung health in era of climate change and dust storms. Environ. Res. 2018, 163, 36–42. [Google Scholar] [CrossRef]
- Liu, T.C.; Tang, H.H.; Lei, S.Y.; Peng, Y.I. Asian dust storms result in a higher risk of the silicosis hospital admissions. J. Environ. Health Sci. Eng. 2022, 20, 305–314. [Google Scholar] [CrossRef]
- Nicoletti, A.; Bruno, E.; Nania, M.; Cicero, E.; Messina, S.; Chisari, C.; Torrisi, J.; Maimone, D.; Marziolo, R.; Fermo, S.L.; et al. Multiple Sclerosis in the Mount Etna region: Possible role of volcanogenic trace elements. PLoS ONE 2013, 8, e74259. [Google Scholar] [CrossRef]
- Singh, V.; Kaur, R.; Kumari, P.; Pasricha, C.; Singh, R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin. Chim. Acta 2023, 548, 117487. [Google Scholar] [CrossRef] [PubMed]
- Brem, J.; Elankeswaran, B.; Erne, D.; Hedrich, N.; Lovey, T.; Marzetta, V.; Salvado, L.T.; Züger, C.; Schlagenhauf, P. Dengue “homegrown” in Europe (2022 to 2023). New Microbes New Infect. 2024, 56, 101205. [Google Scholar] [CrossRef]
- Sáenz, R.; Bissell, R.A.; Paniagua, F. Post-disaster malaria in Costa Rica. Prehosp. Disaster Med. 1995, 10, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Townes, D.; Existe, A.; Boncy, J.; Magloire, R.; Vely, J.F.; Amsalu, R.; De Tavernier, M.; Muigai, J.; Hoibak, S.; Albert, M.; et al. Malaria survey in post-earthquake Haiti—2010. Am. J. Trop. Med. Hyg. 2012, 86, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Seltenrich, N. Standing Water and Missing Data: The Murky Relationship between Flooding and Mosquito-Borne Diseases. Environ. Health Perspect. 2021, 129, 124001. [Google Scholar] [CrossRef]
- Cheng, Q.; Jing, Q.; Collender, P.A.; Head, J.R.; Li, Q.; Yu, H.; Li, Z.; Ju, Y.; Chen, T.; Wang, P.; et al. Prior water availability modifies the effect of heavy rainfall on dengue transmission: A time series analysis of passive surveillance data from southern China. Front. Public Health 2023, 11, 1287678. [Google Scholar] [CrossRef]
- Vohra, L.I.; Aqib, M.; Jamal, H.; Mehmood, Q.; Yasin, F. Rising cases of Dengue and Malaria in Flood Affected Areas of Pakistan: A Major Threat to the Country’s Healthcare System. Disaster Med. Public Health Prep. 2023, 17, e323. [Google Scholar] [CrossRef]
- Münz, C.; Lünemann, J.D.; Getts, M.T.; Miller, S.D. Antiviral immune responses: Triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 2009, 9, 246–258. [Google Scholar] [CrossRef]
- Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef]
- Pacheco, Y.; Acosta-Ampudia, Y.; Monsalve, D.M.; Chang, C.; Gershwin, M.E.; Anaya, J.M. Bystander activation and autoimmunity. J. Autoimmun. 2019, 103, 102301. [Google Scholar] [CrossRef] [PubMed]
- Farris, A.D.; Keech, C.L.; Gordon, T.P.; McCluskey, J. Epitope mimics and determinant spreading: Pathways to autoimmunity. Cell. Mol. Life Sci. 2000, 57, 569–578. [Google Scholar] [CrossRef]
- Vojdani, A.; Vojdani, E.; Saidara, E.; Maes, M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023, 15, 400. [Google Scholar] [CrossRef]
- Johnson, D.; Jiang, W. Infectious diseases, autoantibodies, and autoimmunity. J. Autoimmun. 2023, 137, 102962. [Google Scholar] [CrossRef] [PubMed]
- Tunalı, V.; Harman, M.; Özbilgin, A. Investigation of Malaria, Leishmaniasis, and Scabies Risk after Earthquakes and Recommendations for Prevention. Turk. Parazitolojii Derg. 2023, 47, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Zaheer, Z.; Tabassum, S.; Nazir, A.; Naeem, F. Diseases caused by floods with a spotlight on the present situation of unprecedented floods in Pakistan: A short communication. Ann. Med. Surg. 2023, 85, 3209–3212. [Google Scholar] [CrossRef]
- Baqir, M.; Sobani, Z.A.; Bhamani, A.; Bham, N.S.; Abid, S.; Farook, J.; Beg, M.A. Infectious diseases in the aftermath of monsoon flooding in Pakistan. Asian Pac. J. Trop. Biomed. 2012, 2, 76–79. [Google Scholar] [CrossRef]
- Kondo, H.; Seo, N.; Yasuda, T.; Hasizume, M.; Koido, Y.; Ninomiya, N.; Yamamoto, Y. Post-flood—Infectious diseases in Mozambique. Prehosp. Disaster Med. 2002, 17, 126–133. [Google Scholar] [CrossRef]
- Ding, G.; Gao, L.; Li, X.; Zhou, M.; Liu, Q.; Ren, H.; Jiang, B. A mixed method to evaluate burden of malaria due to flooding and waterlogging in Mengcheng County, China: A case study. PLoS ONE 2014, 9, e97520. [Google Scholar] [CrossRef]
- Dube, A.; Moffatt, M.; Davison, C.; Bartels, S. Health Outcomes for Children in Haiti Since the 2010 Earthquake: A Systematic Review. Prehosp. Disaster Med. 2018, 33, 77–88. [Google Scholar] [CrossRef]
- Rivera-Correa, J.; Rodriguez, A. Autoantibodies during infectious diseases: Lessons from malaria applied to COVID-19 and other infections. Front. Immunol. 2022, 13, 938011. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Correa, J.; Rodriguez, A. Divergent Roles of Antiself Antibodies during Infection. Trends Immunol. 2018, 39, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Correa, J.; Rodriguez, A. Autoimmune Anemia in Malaria. Trends Parasitol. 2020, 36, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Mourão, L.C.; Baptista, R.D.P.; De Almeida, Z.B.; Grynberg, P.; Pucci, M.M.; Castro-Gomes, T.; Fontes, C.J.F.; Rathore, S.; Sharma, Y.D.; Da Silva-Pereira, R.A.; et al. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Sci. Rep. 2018, 8, 8762. [Google Scholar] [CrossRef] [PubMed]
- Mourão, L.C.; Roma, P.M.D.S.; Sultane Aboobacar, J.D.S.; Medeiros, C.M.P.; de Almeida, Z.B.; Fontes, C.J.F.; Agero, U.; De Mesquita, O.N.; Bemquerer, M.P.; Braga, É.M. Anti-erythrocyte antibodies may contribute to anaemia in Plasmodium vivax malaria by decreasing red blood cell deformability and increasing erythrophagocytosis. Malar. J. 2016, 15, 397. [Google Scholar] [CrossRef]
- Lutz, H.U.; Bogdanova, A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front. Physiol. 2013, 4, 387. [Google Scholar] [CrossRef]
- Mourão, L.C.; Cardoso-Oliveira, G.P.; Braga, É.M. Autoantibodies and Malaria: Where We Stand? Insights into Pathogenesis and Protection. Front. Cell. Infect. Microbiol. 2020, 10, 262. [Google Scholar] [CrossRef]
- Bansal, R.; Yadav, A.; Raizada, A.; Sharma, S.; Goel, A. Can malaria trigger systemic lupus erythematosus? Trop. Doct. 2017, 47, 243–244. [Google Scholar] [CrossRef]
- Rivera-Correa, J.; Conroy, A.L.; Opoka, R.O.; Batte, A.; Namazzi, R.; Ouma, B.; Bangirana, P.; Idro, R.; Schwaderer, A.L.; John, C.C.; et al. Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria. Sci. Rep. 2019, 9, 14940. [Google Scholar] [CrossRef]
- Sultana, R.; Alam, M.S. Natural Disasters and the Dengue Epidemic During the COVID-19 Outbreak: Deadly Combination for Public Health Threats in Bangladesh. Disaster Med. Public Health Prep. 2022, 16, 1287–1289. [Google Scholar] [CrossRef]
- Wan, S.W.; Lin, C.F.; Yeh, T.M.; Liu, C.C.; Liu, H.S.; Wang, S.; Ling, P.; Anderson, R.; Lei, H.Y.; Lin, Y.S. Autoimmunity in dengue pathogenesis. J. Formos. Med. Assoc. 2013, 112, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, T.; Sarkar, A.; Roy, A.; Bhowmick, B.; Nayak, D.; Das, S. Role of auto-antibodies in the mechanisms of dengue pathogenesis and its progression: A comprehensive review. Arch. Microbiol. 2024, 206, 214. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.F.; Wan, S.W.; Cheng, H.J.; Lei, H.Y.; Lin, Y.S. Autoimmune pathogenesis in dengue virus infection. Viral Immunol. 2006, 19, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Sabeena, S.P.; Varma, M.; Arunkumar, G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr. Microbiol. 2021, 78, 17–32. [Google Scholar] [CrossRef]
- Chuang, Y.-C.; Lin, Y.-S.; Liu, H.-S.; Yeh, T.-M. Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J. Virol. 2014, 88, 13759–13768. [Google Scholar] [CrossRef]
- Li, H.M.; Huang, Y.K.; Su, Y.C.; Kao, C.H. Increased risk of autoimmune diseases in dengue patients: A population-based cohort study. J. Infect. 2018, 77, 212–219. [Google Scholar] [CrossRef]
- Chen, Y.W.; Hsieh, T.Y.; Lin, C.H.; Chen, H.M.; Lin, C.C.; Chen, H.H. Association between a History of Dengue Fever and the Risk of Systemic Autoimmune Rheumatic Diseases: A Nationwide, Population-Based Case-Control Study. Front. Med. 2021, 8, 738291. [Google Scholar] [CrossRef]
- Ghosh, A.; Banerjee, A.; Saha, S.; Pande, A.; Ghosh, B. Wegener’s granulomatosis with dengue fever: An unusual association. Int. J. Rheum. Dis. 2012, 15, e47–e49. [Google Scholar] [CrossRef]
- Shihid, H.I.; Chi, C.Y.; Tsai, P.F.; Wang, Y.P.; Chien, Y.W. Re-examination of the risk of autoimmune diseases after dengue virus infection: A population-based cohort study. PLoS Negl. Trop. Dis. 2023, 17, e0011127. [Google Scholar] [CrossRef]
- Sorensen, C.J.; Borbor-Cordova, M.J.; Calvello-Hynes, E.; Diaz, A.; Lemery, J.; Stewart-Ibarra, A.M. Climate Variability, Vulnerability, and Natural Disasters: A Case Study of Zika Virus in Manabi, Ecuador Following the 2016 Earthquake. GeoHealth 2017, 1, 298–304. [Google Scholar] [CrossRef]
- Pacheco Barzallo, D.; Pacheco Barzallo, A.; Narvaez, E. The 2016 Earthquake in Ecuador: Zika Outbreak after a Natural Disaster. Health Secur. 2018, 16, 127–134. [Google Scholar] [CrossRef]
- Mavrouli, M.; Mavroulis, S.; Lekkas, E.; Tsakris, A. The Impact of Earthquakes on Public Health: A Narrative Review of Infectious Diseases in the Post-Disaster Period Aiming to Disaster Risk Reduction. Microorganisms 2023, 11, 419. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, D.; Palacio, A.; Nuñez, J.; Briones, W.; Beier, J.C.; Pareja, D.C.; Tamariz, L. Impact of the 2016 Ecuador Earthquake on Zika Virus Cases. Am. J. Public Health 2017, 107, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Reina Ortiz, M.; Le, N.K.; Sharma, V.; Hoare, I.; Quizhpe, E.; Teran, E.; Naik, E.; Salihu, H.M.; Izurieta, R. Post-earthquake Zika virus surge: Disaster and public health threat amid climatic conduciveness. Sci. Rep. 2017, 7, 15408. [Google Scholar] [CrossRef] [PubMed]
- Arias, A.; Torres-Tobar, L.; Hernández, G.; Paipilla, D.; Palacios, E.; Torres, Y.; Duran, J.; Ugarte, S.; Ardila-Sierra, A.; Castellanos, G. Guillain-Barré syndrome in patients with a recent history of Zika in Cúcuta, Colombia: A descriptive case series of 19 patients from December 2015 to March 2016. J. Crit. Care 2017, 37, 19–23. [Google Scholar] [CrossRef]
- Miller, E.; Becker, Z.; Shalev, D.; Lee, C.T.; Cioroiu, C.; Thakur, K. Probable Zika virus-associated Guillain-Barré syndrome: Challenges with clinico-laboratory diagnosis. J. Neurol. Sci. 2017, 375, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Chraïbi, S.; Najioullah, F.; Bourdin, C.; Pegliasco, J.; Deligny, C.; Résière, D.; Meniane, J.C. Two cases of thrombocytopenic purpura at onset of Zika virus infection. J. Clin. Virol. 2016, 83, 61–62. [Google Scholar] [CrossRef]
- Karimi, O.; Goorhuis, A.; Schinkel, J.; Codrington, J.; Vreden, S.G.S.; Vermaat, J.S.; Stijnis, C.; Grobusch, M.P. Thrombocytopenia and subcutaneous bleedings in a patient with Zika virus infection. Lancet 2016, 387, 939–940. [Google Scholar] [CrossRef]
- Cao-Lormeau, V.M.; Blake, A.; Mons, S.; Lastère, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, L.; Teissier, A.; Larre, P.; et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet 2016, 387, 1531–1539. [Google Scholar] [CrossRef]
- França, L.C.; Fontes-Dantas, F.L.; Garcia, D.G.; de Araújo, A.D.; da Costa Gonçalves, J.P.; da Silva Rêgo, C.C.; da Silva, E.V.; do Nascimento, O.J.M.; Lopes, F.C.R.; Herlinger, A.L.; et al. Molecular mimicry between Zika virus and central nervous system inflammatory demyelinating disorders: The role of NS5 Zika virus epitope and PLP autoantigens. Arq. Neuro-Psiquiatr. 2023, 81, 357–368. [Google Scholar] [CrossRef]
- Shaman, J.; Day, J.F.; Stieglitz, M. Drought-induced amplification and epidemic transmission of West Nile virus in southern Florida. J. Med. Entomol. 2005, 42, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.J.; Sukhdeo, M.V.K. Drought-induced amplification of local and regional West Nile virus infection rates in New Jersey. J. Med. Entomol. 2013, 50, 195–204. [Google Scholar] [CrossRef]
- Karagianni, P.; Alexopoulos, H.; Sourdi, A.; Papadimitriou, D.; Dimitrakopoulos, A.N.; Moutsopoulos, H.M. West Nile Virus infection triggering autoimmune encephalitis: Pathophysiological and therapeutic implications. Clin. Immunol. 2019, 207, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Arcilla, G.; Nguyen, A.; Liu, A. An HIV patient with West Nile encephalitis and Amphiphysin antibodies—More on “West Nile infection triggering autoimmune encephalitis: Pathophysiological and therapeutic implications” by Moutsopoulos et al. Clin. Immunol. 2023, 246, 109207. [Google Scholar] [CrossRef]
- Leis, A.A.; Szatmary, G.; Ross, M.A.; Stokic, D.S. West nile virus infection and myasthenia gravis. Muscle Nerve 2014, 49, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Beshai, R.; Bibawy, D.; Bibawy, J. Guillain-Barré Syndrome Secondary to West Nile Virus in New York City. Case Rep. Infect. Dis. 2020, 2020, 6501658. [Google Scholar] [CrossRef]
- Joseph, N.; Piccione, E.A. Guillain—Barre Syndrome Triggered by West Nile Virus: A Rare Case Scenario. J. Clin. Neuromuscul. Dis. 2019, 21, 54–56. [Google Scholar] [CrossRef]
- Ahmed, S.; Libman, R.B.; Wesson, K.; Ahmed, F.; Einberg, K. Guillain—Barré syndrome: An unusual presentation of West Nile virus infection. Neurology 2000, 55, 144–146. [Google Scholar] [CrossRef]
- Tanay, A. Chikungunya virus and autoimmunity. Curr. Opin. Rheumatol. 2017, 29, 389–393. [Google Scholar] [CrossRef]
- Amaral, J.K.; Bilsborrow, J.B.; Schoen, R.T. Chronic Chikungunya Arthritis and Rheumatoid Arthritis: What They Have in Common. Am. J. Med. 2020, 133, e91–e97. [Google Scholar] [CrossRef]
- Blettery, M.; Brunier, L.; Polomat, K.; Moinet, F.; Deligny, C.; Arfi, S.; Jean-Baptiste, G.; De Bandt, M. Brief Report: Management of Chronic Post-Chikungunya Rheumatic Disease: The Martinican Experience. Arthritis Rheumatol. 2016, 68, 2817–2824. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, J.F.; Kanduc, D.; da Silva, F.F.; Tanay, A.; Lucchese, A.; Shoenfeld, Y. Sjögren’s Syndrome Associated with Chikungunya Infection: A Case Report. Rheumatol. Ther. 2021, 8, 631–637. [Google Scholar] [CrossRef]
- Barrera, R.; Felix, G.; Acevedo, V.; Amador, M.; Rodriguez, D.; Rivera, L.; Gonzalez, O.; Nazario, N.; Ortiz, M.; Muñoz-Jordan, J.L.; et al. Impacts of Hurricanes Irma and Maria on Aedes aegypti Populations, Aquatic Habitats, and Mosquito Infections with Dengue, Chikungunya, and Zika Viruses in Puerto Rico. Am. J. Trop. Med. Hyg. 2019, 100, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, I.; Nakhaei, N.; Aflatoonian, M.R.; Parizi, M.H.; Fekri, A.R.; Safizadeh, H.; Shirzadi, M.R.; Gooya, M.M.; Khamesipour, A.; Nadim, A. Cutaneous Leishmaniasis in Bam: A Comparative Evaluation of Pre- and Post-Earthquake Years (1999–2008). Iran. J. Public Health 2011, 40, 49–56. [Google Scholar] [PubMed]
- Fakoorziba, M.R.; Baseri, A.; Eghbal, F.; Rezaee, S.; Azizi, K.; Moemenbellah-fard, M.D. Post-earthquake outbreak of cutaneous leishmaniasis in a rural region of southern Iran. Ann. Trop. Med. Parasitol. 2011, 105, 217–224. [Google Scholar] [CrossRef]
- Sharifi, I.; Poursmaelian, S.; Aflatoonian, M.R.; Ardakani, R.F.; Mirzaei, M.; Fekri, A.R.; Khamesipour, A.; Parizi, M.H.; Harandi, M.F. Emergence of a new focus of anthroponotic cutaneous leishmaniasis due to Leishmania tropica in rural communities of Bam district after the earthquake, Iran. Trop. Med. Int. Health 2011, 16, 510–513. [Google Scholar] [CrossRef]
- Rostamian, M.; Rezaeian, S.; Hamidouche, M.; Bahrami, F.; Ghadiri, K.; Lorestani, R.C.; Zargaran, F.N.; Akya, A. The effects of natural disasters on leishmaniases frequency: A global systematic review and meta-analysis. Acta Trop. 2021, 217, 105855. [Google Scholar] [CrossRef]
- Liberopoulos, E.; Kei, A.; Apostolou, F.; Elisaf, M. Autoimmune manifestations in patients with visceral leishmaniasis. J. Microbiol. Immunol. Infect. 2013, 46, 302–305. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Q.; Liu, J.; Zhou, B.; Wu, X.; Long, L. Autoimmune manifestations of visceral leishmaniasis in Chinese patients. Ann. Palliat. Med. 2021, 10, 12699–12705. [Google Scholar] [CrossRef]
- Watkins, R.R. Gastrointestinal infections in the setting of natural disasters. Curr. Infect. Dis. Rep. 2012, 14, 47–52. [Google Scholar] [CrossRef]
- Woersching, J.C.; Snyder, A.E. Earthquakes in El Salvador: A descriptive study of health concerns in a rural community and the clinical implications—Part II. Disaster Manag. Response 2004, 2, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Basaria, A.A.A.; Ahsan, A.; Nadeem, A.; Tariq, R.; Raufi, N. Infectious diseases following hydrometeorological disasters: Current scenario, prevention, and control measures. Ann. Med. Surg. 2023, 85, 3778–3782. [Google Scholar] [CrossRef] [PubMed]
- Amaral-Zettler, L.A.; Rocca, J.D.; Lamontagne, M.G.; Dennett, M.R.; Gast, R.J. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita. Environ. Sci. Technol. 2008, 42, 9072–9078. [Google Scholar] [CrossRef] [PubMed]
- Lynch, V.D.; Shaman, J. Waterborne Infectious Diseases Associated with Exposure to Tropical Cyclonic Storms, United States, 1996–2018. Emerg. Infect. Dis. 2023, 29, 1548–1558. [Google Scholar] [CrossRef]
- Suk, J.E.; Vaughan, E.C.; Cook, R.G.; Semenza, J.C. Natural disasters and infectious disease in Europe: A literature review to identify cascading risk pathways. Eur. J. Public Health 2020, 30, 928. [Google Scholar] [CrossRef]
- Kaya, A.D.; Ozturk, C.E.; Yavuz, T.; Ozaydin, C.; Bahcebasi, T. Changing patterns of hepatitis A and E sero-prevalences in children after the 1999 earthquakes in Duzce, Turkey. J. Paediatr. Child Health 2008, 44, 205–207. [Google Scholar] [CrossRef]
- Mavrouli, M.; Mavroulis, S.; Lekkas, E.; Tsakris, A. An Emerging Health Crisis in Turkey and Syria after the Earthquake Disaster on 6 February 2023: Risk Factors, Prevention and Management of Infectious Diseases. Healthcare 2023, 11, 1022. [Google Scholar] [CrossRef]
- Vahaboglu, H.; Gundes, S.; Karadenizli, A.; Mutlu, B.; Cetin, S.; Kolayli, F.; Coskunkan, F.; Dundar, V. Transient increase in diarrheal diseases after the devastating earthquake in Kocaeli, Turkey: Results of an infectious disease surveillance study. Clin. Infect. Dis. 2000, 31, 1386–1389. [Google Scholar] [CrossRef]
- Cash, B.A.; Rodo, X.; Emch, M.; Yunus, M.D.; Faruque, A.S.G.; Pascual, M. Cholera and shigellosis: Different epidemiology but similar responses to climate variability. PLoS ONE 2014, 9, e107223. [Google Scholar] [CrossRef]
- Concepción-Acevedo, J.; Patel, A.; Luna-Pinto, C.; Peña, R.G.; Ruiz, R.I.C.; Arbolay, H.R.; Toro, M.; Deseda, C.; De Jesus, V.R.; Ribot, E.; et al. Initial Public Health Laboratory Response after Hurricane Maria-Puerto Rico, 2017. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 333–336. [Google Scholar] [CrossRef]
- Batz, M.B.; Henke, E.; Kowalcyk, B. Long-term consequences of foodborne infections. Infect. Dis. Clin. N. Am. 2013, 27, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, H.; Sugeno, N.; Tateyama, M.; Nakashima, I.; Hasegawa, T.; Kuroda, H.; Kaneko, K.; Kobayashi, M.; Ishigaki, A.; Fujimori, J.; et al. Retrospective analysis of Guillain—Barré syndrome and Fisher syndrome after the Great East Japan Earthquake. Brain Behav. 2014, 4, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Girschick, H.J.; Guilherme, L.; Inman, R.D.; Latsch, K.; Rihl, M.; Sherer, Y.; Shoenfeld, Y.; Zeidler, H.; Arienti, S.; Doria, A. Bacterial triggers and autoimmune rheumatic diseases. Clin. Exp. Rheumatol. 2008, 26, S12. [Google Scholar] [PubMed]
- Hannu, T.; Mattila, L.; Siitonen, A.; Leirisalo-Repo, M. Reactive arthritis following an outbreak of Salmonella typhimurium phage type 193 infection. Ann. Rheum. Dis. 2002, 61, 264–266. [Google Scholar] [CrossRef]
- Gradel, K.O.; Nielsen, H.L.; Schønheyder, H.C.; Ejlertsen, T.; Kristensen, B.; Nielsen, H. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology 2009, 137, 495–501. [Google Scholar] [CrossRef]
- Jess, T.; Simonsen, J.; Nielsen, N.M.; Jørgensen, K.T.; Bager, P.; Ethelberg, S.; Frisch, M. Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease. Gut 2011, 60, 318–324. [Google Scholar] [CrossRef]
- Dworkin, M.S.; Shoemaker, P.C.; Goldoft, M.J.; Kobayashi, J.M. Reactive arthritis and Reiter’s syndrome following an outbreak of gastroenteritis caused by Salmonella enteritidis. Clin. Infect. Dis. 2001, 33, 1010–1014. [Google Scholar] [CrossRef]
- Pogreba-Brown, K.; Austhof, E.; Armstrong, A.; Schaefer, K.; Villa Zapata, L.; McClelland, D.J.; Batz, M.B.; Kuecken, M.; Riddle, M.; Porter, C.K.; et al. Chronic Gastrointestinal and Joint-Related Sequelae Associated with Common Foodborne Illnesses: A Scoping Review. Foodborne Pathog. Dis. 2020, 17, 67–86. [Google Scholar] [CrossRef]
- Kriston-Vizi, J.; Lenart, I.; Iwawaki, T.; Gould, K.; Nesbeth, D.; Powis, S.J.; Antoniou, A.N. Salmonella Exhibit Altered Cellular Localization in the Presence of HLA-B27 and Codistribute with Endo-Reticular Membrane. J. Immunol. Res. 2022, 2022, 9493019. [Google Scholar] [CrossRef]
- Issac, J.M.; Mohamed, Y.A.; Bashir, G.H.; Al-Sbiei, A.; Conca, W.; Khan, T.A.; Iqbal, A.; Riemekasten, G.; Bieber, K.; Ludwig, R.J.; et al. Induction of hypergammaglobulinemia and autoantibodies by Salmonella infection in MyD88-deficient mice. Front. Immunol. 2018, 9, 1384. [Google Scholar] [CrossRef]
- Tu, T.Y.; Yeh, C.Y.; Hung, Y.M.; Chang, R.; Chen, H.H.; Wei, J.C.C. Association between a History of Nontyphoidal Salmonella and the Risk of Systemic Lupus Erythematosus: A Population-Based, Case-Control Study. Front. Immunol. 2021, 12, 725996. [Google Scholar] [CrossRef]
- Dizdar, V.; Gilja, O.H.; Hausken, T. Increased visceral sensitivity in Giardia-induced postinfectious irritable bowel syndrome and functional dyspepsia. Effect of the 5HT3-antagonist ondansetron. Neurogastroenterol. Motil. 2007, 19, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Painter, J.E.; Collier, S.A.; Gargano, J.W. Association between Giardia and arthritis or joint pain in a large health insurance cohort: Could it be reactive arthritis? Epidemiol. Infect. 2017, 145, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Hanevik, K.; Wik, E.; Langeland, N.; Hausken, T. Transient elevation of anti-transglutaminase and anti-endomysium antibodies in Giardia infection. Scand. J. Gastroenterol. 2018, 53, 809–812. [Google Scholar] [CrossRef]
- Taubert, R.; Diestelhorst, J.; Junge, N.; Kirstein, M.M.; Pischke, S.; Vogel, A.; Bantel, H.; Baumann, U.; Manns, M.P.; Wedemeyer, H.; et al. Increased seroprevalence of HAV and parvovirus B19 in children and of HEV in adults at diagnosis of autoimmune hepatitis. Sci. Rep. 2018, 8, 17452. [Google Scholar] [CrossRef] [PubMed]
- Grünhage, F.; Spengler, U.; Fischer, H.P.; Sauerbruch, T. Autoimmune hepatitis—Sequel of a relapsing hepatitis A in a 75-year-old woman. Digestion 2004, 70, 187–191. [Google Scholar] [CrossRef]
- Jo, H.I.; Kim, M.; Yoo, J.J.; Kim, S.G.; Kim, Y.S.; Chin, S. Acute Hepatitis A-Induced Autoimmune Hepatitis: A Case Report and Literature Review. Medicina 2022, 58, 845. [Google Scholar] [CrossRef]
- Tabak, F.; Ozdemir, F.; Tabak, O.; Erer, B.; Tahan, V.; Ozaras, R. Autoimmune hepatitis induced by the prolonged hepatitis A virus infection. Ann. Hepatol. 2008, 7, 177–179. [Google Scholar] [CrossRef]
- Beretta-Piccoli, B.T.; Ripellino, P.; Gobbi, C.; Cerny, A.; Baserga, A.; Di Bartolomeo, C.; Bihl, F.; Deleonardi, G.; Melidona, L.; Grondona, A.G.; et al. Autoimmune liver disease serology in acute hepatitis E virus infection. J. Autoimmun. 2018, 94, 1–6. [Google Scholar] [CrossRef]
- Tyler, K.L.; Pastula, D.M. Hepatitis E Virus and Guillain-Barré Syndrome. JAMA Neurol. 2017, 74, 13–15. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Y. Hepatitis E virus-associated Guillain—Barre syndrome: Revision of the literature. Brain Behav. 2020, 10, e01496. [Google Scholar] [CrossRef] [PubMed]
- Dumoulin, F.L.; Liese, H. Acute hepatitis E virus infection and autoimmune thyroiditis: Yet another trigger? BMJ Case Rep. 2012, 2012, bcr1220115441. [Google Scholar] [CrossRef] [PubMed]
- Viallard, J.F.; Vergier, B.; Lazaro, E.; Greib, C.; Pellegrin, J.L. Cutaneous necrotizing small-vessel vasculitis induced by acute hepatitis E. Clin. Case Rep. 2019, 7, 1539–1541. [Google Scholar] [CrossRef]
- Stavropoulos, P.G.; Soura, E.; Kanelleas, A.; Katsambas, A.; Antoniou, C. Reactive arthritis. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Bazerbachi, F.; Leise, M.D.; Watt, K.D.; Murad, M.H.; Prokop, L.J.; Haffar, S. Systematic review of mixed cryoglobulinemia associated with hepatitis E virus infection: Association or causation? Gastroenterol. Rep. 2017, 5, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Di Bartolomeo, S.; Carubbi, F.; Cipriani, P. Hepatitis E Virus and rheumatic diseases: What do rheumatologists need to know? BMC Rheumatol. 2020, 4, 51. [Google Scholar] [CrossRef]
- Doulberis, M.; Papaefthymiou, A.; Polyzos, S.A.; Vardaka, E.; Tzitiridou-Chatzopoulou, M.; Chatzopoulos, D.; Koffas, A.; Papadopoulos, V.; Kyrailidi, F.; Kountouras, J. Local and systemic autoimmune manifestations linked to hepatitis A infection. Acta Gastro-Enterol. Belg. 2023, 86, 429–436. [Google Scholar] [CrossRef]
- Al Jandale, O.; Jumah, H.; Jamil, H. Hepatitis A virus infection is complicated by both pancytopenia and autoimmune hemolytic anemia (AIHA). Ann. Med. Surg. 2022, 78, 103765. [Google Scholar] [CrossRef]
- Deng, G.-M.; Tsokos, G.C. Cholera toxin B accelerates disease progression in lupus-prone mice by promoting lipid raft aggregation. J. Immunol. 2008, 181, 4019–4026. [Google Scholar] [CrossRef]
- Kemppainen, K.M.; Lynch, K.F.; Liu, E.; Lönnrot, M.; Simell, V.; Briese, T.; Koletzko, S.; Hagopian, W.; Rewers, M.; She, J.X.; et al. Factors That Increase Risk of Celiac Disease Autoimmunity after a Gastrointestinal Infection in Early Life. Clin. Gastroenterol. Hepatol. 2017, 15, 694–702.e5. [Google Scholar] [CrossRef]
- Blomqvist, M.; Juhela, S.; Erkkilä, S.; Korhonen, S.; Simell, T.; Kupila, A.; Vaarala, O.; Simell, O.; Knip, M.; Ilonen, J. Rotavirus infections and development of diabetes-associated autoantibodies during the first 2 years of life. Clin. Exp. Immunol. 2002, 128, 511–515. [Google Scholar] [CrossRef]
- Stene, L.C.; Honeyman, M.C.; Hoffenberg, E.J.; Haas, J.E.; Sokol, R.J.; Emery, L.; Taki, I.; Norris, J.M.; Erlich, H.A.; Eisenbarth, G.S.; et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. Am. J. Gastroenterol. 2006, 101, 2333–2340. [Google Scholar] [CrossRef]
- Honeyman, M.C.; Coulson, B.S.; Stone, N.L.; Gellert, S.A.; Goldwater, P.N.; Steele, C.E.; Couper, J.J.; Tait, B.D.; Colman, P.G.; Harrison, L.C. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 2000, 49, 1319–1324. [Google Scholar] [CrossRef]
- Tang, C.; Scaramangas-Plumley, D.; Nast, C.C.; Mosenifar, Z.; Edelstein, M.A.; Weisman, M. A Case of Henoch-Schonlein Purpura Associated with Rotavirus Infection in an Elderly Asian Male and Review of the Literature. Am. J. Case Rep. 2017, 18, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.K.; Kim, J.H.; Cha, H.R.; Lee, G.C.; Shin, J.; Shin, Y.H.; Baek, H.S.; Lee, S.W.; Han, M.Y. Rotavirus-Associated Hospitalization in Children with Subsequent Autoimmune Disease. JAMA Netw. Open 2023, 6, e2324532. [Google Scholar] [CrossRef] [PubMed]
- Wildner, G.; Diedrichs-Möhring, M. Autoimmune uveitis induced by molecular mimicry of peptides from rotavirus, bovine casein and retinal S-antigen. Eur. J. Immunol. 2003, 33, 2577–2587. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Ellebrecht, C.T.; Hammers, C.M.; Mukherjee, E.M.; Sapparapu, G.; Boudreaux, C.E.; McDonald, S.M.; Crowe, J.E.; Payne, A.S. Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6. J. Immunol. 2016, 197, 1065–1073. [Google Scholar] [CrossRef]
- Sarkar, T.; Das, S.; Nandy, P.; Bhowmick, R.; Nandy, A. In silico study of potential autoimmune threats from rotavirus infection. Comput. Biol. Chem. 2014, 51, 51–56. [Google Scholar] [CrossRef]
- Lu, B.R.; Brindley, S.M.; Tucker, R.M.; Lambert, C.L.; MacK, C.L. α-enolase autoantibodies cross-reactive to viral proteins in a mouse model of biliary atresia. Gastroenterology 2010, 139, 1753–1761. [Google Scholar] [CrossRef]
- Gómez-Rial, J.; Rivero-Calle, I.; Salas, A.; Martinón-Torres, F. Rotavirus and autoimmunity. J. Infect. 2020, 81, 183–189. [Google Scholar] [CrossRef]
- Lv, S.B.; He, T.T.; Hu, F.; Li, Y.F.; Yuan, M.; Xie, J.Z.; Li, Z.G.; Li, S.Z.; Lin, D.D. The Impact of Flooding on Snail Spread: The Case of Endemic Schistosomiasis Areas in Jiangxi Province, China. Trop. Med. Infect. Dis. 2023, 8, 259. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.Y.; Li, L.; Zhang, L.J.; Li, Y.L.; Li, S.Z.; Xu, J. From the One Health Perspective: Schistosomiasis japonica and Flooding. Pathogens 2021, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
- Han, K.T.; Wai, K.T.; Aye, K.H.; Kyaw, K.W.; Maung, W.P.; Oo, T. Emerging neglected helminthiasis and determinants of multiple helminth infections in flood-prone township in Myanmar. Trop. Med. Health 2019, 47, 1. [Google Scholar] [CrossRef] [PubMed]
- Belizario, V., Jr.; Delos Trinos, J.P.C.R.; Sison, O.; Miranda, E.; Molina, V.; Cuayzon, A.; Isiderio, M.E.; Delgado, R. High burden of soil-transmitted helminth infections, schistosomiasis, undernutrition, and poor sanitation in two Typhoon Haiyan-stricken provinces in Eastern Philippines. Pathog. Glob. Health 2021, 115, 412–422. [Google Scholar] [CrossRef]
- Deka, S.; Barua, D.; Bahurupi, Y.; Kalita, D. Assessment of the Prevalence of Soil-Transmitted Helminth Infections and Associated Risk Factors among School-Aged Children in a Flood-Affected Area of Northeast India. Am. J. Trop. Med. Hyg. 2021, 105, 480–489. [Google Scholar] [CrossRef]
- Meurs, L.; Mbow, M.; Vereecken, K.; Menten, J.; Mboup, S.; Polman, K. Bladder morbidity and hepatic fibrosis in mixed Schistosoma haematobium and S. mansoni Infections: A population-wide study in Northern Senegal. PLoS Negl. Trop. Dis. 2012, 6, e1829. [Google Scholar] [CrossRef]
- Kamdem, S.D.; Moyou-Somo, R.; Brombacher, F.; Nono, J.K. Host Regulators of Liver Fibrosis During Human Schistosomiasis. Front. Immunol. 2018, 9, 2781. [Google Scholar] [CrossRef]
- Soliman, A.T.; El-Nawawy, A.A.; El-Azzouni, O.F.; Amer, E.A.; Demian, S.R.; El-Sayed, M.H. High prevalence of islet cell antibody and defective insulin release in children with schistosomiasis. J. Trop. Pediatr. 1996, 42, 46–49. [Google Scholar] [CrossRef]
- Wang, X.; Fu, Q.; Song, R.; Duan, B.; Bergquist, R.; Xu, J.; Li, S.; Zhou, D.; Qin, Z. Antinuclear antibodies and interleukin responses in patients with Schistosoma japonicum infection. Parasite Immunol. 2018, 40, e12577. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Xu, J.; Tang, Q.; Bergquist, R.; Shi, L.; Qin, Z. High-throughput autoantibody profiling of different stages of Schistosomiasis japonica. Autoimmunity 2023, 56, 2250102. [Google Scholar] [CrossRef]
- Chen, M.J.; Lin, C.Y.; Wu, Y.T.; Wu, P.C.; Lung, S.C.; Su, H.J. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS ONE 2012, 7, e34651. [Google Scholar] [CrossRef] [PubMed]
- Ahern, M.; Kovats, R.S.; Wilkinson, P.; Few, R.; Matthies, F. Global health impacts of floods: Epidemiologic evidence. Epidemiol. Rev. 2005, 27, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Ifejube, O.J.; Kuriakose, S.L.; Anish, T.S.; van Westen, C.; Blanford, J.I. Analysing the outbreaks of leptospirosis after floods in Kerala, India. Int. J. Health Geogr. 2024, 23, 11. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Yan, J. Leptospirosis prevalence in Chinese populations in the last two decades. Microbes Infect. 2012, 14, 317–323. [Google Scholar] [CrossRef]
- Lau, C.L.; Smythe, L.D.; Craig, S.B.; Weinstein, P. Climate change, flooding, urbanisation and leptospirosis: Fuelling the fire? Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.L.; Watson, C.H.; Lowry, J.H.; David, M.C.; Craig, S.B.; Wynwood, S.J.; Kama, M.; Nilles, E.J. Human Leptospirosis Infection in Fiji: An Eco-epidemiological Approach to Identifying Risk Factors and Environmental Drivers for Transmission. PLoS Negl. Trop. Dis. 2016, 10, e0004405. [Google Scholar] [CrossRef]
- Douchet, L.; Menkes, C.; Herbreteau, V.; Larrieu, J.; Bador, M.; Goarant, C.; Mangeas, M. Climate-driven models of leptospirosis dynamics in tropical islands from three oceanic basins. PLoS Negl. Trop. Dis. 2024, 18, e0011717. [Google Scholar] [CrossRef]
- Douchet, L.; Goarant, C.; Mangeas, M.; Menkes, C.; Hinjoy, S.; Herbreteau, V. Unraveling the invisible leptospirosis in mainland Southeast Asia and its fate under climate change. Sci. Total Environ. 2022, 832, 155018. [Google Scholar] [CrossRef]
- Guo, Y.J.; Wang, K.Y.; Sun, S.H. Identification of an HLA-A*0201-restricted CD8+ T-cell epitope encoded within Leptospiral immunoglobulin-like protein A. Microbes Infect. 2010, 12, 364–373. [Google Scholar] [CrossRef]
- Werts, C.; Tapping, R.I.; Mathison, J.C.; Chuang, T.H.; Kravchenko, V.; Saint Girons, I.; Haake, D.A.; Godowski, P.J.; Hayashi, F.; Ozinsky, A.; et al. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2001, 2, 346–352. [Google Scholar] [CrossRef]
- Yang, C.W.; Hung, C.C.; Wu, M.S.; Tian, Y.C.; Chang, C.T.; Pan, M.J.; Vandewalle, A. Toll-like receptor 2 mediates early inflammation by leptospiral outer membrane proteins in proximal tubule cells. Kidney Int. 2006, 69, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Varma, V.P.; Faisal, S.M. Screening of Surface-Exposed Lipoproteins of Leptospira Involved in Modulation of Host Innate Immune Response. Front. Microbiol. 2022, 13, 761670. [Google Scholar] [CrossRef]
- Dey, S.; Sipani, A.K.; Das, R. Case Report of a Rare Cause of Reactive Arthritis: Leptospirosis. J. Orthop. Case Rep. 2021, 11, 79–84. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.R.; Yoon, C.H. Leptospirosis as Unusual Trigger of Systemic Lupus Erythematosus. J. Rheum. Dis. 2018, 26, 79–82. [Google Scholar] [CrossRef]
- Teh, S.H.; You, R.I.; Yang, Y.C.; Hsu, C.Y.; Pang, C.Y. A cohort study: The Association between Autoimmune Disorders and Leptospirosis. Sci. Rep. 2020, 10, 3276. [Google Scholar] [CrossRef] [PubMed]
- Gangula, R.S.; Prabhu, M.M.; Stanley, W. Weil syndrome causing autoimmune haemolytic anaemia. Natl. Med. J. India 2019, 32, 88–89. [Google Scholar] [CrossRef]
- Nally, J.E.; Chantranuwat, C.; Wu, X.Y.; Fishbein, M.C.; Pereira, M.M.; Da Silva, J.J.P.; Blanco, D.R.; Lovett, M.A. Alveolar septal deposition of immunoglobulin and complement parallels pulmonary hemorrhage in a guinea pig model of severe pulmonary leptospirosis. Am. J. Pathol. 2004, 164, 1115–1127. [Google Scholar] [CrossRef]
- Verma, A.; Rathinam, S.R.; Priya, C.G.; Muthukkaruppan, V.R.; Stevenson, B.; Timoney, J.F. LruA and LruB antibodies in sera of humans with leptospiral uveitis. Clin. Vaccine Immunol. 2008, 15, 1019–1023. [Google Scholar] [CrossRef]
- Rathinam, S.; Daniel, I.; Kuppamuthu, D.; Jayapal, J.M. Molecular Mimicry between Betaine Aldehyde Dehydrogenase of Leptospira and Retinal Dehydrogenase 1 of Human Lens: A Potential Trigger for Cataract Formation in Leptospiral Uveitis Patients. Ocul. Immunol. Inflamm. 2021, 29, 579–586. [Google Scholar] [CrossRef]
- Rugman, F.P.; Pinn, G.; Palmer, M.F.; Waite, M.; Hay, C.R.M. Anticardiolipin antibodies in leptospirosis. J. Clin. Pathol. 1991, 44, 517–519. [Google Scholar] [CrossRef]
- Gowda, V.K.; Gupta, P.; Shivappa, S.K.; Bhat, M. Basal Ganglia Autoimmune Encephalitis Following Leptospirosis. Neurol. India 2022, 70, 2121–2124. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Higa, N.; Okura, N.; Matsumoto, A.; Hermawan, I.; Yamashiro, T.; Suzuki, T.; Toma, C. Characterizing interactions of Leptospira interrogans with proximal renal tubule epithelial cells. BMC Microbiol. 2018, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Athanazio, D.A.; Silva, E.F.; Santos, C.S.; Rocha, G.M.; Vannier-Santos, M.A.; McBride, A.J.A.; Ko, A.I.; Reis, M.G. Rattus norvegicus as a model for persistent renal colonization by pathogenic Leptospira interrogans. Acta Trop. 2008, 105, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Croda, J.; Neto, A.N.D.; Brasil, R.A.; Pagliari, C.; Nicodemo, A.C.; Duarte, M.I.S. Leptospirosis pulmonary haemorrhage syndrome is associated with linear deposition of immunoglobulin and complement on the alveolar surface. Clin. Microbiol. Infect. 2010, 16, 593–599. [Google Scholar] [CrossRef]
- Schuller, S.; Callanan, J.J.; Worrall, S.; Francey, T.; Schweighauser, A.; Kohn, B.; Klopfleisch, R.; Posthaus, H.; Nally, J.E. Immunohistochemical detection of IgM and IgG in lung tissue of dogs with leptospiral pulmonary haemorrhage syndrome (LPHS). Comp. Immunol. Microbiol. Infect. Dis. 2015, 40, 47–53. [Google Scholar] [CrossRef]
- Chen, C.C.; Hung, Y.M.; Chiu, L.T.; Chou, M.C.; Chang, R.; Wei, J.C.C. Association between Severity of Leptospirosis and Subsequent Major Autoimmune Diseases: A Nationwide Observational Cohort Study. Front. Immunol. 2021, 12, 721752. [Google Scholar] [CrossRef]
- Diaz, J.H. Rodent-borne infectious disease outbreaks after flooding disasters: Epidemiology, management, and prevention. Am. J. Disaster Med. 2015, 10, 259–267. [Google Scholar] [CrossRef]
- Terajima, M.; Ennis, F.A. T Cells and Pathogenesis of Hantavirus Cardiopulmonary Syndrome and Hemorrhagic Fever with Renal Syndrome. Viruses 2011, 3, 1059–1073. [Google Scholar] [CrossRef]
- Jin, H.Y.; Kang, S.M.; Kim, S.Y.; Park, J.H.; Baek, H.S.; Park, T.S. A case of Graves’ disease combined with hantaan virus infection. J. Korean Med. Sci. 2009, 24, 158–161. [Google Scholar] [CrossRef]
- Tarvainen, M.; Mäkelä, S.; Mustonen, J.; Jaatinen, P. Autoimmune polyendocrinopathy and hypophysitis after Puumala hantavirus infection. Endocrinol. Diabetes Metab. Case Rep. 2016, 2016. [Google Scholar] [CrossRef]
- Yotsuyanagi, H.; Koike, K.; Meng, G.; Yasuda, K.; Ogata, I.; Kimura, S.; Ohkubo, A. Acute exacerbation of autoimmune liver disease associated with hantaviral infection. Scand. J. Infect. Dis. 1998, 30, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Tassart, G.; Balbeur, S.; Deltombe, T.; Tintillier, M.; Cuvelier, C. Guillain-Barré syndrome associated with Puumula Hantavirus infection. Acta Clin. Belg. 2014, 69, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- Song, H.; Fang, F.; Tomasson, G.; Arnberg, F.K.; Mataix-Cols, D.; De La Cruz, L.F.; Almqvist, C.; Fall, K.; Valdimarsdóttir, U.A. Association of Stress-Related Disorders with Subsequent Autoimmune Disease. JAMA 2018, 319, 2388–2400. [Google Scholar] [CrossRef] [PubMed]
- Hemmings, S.M.J.; Malan-Müller, S.; Van Den Heuvel, L.L.; Demmitt, B.A.; Stanislawski, M.A.; Smith, D.G.; Bohr, A.D.; Stamper, C.E.; Hyde, E.R.; Morton, J.T.; et al. The Microbiome in Posttraumatic Stress Disorder and Trauma-Exposed Controls: An Exploratory Study. Psychosom. Med. 2017, 79, 936–946. [Google Scholar] [CrossRef]
- Orengo-Aguayo, R.; Stewart, R.W.; de Arellano, M.A.; Suárez-Kindy, J.L.; Young, J. Disaster Exposure and Mental Health among Puerto Rican Youths after Hurricane Maria. JAMA Netw. Open 2019, 2, e192619. [Google Scholar] [CrossRef]
- Sackey, E.T.; Stewart, R.W.; Young, J.; Orengo-Aguayo, R. Disaster exposure and mental health among Puerto Rican teachers after Hurricane Maria. J. Trauma. Stress 2023, 36, 1066–1076. [Google Scholar] [CrossRef]
- Schwartz, S.J.; Montero-Zamora, P.; Salas-Wright, C.P.; Brown, E.C.; Garcia, M.F.; Scaramutti, C.; Rodríguez, J.; Piñeros-Leaño, M.; Bates, M.M.; Maldonado-Molina, M.M. After Hurricane Maria: Effects of Disaster Trauma on Puerto Rican Survivors on the U.S. Mainland. Psychol. Trauma Theory Res. Pract. Policy 2022, 16, 861–871. [Google Scholar] [CrossRef]
- Vázquez, A.L.; Flores, C.M.N.; Feinberg, D.K.; Gonzalez, J.C.; Young, J.; Stewart, R.W.; Orengo-Aguayo, R.E. A network analysis of Hurricane Maria–related traumatic stress and substance use among Puerto Rican youth. J. Trauma. Stress 2024, 37, 267–279. [Google Scholar] [CrossRef]
- Lai, B.S.; Kelley, M.L.; Harrison, K.M.; Thompson, J.E.; Self-Brown, S. Posttraumatic Stress, Anxiety, and Depression Symptoms among Children after Hurricane Katrina: A Latent Profile Analysis. J. Child Fam. Stud. 2015, 24, 1262–1270. [Google Scholar] [CrossRef]
- Lai, B.S.; Lewis, R.; Livings, M.S.; La Greca, A.M.; Esnard, A.M. Posttraumatic Stress Symptom Trajectories among Children after Disaster Exposure: A Review. J. Trauma. Stress 2017, 30, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Shih, H.I.; Chao, T.Y.; Huang, Y.T.; Tu, Y.F.; Wang, J.D.; Chang, C.M. Increased incidence of stress-associated illnesses among elderly after Typhoon Morakot. J. Formos. Med. Assoc. 2021, 120, 337–345. [Google Scholar] [CrossRef]
- Babić, Z.; Pavlov, M.; Radić, P.; Šikić, J.; Galić, E.; Balenović, D.; Letilović, T.; Horvat, D.; Perčin, L.; Šipuš, D.; et al. The impact of earthquakes on the frequency and prognosis of the most common emergency cardiac conditions. Croat. Med. J. 2023, 64, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Kloner, R.A. Lessons learned about stress and the heart after major earthquakes. Am. Heart J. 2019, 215, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Stojanovich, L.; Marisavljevich, D. Stress as a trigger of autoimmune disease. Autoimmun. Rev. 2008, 7, 209–213. [Google Scholar] [CrossRef]
- Cutolo, M.; Straub, R.H. Stress as a risk factor in the pathogenesis of rheumatoid arthritis. Neuroimmunomodulation 2006, 13, 277–282. [Google Scholar] [CrossRef]
- Watanabe, H.; Yashiro, M.; Asano, T.; Sato, S.; Takahashi, A.; Katakura, K.; Kobayashi, H.; Ohira, H. A Case of Behçet’s Disease and Systemic Sclerosis Developing after an Earthquake Disaster. Fukushima J. Med. Sci. 2015, 61, 86–90. [Google Scholar] [CrossRef]
- Rivera, C.; Venegas, B. Oral pemphigus vulgaris after Chilean earthquake. Pan Afr. Med. J. 2014, 18, 219. [Google Scholar] [CrossRef]
- Choux, C.T.; Hwang, C.M. Changes in the clinical and laboratory features of lupus patients after the big earthquake in Taiwan. Lupus 2002, 11, 109–113. [Google Scholar] [CrossRef]
- Ochi, S.; Kato, S.; Leppold, C.; Morita, T.; Tsubokura, M.; Oikawa, T.; Shineha, R.; Kanazawa, Y.; Fujiwara, M. Can a disaster affect rheumatoid arthritis status? A retrospective cohort study after the 2011 triple disaster in Fukushima, Japan. Int. J. Rheum. Dis. 2018, 21, 1254–1262. [Google Scholar] [CrossRef]
- World Health Organization. Communicable Diseases Following Natural Disasters: Risk Assessment and Priority Interventions; Programme on Disease Control in Humanitarian Emergencies Communicable Diseases Cluster; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Pourhosseini, S.S.; Ardalan, A.; Mehrolhassani, M.H. Key Aspects of Providing Healthcare Services in Disaster Response Stage. Iran. J. Public Health 2015, 44, 111–118. [Google Scholar] [PubMed]
- Brown, P.; Daigneault, A.J.; Tjernström, E.; Zou, W. Natural disasters, social protection, and risk perceptions. World Dev. 2018, 104, 310–325. [Google Scholar] [CrossRef] [PubMed]
- Agache, I.; Akdis, C.; Akdis, M.; Al-Hemoud, A.; Annesi-Maesano, I.; Balmes, J.; Cecchi, L.; Damialis, A.; Haahtela, T.; Haber, A.L.; et al. Immune-mediated disease caused by climate change-associated environmental hazards: Mitigation and adaptation. Front. Sci. 2024, 2, 1279192. [Google Scholar] [CrossRef]
- Lee, A.S.; Aguilera, J.; Efobi, J.A.; Jung, Y.S.; Seastedt, H.; Shah, M.M.; Yang, E.; Konvinse, K.; Utz, P.J.; Sampath, V.; et al. Climate change and public health: The effects of global warming on the risk of allergies and autoimmune diseases. EMBO Rep. 2023, 24, e56821. [Google Scholar] [CrossRef] [PubMed]
Environmental Disasters | Environmental Factors | Biological Mechanisms | Autoimmune Responses/Diseases | References |
---|---|---|---|---|
Heat wave | High temperature | Heat stress Increased pro-inflammatory cytokines Damage to epithelial barrier Epigenetic changes Heat shock proteins | Systemic lupus erythematosus, Rheumatoid arthritis, Idiopathic inflammatory myopathies, ANCA-associated Vasculitis, Behçet’s disease, cutaneous organ-specific autoimmune diseases (Vitiligo, Psoriasis, Alopecia, Pemphigus) | [51,52] |
Wildfire | PM2.5 particles | Oxidative stress Damage to epithelial barrier Increased pro-inflammatory cytokines | Juvenile idiopathic arthritis, Systemic lupus erythematosus, Rheumatoid arthritis, Ankylosing spondylitis, Psoriasis, connective tissue diseases, Inflammatory Bowel disease, Multiple sclerosis | [67,68,75,76,77,78] |
Soil microbiome disruption | Inhalation of heat- and stress-resistant spores such as Coccidioides spores | Autoantibodies against Ku autoantigen MPO-ANCA Vasculitis | [89,90] | |
Earthquake | PM2.5 particles containing dust and silica | Oxidative stress Damage to epithelial barrier Macrophage death Chronic inflammation | Antinuclear antibodies Rheumatoid arthritis, Systemic lupus erythematosus, Systemic sclerosis, ANCA-associated Vasculitis | [92,93,94,95,96,98,99] |
Desert Dust Storm | Dust particles containing silicon dioxide (SiO2), aluminum oxide (Al2O3), iron (Fe2O3) and titanium (TiO2) oxides | Oxidative stress Damage to epithelial barrier Activation of complement proteins Chemotaxis of alveolar macrophages and inflammation | Sarcoidosis, Pneumoconiosis, Pulmonary fibrosis, Silicosis | [107,108,109,110] |
Volcanic Eruption | Toxic volcanic trace elements containing heavy and alkali metals | Oxidative stress Accelerating the progressive destruction of myelin | Multiple sclerosis | [111] |
Diseases | Associated Autoimmune Responses and Diseases | References |
---|---|---|
Malaria | Autoimmune anemia | [131,132,133,134,135,136,137] |
Anti-phospholipid antibodies | [131] | |
Systemic lupus erythematosus | [138] | |
ANA antibodies | [138] | |
Anti-dsDNA antibodies | [139] | |
Anti-ssDNA antibodies | [138] | |
Dengue | Myasthenia Gravis | [146,147] |
Autoantibodies against coagulation factors, platelets and endothelial cells, pemphigus | [141,142,143,144,145] | |
Multiple sclerosis | [146,147] | |
Reiter’s syndrome | [146,147] | |
Autoimmune encephalomyelitis | [149] | |
Systemic vasculitis | [148] | |
Systemic lupus erythematosus | [146,147] | |
Primary adrenocortical insufficiency | [146,147] | |
Zika | Guillain–Barré syndrome | [155,156,159] |
Idiopathic thrombocyto-penic purpura | [157,158] | |
Multiple sclerosis | [160] | |
West Nile | Autoimmune encephalitis | [163,164] |
Myasthenia gravis | [165] | |
Guillain–Barré syndrome | [166,167,168] | |
Chikungunya | Rheumatoid arthritis | [169,170,171] |
Sjögren’s syndrome | [172,173] | |
Leishmaniasis | ANA, ANCA, AMA-M2, anti-LC1, anti-LKM1, anti CENP-B, anti-SSA, anti-SSB, anti-Jo1, anti-dsDNA, and RF positivity | [178,179] |
Diseases | Associated Autoimmune Responses and Diseases | References |
---|---|---|
Salmonellosis | Ulcerative colitis | [195,196] |
Crohn’s disease | [195,196] | |
Reactive arthritis | [194] | |
Reiter’s syndrome | [197] | |
SLE | [201] | |
HLA-B27 | [199] | |
Anti-dsDNA, antithyroglobulin, RF and nuclear staining with HEp-2 cell positivity | [200] | |
Shigellosis | Ulcerative colitis | [193,198] |
Crohn’s disease | [193,198] | |
HLA-B27 | [193,198] | |
Giardiasis | Crohn’s disease | [202] |
Reactive arthritis | [203] | |
tTG and EMA antibody positivity | [204] | |
Cryptosporidiosis | Crohn’s disease | [202] |
Reactive arthritis | [203] | |
Hepatitis A | Guillain–Barré syndrome | [217,218] |
RA | [217,218] | |
Henoch–Schönlein purpura | [217,218] | |
Still’s syndrome | [217,218] | |
Autoimmune hepatitis | [205,206,207,208] | |
Autoimmune anemia | [218] | |
Antiphospholipid syndrome | [217,218] | |
SLE | [217,218] | |
Cryoglobulinemic vasculitis | [217,218] | |
Hepatitis E | Guillain–Barré syndrome | [210,211] |
Reactive arthritis | [214] | |
Henoch–Schönlein purpura | [210,211] | |
Autoimmune thyroiditis | [212] | |
Autoimmune hepatitis | [209] | |
Cryoglobulinemic vasculitis | [215] | |
Cutaneous necrotizing small-vessel vasculitis | [213] | |
Cholera | SLE-progression trigger | [219] |
Rota infection | Henoch–Schönlein purpura | [224] |
Uveitis | [226] | |
Pemphigus vulgaris | [227] | |
Myasthenia Gravis | [228] | |
Biliary atresia | [229] | |
Type 1 diabetes | [221] | |
Celiac disease | [220,222] | |
Schistosomiasis | Hepatic fibrosis | [236,237] |
ANA antibody positivity | [239] | |
Islet-cell antibody seropositivity | [238] | |
Anti-collagen V autoantibodies | [240] | |
Leptospirosis | Reactive arthritis | [253] |
Autoimmune anemia | [256] | |
SLE | [254] | |
Uveitis | [258,259] | |
ANA, anti-dsDNA, anti-SSA/SSB, anti-Sm, anti-ribosomal P, anti-cardiolipin positivity | [255,260] | |
Autoimmune Basal Ganglia Encephalitis | [261] | |
Hantavirus infection | Exacerbation of autoimmune liver disease | [271] |
Guillain–Barré syndrome | [272] | |
Autoimmune polyendocrinopathy and hypophysitis | [270] | |
Graves’ disease | [269] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpakosi, A.; Cholevas, V.; Tzouvelekis, I.; Passos, I.; Kaliouli-Antonopoulou, C.; Mironidou-Tzouveleki, M. Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature. Healthcare 2024, 12, 1767. https://doi.org/10.3390/healthcare12171767
Mpakosi A, Cholevas V, Tzouvelekis I, Passos I, Kaliouli-Antonopoulou C, Mironidou-Tzouveleki M. Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature. Healthcare. 2024; 12(17):1767. https://doi.org/10.3390/healthcare12171767
Chicago/Turabian StyleMpakosi, Alexandra, Vasileios Cholevas, Ioannis Tzouvelekis, Ioannis Passos, Christiana Kaliouli-Antonopoulou, and Maria Mironidou-Tzouveleki. 2024. "Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature" Healthcare 12, no. 17: 1767. https://doi.org/10.3390/healthcare12171767
APA StyleMpakosi, A., Cholevas, V., Tzouvelekis, I., Passos, I., Kaliouli-Antonopoulou, C., & Mironidou-Tzouveleki, M. (2024). Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature. Healthcare, 12(17), 1767. https://doi.org/10.3390/healthcare12171767