Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2—Secondary Immunodeficiencies
Abstract
:1. Introduction
2. Selected Chronic Diseases Associated with Increased Cardiovascular Risk
2.1. Type 2 Diabetes Mellitus (T2DM)
2.2. Obesity
2.3. Rheumatoid Arthritis
2.4. Systemic Lupus Erythematosus
2.5. Inflammatory Bowel Disease
2.6. Neoplasms
2.7. HIV Infection
3. Medicaments
3.1. Glucocorticoids (GCs)
3.2. Methotrexate
3.3. Cyclosporine A (CsA)
3.4. Anthracyclines
3.5. Cyclophosphamide
4. Malnutrition
4.1. Proteins
4.2. Polyunsaturated Fatty Acids
4.3. Vitamin B6
4.4. Vitamin D
4.5. Magnesium
5. SIDs Diagnostics
6. Therapeutic Management of SIDs
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuano, K.S.; Seth, N.; Chinen, J. Secondary immunodeficiencies: An overview. Ann. Allergy Asthma Immunol. 2021, 127, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Acevedo, P.; Mendoza-Elvira, S.E.; Döffinger, R.; Barcenas-Morales, G. Secondary immunodeficiencies related to the presence of anti-cytokine autoantibodies. Gac. Medica Mex. 2023, 159, 157–163. (In English) [Google Scholar] [CrossRef] [PubMed]
- Friman, V.; Winqvist, O.; Blimark, C.; Langerbeins, P.; Chapel, H.; Dhalla, F. Secondary immunodeficiency in lymphoproliferative malignancies. Hematol. Oncol. 2016, 34, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, H.; Adams, M. Biologic Agents and Secondary Immune Deficiency. Pediatr. Clin. N. Am. 2019, 66, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Mustafa, S.S.; Vinh, D.C. Management of secondary immunodeficiency in hematological malignancies in the era of modern oncology. Crit. Rev. Oncol. 2023, 181, 103896. [Google Scholar] [CrossRef] [PubMed]
- Righi, E.; Gallo, T.; Azzini, A.M.; Mazzaferri, F.; Cordioli, M.; Merighi, M.; Tacconelli, E. A Review of Vaccinations in Adult Patients with Secondary Immunodeficiency. Infect. Dis. Ther. 2021, 10, 637–661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020, 10, 174–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Syed, F.Z. Type 1 Diabetes Mellitus. Ann. Intern. Med. 2022, 175, ITC33–ITC48. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, S.; Arcidiacono, B.; Chiefari, E.; Brunetti, A.; Indolfi, C.; Foti, D.P. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front. Endocrinol. 2018, 9, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carey, I.M.; Critchley, J.A.; DeWilde, S.; Harris, T.; Hosking, F.J.; Cook, D.G. Risk of Infection in Type 1 and Type 2 Diabetes Compared with the General Population: A Matched Cohort Study. Diabetes Care 2018, 41, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.W.M.; Stienstra, R.; Jaeger, M.; van Gool, A.J.; Joosten, L.A.B.; Netea, M.G.; Riksen, N.P.; Tack, C.J. Understanding the increased risk of infections in diabetes: Innate and adaptive immune responses in type 1 diabetes. Metabolism 2021, 121, 154795. [Google Scholar] [CrossRef] [PubMed]
- Korbel, L.; Spencer, J.D. Diabetes mellitus and infection: An evaluation of hospital utilization and management costs in the United States. J. Diabetes Complicat. 2015, 29, 192–195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mooradian, A.D.; Reed, R.L.; Meredith, K.E.; Scuderi, P. Serum levels of tumor necrosis factor and IL-1 alpha and IL-1 beta in diabetic patients. Diabetes Care 1991, 14, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Neubauer-Geryk, J.; Wielicka, M.; Myśliwiec, M.; Zorena, K.; Bieniaszewski, L. The Impact of Metabolic Memory on Immune Profile in Young Patients with Uncomplicated Type 1 Diabetes. Int. J. Mol. Sci. 2024, 25, 3190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ohno, Y.; Aoki, N.; Nishimura, A. In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 1993, 77, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, W.; Wei, M.; Yin, D.; Tang, Y.; Jia, W.; Wang, C.; Guo, J.; Li, A.; Gong, Y. Associations be-tween type 1 diabetes and pulmonary tuberculosis: A bidirectional mendelian randomization study. Diabetol. Metab. Syndr. 2024, 16, 60. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pitsavos, C.; Tampourlou, M.; Panagiotakos, D.B.; Skoumas, Y.; Chrysohoou, C.; Nomikos, T.; Stefanadis, C. Association Between Low-Grade Systemic Inflammation and Type 2 Diabetes Mellitus among Men and Women from the ATTICA Study. Rev. Diabet. Stud. 2007, 4, 98–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okdahl, T.; Wegeberg, A.M.; Pociot, F.; Brock, B.; Størling, J.; Brock, C. Low-grade inflammation in type 2 diabetes: A cross-sectional study from a Danish diabetes outpatient clinic. BMJ Open 2022, 12, e062188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yaghini, N.; Mahmoodi, M.; Asadikaram, G.R.; Hassanshahi, G.H.; Khoramdelazad, H.; Kazemi Arab-abadi, M. Serum levels of interleukin 10 (IL-10) in patients with type 2 diabetes. Iran Red Crescent Med. J. 2011, 13, 752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Koenig, W.; Khuseyinova, N.; Baumert, J.; Thorand, B.; Loewel, H.; Chambless, L.; Meisinger, C.; Schnei-der, A.; Martin, S.; Kolb, H.; et al. Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: Results from the MONICA/KORA Augsburg case-cohort study, 1984–2002. Arter. Thromb. Vasc. Biol. 2006, 26, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Fisman, E.Z.; Benderly, M.; Esper, R.J.; Behar, S.; Boyko, V.; Adler, Y.; Tanne, D.; Matas, Z.; Tenenbaum, A. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am. J. Cardiol. 2006, 98, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R. The role of TNF in cardiovascular disease. Pharmacol. Res. 1999, 40, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, F.; Zhou, H.; Hu, Y.; Guo, D.; Fang, X.; Chen, Y. Interplay of TNF-α, soluble TNF receptors and oxidative stress in coronary chronic total occlusion of the oldest patients with coronary heart disease. Cytokine 2020, 125, 154836. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Yuan, Y.C.; Li, J.Y.; Gionfriddo, M.R.; Huang, R.C. Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Dis. Transl. Med. 2015, 1, 18–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rolski, F.; Błyszczuk, P. Complexity of TNF-α Signaling in Heart Disease. J. Clin. Med. 2020, 9, 3267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghigo, A.; Franco, I.; Morello, F.; Hirsch, E. Myocyte signalling in leucocyte recruitment to the heart. Cardiovasc. Res. 2014, 102, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Javed, Q.; Murtaza, I. Therapeutic potential of tumour necrosis factor-alpha antagonists in patients with chronic heart failure. Hear. Lung Circ. 2013, 22, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Li, X.; Hao, L.; Zhong, J. Role of tumor necrosis factor alpha in the pathogenesis of atrial fibrillation: A novel potential therapeutic target? Ann. Med. 2015, 47, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Z.J.; Liao, Y.H.; Cao, Z.; Xia, J.D.; Yang, H.; Du, Y.M. Effect of tumor necrosis factor-α on ventricular arrhythmias in rats with acute myocardial infarction in vivo. World J. Emerg. Med. 2010, 1, 53–58. [Google Scholar] [PubMed] [PubMed Central]
- Sabat, R. IL-10 family of cytokines. Cytokine Growth Factor Rev. 2010, 21, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Dumoutier, L.; Renauld, J.C. Viral and cellular interleukin-10 (IL-10)-related cytokines: From structures to functions. Cytokine Netw. 2002, 13, 5–15. [Google Scholar] [PubMed]
- Han, X.; Boisvert, W.A. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb. Haemost. 2015, 113, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, C.; Lehner, C.; Yilmaz, A.; Daniel, W.G.; Garlichs, C.D. Decrease of serum levels of the anti-inflammatory cytokine interleukin-10 in patients with advanced chronic heart failure. Clin. Sci. 2003, 105, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Arvunescu, A.M.; Ionescu, R.F.; Cretoiu, S.M.; Dumitrescu, S.I.; Zaharia, O.; Nanea, I.T. Inflammation in Heart Failure-Future Perspectives. J. Clin. Med. 2023, 12, 7738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, H.; Hu, S.; Li, Y.; Sun, Y.; Xiong, X.; Hu, X.; Chen, J.; Qiu, S. Interleukins and Ischemic Stroke. Front. Immunol. 2022, 13, 828447. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, W.; Li, S.; Zhao, Y.; Sun, Y.; Huang, Y.; Cao, X.; Xing, C.; Yang, F.; Liu, W.; Zhao, X.; et al. Changes in the expression of interleukin-10 in myocardial infarction and its relationship with macrophage activation and cell apoptosis. Ann. Transl. Med. 2020, 8, 643. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, R.; Liu, L.; Zhang, X.; Fan, X.; Krishnamurthy, P.; Verma, S.; Tongers, J.; Misener, S.; Ashcherkin, N.; Sun, H.; et al. IL-10 provides cardioprotection in diabetic myocardial infarction via upregulation of Heme clearance pathways. J. Clin. Investig. 2020, 5, e133050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burchfield, J.S.; Iwasaki, M.; Koyanagi, M.; Urbich, C.; Rosenthal, N.; Zeiher, A.M.; Dimmeler, S. Interleu-kin-10 from transplanted bone marrow mononuclear cells contributes to cardiac protection after myocardial infarction. Circ. Res. 2008, 103, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.C.; Yen, C.L.; Wu, Y.H.; Chen, S.Y.; Hsieh, C.Y.; Chang, T.C.; Ou, H.Y.; Shieh, C.C. Increased resistin may suppress reactive oxygen species production and inflammasome activation in type 2 diabetic patients with pulmonary tuberculosis infection. Microbes Infect. 2015, 17, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.P.; Babu, S. Impact of diabetes mellitus on immunity to latent tuberculosis infection. Front. Clin. Diabetes Health 2023, 4, 1095467. [Google Scholar] [CrossRef] [PubMed]
- Stegenga, M.E.; van der Crabben, S.N.; Blümer, R.M.; Levi, M.; Meijers, J.C.; Serlie, M.J.; Tanck, M.W.; Sau-erwein, H.P.; van der Poll, T. Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia. Blood 2008, 112, 82–89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joshi, M.B.; Lad, A.; Bharath Prasad, A.S.; Balakrishnan, A.; Ramachandra, L.; Satyamoorthy, K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013, 587, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Jafar, N.; Edriss, H.; Nugent, K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am. J. Med Sci. 2016, 351, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Turina, M.; Miller, F.N.; Tucker, C.; Polk, H.C. Effects of hyperglycemia, hyperinsulinemia, and hyper-osmolarity on neutrophil apoptosis. Surg. Infect. 2006, 7, 111–121. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, S.; Rosowski, E.E.; Huttenlocher, A. Neutrophil migration in infection and wound repair: Going forward in reverse. Nat. Rev. Immunol. 2016, 16, 378–391. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horckmans, M.; Ring, L.; Duchene, J.; Santovito, D.; Schloss, M.J.; Drechsler, M.; Weber, C.; Soehnlein, O.; Steffens, S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 2017, 38, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J.; Murphy, K.E.; Fernandez, M.L. Impact of Obesity and Metabolic Syndrome on Immunity. Adv. Nutr. 2016, 7, 66–75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frydrych, L.M.; Bian, G.; O’Lone, D.E.; Ward, P.A.; Delano, M.J. Obesity and type 2 diabetes mellitus drive immune dys-function, infection development, and sepsis mortality. J. Leukoc. Biol. 2018, 104, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Mayoral, L.P.; Andrade, G.M.; Mayoral, E.P.; Huerta, T.H.; Canseco, S.P.; Rodal Canales, F.J.; Cabrera-Fuentes, H.A.; Cruz, M.M.; Pérez Santiago, A.D.; Alpuche, J.J.; et al. Obesity sub-types, related biomarkers & heterogeneity. Indian J. Med. Res. 2020, 151, 11–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanneganti, T.-D.; Dixit, V.D. Immunological complications of obesity. Nat. Immunol. 2012, 13, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Youm, Y.H.; Vandanmagsar, B.; Ravussin, A.; Gimble, J.M.; Greenway, F.; Stephens, J.M.; Mynatt, R.L.; Dixit, V.D. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: Implications for systemic inflammation and insulin resistance. J. Immunol. 2010, 185, 1836–1845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weitman, E.S.; Aschen, S.Z.; Farias-Eisner, G.; Albano, N.; Cuzzone, D.A.; Ghanta, S.; Zampell, J.C.; Thorek, D.; Mehrara, B.J. Obesity impairs lymphatic fluid transport and dendritic cell migration to lymph nodes. PLoS ONE 2013, 8, e70703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, R.; Barouch, L.A. Leptin signaling and obesity: Cardiovascular consequences. Circ. Res. 2007, 101, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B.D.; Solar, G.P.; Yuan, J.Q.; Mathias, J.; Thomas, G.R.; Matthews, W. A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 1996, 6, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Maciver, N.J.; Jacobs, S.R.; Wieman, H.L.; Wofford, J.A.; Coloff, J.L.; Rathmell, J.C. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. J. Leukoc. Biol. 2008, 84, 949–957. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farooqi, I.S.; Matarese, G.; Lord, G.M.; Keogh, J.M.; Lawrence, E.; Agwu, C.; Sanna, V.; Jebb, S.A.; Perna, F.; Fontana, S.; et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Investig. 2002, 110, 1093–1103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- La Cava, A.; Matarese, G. The weight of leptin in immunity. Nat. Rev. Immunol. 2004, 4, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Ballak, D.B.; Stienstra, R.; Tack, C.J.; Dinarello, C.A.; van Diepen, J.A. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance. Cytokine 2015, 75, 280–290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ. Res. 2020, 126, 1260–1280. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yndestad, A.; Damås, J.K.; Oie, E.; Ueland, T.; Gullestad, L.; Aukrust, P. Systemic inflammation in heart failure—The whys and wherefores. Hear. Fail. Rev. 2006, 11, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Zhou, W.; Kennedy, R.H. Suppression of beta-adrenergic responsiveness of L-type Ca2+ current by IL-1beta in rat ventricular myocytes. Am. J. Physiol. Circ. Physiol. 1999, 276, H141–H148. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Frye, C.S.; Lemster, B.H.; Brooks, S.S.; Watkins, S.C.; Feldman, A.M.; McTiernan, C.F. Chronic exposure to interleukin 1beta induces a delayed and reversible alteration in excitation-contraction coupling of cultured cardiomyocytes. Pflugers Arch. Eur. J. Physiol. 2002, 445, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Van Tassell, B.W.; Seropian, I.M.; Toldo, S.; Mezzaroma, E.; Abbate, A. Interleukin-1β induces a reversible cardiomyopathy in the mouse. Inflamm. Res. 2013, 62, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Markham, D.W.; Drazner, M.H.; Mammen, P.P. Fulminant myocarditis. Nat. Clin. Pr. Cardiovasc. Med. 2008, 5, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, S.; Vicente-Rabaneda, E.F.; García-Castañeda, N.; Prieto-Peña, D.; Dessein, P.H.; González-Gay, M.A. Unmet needs in the management of cardiovascular risk in inflammatory joint diseases. Expert Rev. Clin. Immunol. 2020, 16, 23–36. [Google Scholar] [CrossRef] [PubMed]
- López-Mejías, R.; Castañeda, S.; González-Juanatey, C.; Corrales, A.; Ferraz-Amaro, I.; Genre, F.; Remuzgo-Martínez, S.; Rodriguez-Rodriguez, L.; Blanco, R.; Llorca, J.; et al. Cardiovascular risk assessment in patients with rheumatoid arthritis: The relevance of clinical, genetic and serological markers. Autoimmun. Rev. 2016, 15, 1013–1030. [Google Scholar] [CrossRef] [PubMed]
- Ku, I.A.; Imboden, J.B.; Hsue, P.Y.; Ganz, P. Rheumatoid arthritis: Model of systemic inflammation driving atherosclerosis. Circ. J. 2009, 73, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.W.; Hodkinson, B.; Ally, M.; Musenge, E.; Wadee, A.A.; Fickl, H.; Tikly, M.; Anderson, R. Circulating cytokine profiles and their relationships with autoantibodies, acute phase reactants, and disease activity in patients with rheumatoid arthritis. Mediat. Inflamm. 2010, 2010, 158514. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dessein, P.H.; Solomon, A.; Woodiwiss, A.J.; Norton, G.R.; Tsang, L.; Gonzalez-Gay, M.A. Marked independent relationship between circulating interleukin-6 concentrations and endothelial activation in rheumatoid arthritis. Mediat. Inflamm. 2013, 2013, 510243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Vollenhoven, R.F. Sex differences in rheumatoid arthritis: More than meets the eye. BMC Med. 2009, 7, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gopalakrishnan, M.; Silva-Palacios, F.; Taytawat, P.; Pant, R.; Klein, L. Role of inflammatory mediators in the pathogenesis of plaque rupture. J. Invasive Cardiol. 2014, 26, 484–492. [Google Scholar] [PubMed]
- Shah, P.K. Mechanisms of plaque vulnerability and rupture. J. Am. Coll. Cardiol. 2003, 41 (Suppl. S4), 15S–22S. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.J.L.; Symmons, D.P.M.; McCarey, D.; Dijkmans, B.A.C.; Nicola, P.; Kvien, T.K.; McInnes, I.B.; Haentzschel, H.; A Gonzalez-Gay, M.; Provan, S.; et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann. Rheum. Dis. 2010, 69, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 2013, 368, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Bentzon, J.F.; Otsuka, F.; Virmani, R.; Falk, E. Mechanisms of plaque formation and rupture. Circ. Res. 2014, 114, 1852–1866. [Google Scholar] [CrossRef] [PubMed]
- Habets, K.L.; Trouw, L.A.; Levarht, E.W.; Korporaal, S.J.; Habets, P.A.; de Groot, P.; Huizinga, T.W.; Toes, R.E. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Henn, V.; Slupsky, J.R.; Gräfe, M.; Anagnostopoulos, I.; Förster, R.; Müller-Berghaus, G.; Kroczek, R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998, 391, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Wohner, N. Role of cellular elements in thrombus formation and dissolution. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 224–228. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, J.; Bierhaus, A.; Schiekofer, S.; Andrassy, M.; Chen, B.; Stern, D.M.; Nawroth, P.P. Tissue factor—A receptor involved in the control of cellular properties, including angiogenesis. Thromb. Haemost. 2001, 86, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lu, Y.; Chu, Y.; Xie, J.; Ding, W.; Wang, F. Tissue factor expression in rheumatoid synovium: A potential role in pannus invasion of rheumatoid arthritis. Acta Histochem. 2013, 115, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Sozzani, S.; Vecchi, A.; Introna, M.; Allavena, P. Cytokine activation of endothelial cells: New molecules for an old paradigm. Thromb. Haemost. 1997, 78, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Kwasny-Krochin, B.; Gluszko, P.; Undas, A. Unfavorably altered fibrin clot properties in patients with active rheumatoid arthritis. Thromb. Res. 2010, 126, e11–e16. [Google Scholar] [CrossRef] [PubMed]
- So, A.K.; Varisco, P.A.; Kemkes-Matthes, B.; Herkenne-Morard, C.; Chobaz-Péclat, V.; Gerster, J.C.; Busso, N. Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J. Thromb. Haemost. 2003, 1, 2510–2515. [Google Scholar] [CrossRef] [PubMed]
- Pretorius, E.; Oberholzer, H.M.; van der Spuy, W.J.; Swanepoel, A.C.; Soma, P. Scanning electron microscopy of fibrin networks in rheumatoid arthritis: A qualitative analysis. Rheumatol. Int. 2012, 32, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Sebbag, M.; Moinard, N.; Auger, I.; Clavel, C.; Arnaud, J.; Nogueira, L.; Roudier, J.; Serre, G. Epitopes of human fibrin recognized by the rheumatoid arthritis-specific autoantibodies to citrullinated proteins. Eur. J. Immunol. 2006, 36, 2250–2263. [Google Scholar] [CrossRef] [PubMed]
- Wolf, V.L.; Ryan, M.J. Autoimmune Disease-Associated Hypertension. Curr. Hypertens. Rep. 2019, 21, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, C.; Robinson, D.W.; Hackett, M.V.; Paramore, L.C.; Fraeman, K.H.; Bala, M.V. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J. Rheumatol. 2006, 33, 2167–2172. [Google Scholar] [PubMed]
- Sabio, J.M.; Vargas-Hitos, J.A.; Martínez-Bordonado, J.; Mediavilla-García, J.D. Association between non-dipper hypertension and vitamin D deficiency in women with systemic lupus erythematosus. Clin. Exp. Rheumatol. 2019, 37, 286–292. [Google Scholar] [PubMed]
- Wang, X.; Qiao, Y.; Yang, L.; Song, S.; Han, Y.; Tian, Y.; Ding, M.; Jin, H.; Shao, F.; Liu, A. Leptin levels in patients with systemic lupus erythematosus inversely corre-late with regulatory T cell frequency. Lupus 2017, 26, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Napiórkowska-Baran, K.; Schmidt, O.; Szymczak, B.; Lubański, J.; Doligalska, A.; Bartuzi, Z. Molecular Linkage be-tween Immune System Disorders and Athero-sclerosis. Curr. Issues Mol. Biol. 2023, 45, 8780–8815. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andrianova, I.A.; Ponomareva, A.A.; Mordakhanova, E.R.; Le Minh, G.; Dami-nova, A.G.; Nevzorova, T.A.; Rauova, L.; Litvinov, R.I.; Weisel, J.W. In systemic lupus erythematosus anti-dsDNA antibodies can promote thrombosis through direct platelet activation. J. Autoimmun. 2020, 107, 102355. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamaki, H.; Khasnis, A. Venous thromboembolism in systemic autoimmune diseases: A narrative review with emphasis on primary systemic vasculitides. Vasc. Med. 2015, 20, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Le Minh, G.; Peshkova, A.D.; Andrianova, I.A.; Sibgatullin, T.B.; Maksudova, A.N.; Weisel, J.W.; Litvinov, R.I. Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus. Clin. Sci. 2018, 132, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Singh, A.; Midha, V.; Sood, A.; Wander, G.S.; Mohan, B.; Batta, A. Cardiovascular implications of inflammatory bowel disease: An updated review. World J. Cardiol. 2023, 15, 553–570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neurath, M.F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2014, 14, 329–342. [Google Scholar] [CrossRef] [PubMed]
- de Souza, H.S.P.; Fiocchi, C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Cibor, D.; Domagala-Rodacka, R.; Rodacki, T.; Jurczyszyn, A.; Mach, T.; Owczarek, D. Endothelial dysfunction in inflammatory bowel diseases: Pathogenesis, assessment and implications. World J. Gastroenterol. 2016, 22, 1067–1077. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maloy, K.J.; Powrie, F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011, 474, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yin, J.; Liao, S.X.; He, Y.; Wang, S.; Xia, G.H.; Liu, F.T.; Zhu, J.J.; You, C.; Chen, Q.; Zhou, L.; et al. Dysbiosis of Gut Microbiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Hear. Assoc. 2015, 4, e002699. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Reddy, S.T.; Fogelman, A.M. The role of gut-derived oxidized lipids and bacterial lipopolysaccharide in systemic inflammation and atherosclerosis. Curr. Opin. Infect. Dis. 2022, 33, 277–282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mitchell, N.E.; Harrison, N.; Junga, Z.; Singla, M. Heart Under Attack: Cardiac Manifestations of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 2322–2326. [Google Scholar] [CrossRef] [PubMed]
- Asadi, J.; Bhandari, S.S.; Ahmed, N. Mesalazine induced myopericarditis in a patient with ulcerative colitis. Echo Res. Pract. 2017, 5, K1–K5. [Google Scholar] [CrossRef] [PubMed]
- Aniwan, S.; Pardi, D.S.; Tremaine, W.J.; Loftus, E.V., Jr. Increased Risk of Acute Myocardial Infarction and Heart Failure in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2018, 16, 1607–1615.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cook, N.R.; Buring, J.E.; Ridker, P.M. The effect of including C-reactive protein in cardiovascular risk prediction models for women. Ann. Intern. Med. 2006, 145, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, J.; Jess, T.; Kobylecki, C.J.; Nordestgaard, B.G.; Allin, K.H. Cardiovascular Risk Profile among Patients with Inflammatory Bowel Disease: A Population-based Study of More than 100 000 Individuals. J. Crohn’s Colitis 2019, 13, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Hakala, K.; Vuoristo, M.; Luukkonen, P.; Järvinen, H.J.; Miettinen, T.A. Impaired absorption of cholesterol and bile acids in patients with an ileoanal anastomosis. Gut 1997, 41, 771–777. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Gao, Y.; Ma, K.; Li, Y.; Liu, C.; Yan, Y.; Liu, W.; Liu, H.; Li, Z.; Song, B.; et al. Lipid-related protein NECTIN2 is an important marker in the progression of carotid atherosclerosis: An intersection of clinical and basic stu-dies. J. Transl. Intern. Med. 2021, 9, 294–306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, H.; Li, W.; Hu, J.; Xu, F.; Lu, Y.; Zhu, L.; Shen, H. Association of serum lipids with inflammatory bowel disease: A systematic review and meta-analysis. Front. Med. 2023, 10, 1198988. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilcox, N.S.; Amit, U.; Reibel, J.B.; Berlin, E.; Howell, K.; Ky, B. Cardiovascular disease and cancer: Shared risk factors and mechanisms. Nat. Rev. Cardiol. 2024, 21, 617–631. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, W.W.; Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Investig. 2007, 117, 1175–1183. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bell, C.F.; Lei, X.; Haas, A.; Baylis, R.A.; Gao, H.; Luo, L.; Giordano, S.H.; Wehner, M.R.; Nead, K.T.; Leeper, N.J. Risk of Cancer After Diagnosis of Cardiovascular Disease. JACC Cardio Oncol. 2023, 5, 431–440. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avraham, S.; Abu-Sharki, S.; Shofti, R.; Haas, T.; Korin, B.; Kalfon, R.; Friedman, T.; Shiran, A.; Saliba, W.; Sha-ked, Y.; et al. Early Cardiac Remodeling Promotes Tumor Growth and Metastasis. Circulation 2020, 142, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Meijers, W.C.; Maglione, M.; Bakker, S.J.L.; Oberhuber, R.; Kieneker, L.M.; de Jong, S.; Haubner, B.J.; Nagengast, W.B.; Lyon, A.R.; van der Vegt, B.; et al. Heart Failure Stimulates Tumor Growth by Circulating Factors. Circulation 2018, 138, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Koelwyn, G.J.; Newman, A.A.C.; Afonso, M.S.; van Solingen, C.; Corr, E.M.; Brown, E.J.; Albers, K.B.; Yamaguchi, N.; Narke, D.; Schlegel, M.; et al. Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat. Med. 2020, 26, 1452–1458. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Libby, P.; Nahrendorf, M.; Swirski, F.K. Leukocytes Link Local and Systemic Inflammation in Ischemic Cardiovascular Disease: An Expanded “Cardiovascular Continuum”. J. Am. Coll. Cardiol. 2016, 67, 1091–1103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Engblom, C.; Pfirschke, C.; Pittet, M.J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 2016, 16, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Shipp, C.; Speigl, L.; Janssen, N.; Martens, A.; Pawelec, G. A clinical and biological perspective of human myeloid-derived suppressor cells in cancer. Cell. Mol. Life Sci. 2016, 73, 4043–4061. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ridker, P.M.; MacFadyen, J.G.; Thuren, T.; Everett, B.M.; Libby, P.; Glynn, R.J.; Ridker, P.; Lorenzatti, A.; Krum, H.; Varigos, J.; et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: Exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 2017, 390, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Kobold, S. Inflammation: A common contributor to cancer, aging, and cardiovascular diseases-expanding the concept of cardio-oncology. Cardiovasc. Res. 2019, 115, 824–829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jarr, K.U.; Nakamoto, R.; Doan, B.H.; Kojima, Y.; Weissman, I.L.; Advani, R.H.; Iagaru, A.; Leeper, N.J. Effect of CD47 Blockade on Vascular Inflammation. N. Engl. J. Med. 2021, 384, 382–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadigan, C.; Meigs, J.B.; Corcoran, C.; Rietschel, P.; Piecuch, S.; Basgoz, N.; Davis, B.; Sax, P.; Stanley, T.; Wilson, P.W.; et al. Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy. Clin. Infect. Dis. 2001, 32, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Sue, P.Y.; Waters, D.D. HIV infection and coronary heart disease: Mechanisms and management. Nat. Rev. Cardiol. 2019, 16, 745–759. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- So-Armah, K.; A Benjamin, L.; Bloomfield, G.S.; Feinstein, M.J.; Hsue, P.; Njuguna, B.; Freiberg, M.S. HIV and cardiovascular disease. Lancet HIV 2020, 7, e279–e293. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dirajlal-Fargo, S.; Funderburg, N. HIV and cardiovascular disease: The role of inflammation. Curr. Opin. HIV AIDS 2022, 17, 286–292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Núñez, J.; Miñana, G.; Bodí, V.; Núñez, E.; Sanchis, J.; Husser, O.; Llàcer, A. Low lymphocyte count and cardiovascular diseases. Curr. Med. Chem. 2011, 18, 3226–3233. [Google Scholar] [CrossRef] [PubMed]
- Avgousti, H.; Feinstein, M.J. Prevention and treatment of cardiovascular disease in HIV: Practical insights in an evolving field. Top Antivir. Med. 2023, 31, 559–565. [Google Scholar] [PubMed] [PubMed Central]
- Hussain, Y.; Khan, H. Immunosuppressive Drugs. Encycl. Infect. Immun. 2022, 4, 726–740. [Google Scholar] [CrossRef] [PubMed Central]
- Grzanka, A.; Misiołek, M.; Golusiński, W.; Jarząb, J. Molecular mechanisms of glucocorticoids action: Implications for treatment of rhinosinusitis and nasal polyposis. Eur. Arch. Otorhinolaryngol. 2011, 268, 247–253. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scherholz, M.L.; Schlesinger, N.; Androulakis, I.P. Chronopharmacology of glucocorticoids. Adv. Drug Deliv. Rev. 2019, 151–152, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.Y.; Zhang, J.J. Effects of glucocorticoids on leukocytes: Genomic and non-genomic mechanisms. World J. Clin. Cases 2022, 10, 7187–7194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pujades-Rodriguez, M.; Morgan, A.W.; Cubbon, R.M.; Wu, J. Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: A population-based cohort study. PLoS Med. 2020, 17, e1003432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cacciapaglia, F.; Spinelli, F.R.; Erre, G.L.; Gremese, E.; Manfredi, A.; Piga, M.; Sakellariou, G.; Viapiana, O.; Atzeni, F.; Bartoloni, E. Italian recommendations for the assessment of cardiovascular risk in rheumatoid arthritis: A position paper of the Cardiovascular Obesity and Rheumatic DISease (CORDIS) Study Group of the Italian Society for Rheumatology. Clin. Exp. Rheumatol. 2023, 41, 1784–1791. [Google Scholar] [CrossRef] [PubMed]
- Mebrahtu, T.F.; Morgan, A.W.; West, R.M.; Stewart, P.M.; Pujades-Rodriguez, M. Oral glucocorticoids and incidence of hypertension in people with chronic inflammatory diseases: A population-based cohort study. Can. Med. Assoc. J. 2020, 192, E295–E301. [Google Scholar] [CrossRef] [PubMed]
- Costello, R.E.; Yimer, B.B.; Roads, P.; Jani, M.; Dixon, W.G. Glucocorticoid use is associated with an increased risk of hypertension. Rheumatology 2021, 60, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Pofi, R.; Caratti, G.; Ray, D.W.; Tomlinson, J.W. Treating the Side Effects of Exogenous Glucocorticoids; Can We Separate the Good from the Bad? Endocr. Rev. 2023, 44, 975–1011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Etchegaray-Morales, I.; Mendoza-Pinto, C.; Munguía-Realpozo, P.; Solis-Poblano, J.C.; Méndez-Martínez, S.; Ayón-Aguilar, J.; Abud-Mendoza, C.; García-Carrasco, M.; Cervera, R. Risk of Diabetes Mellitus in systemic lupus erythematosus: Systematic review and meta-analysis. Rheumatology 2024, 63, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Descours, M.; Rigalleau, V. Glucocorticoid-induced hyperglycemia and diabetes: Practical points. Ann. Endocrinol. 2023, 84, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Cummins, C.L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 2022, 18, 540–557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Struja, T.; Nitritz, N.; Alexander, I.; Kupferschmid, K.; Hafner, J.F.; Spagnuolo, C.C.; Schuetz, P.; Mueller, B.; Blum, C.A. Treatment of glucocorticoid-induced hyperglycemia in hospitalized patients—A systematic review and meta- analysis. Clin. Diabetes Endocrinol. 2024, 10, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, S.; Zhang, Z.; Cui, Y.; Yao, G.; Ma, X.; Zhang, H. Dyslipidemia is associated with inflammation and organ involvement in systemic lupus erythematosus. Clin. Rheumatol. 2023, 42, 1565–1572. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, R.; Xu, H.; Yao, R.; Pei, W.; Wang, Z.; Liang, R.; Han, X.; Zhou, Y.; An, Y.; Su, Y. A predictive model for premature atherosclerosis in systemic lupus erythematosus based on clinical characteristics. Clin. Rheumatol. 2024, 43, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, K.; Wu, M.; Feng, L.; Liu, C.; Ding, F.; Li, X.; Ma, B. Factors associated with secondary coronary artery disease in rheumatoid arthritis patients: A systematic review and meta-analysis based on observational studies. Musculoskelet. Care 2023, 22, e1850. [Google Scholar] [CrossRef] [PubMed]
- Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an Old Drug with New Tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Torres, R.P.; Santos, F.P.; Branco, J.C. Methotrexate: Implications of pharmacogenetics in the treatment of patients with Rheumatoid Arthritis. ARP Rheumatol. 2022, 1, 225–229. (In English) [Google Scholar] [PubMed]
- Xu, J.; Xiao, L.; Zhu, J.; Qin, Q.; Fang, Y.; Zhang, J.A. Methotrexate use reduces mortality risk in rheumatoid arthritis: A systematic review and meta-analysis of cohort studies. Semin. Arthritis Rheum. 2022, 55, 152031. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.J.; Liu, L.L.; Hu, J.H.; Chen, Y.Y.; Xu, D.Y. Methotrexate can prevent cardiovascular events in patients with rheumatoid arthritis: An updated meta-analysis. Medicine 2021, 100, e24579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadwen, B.; Stranges, S.; Barra, L. Risk factors for hypertension in rheumatoid arthritis patients-A systematic review. Autoimmun. Rev. 2021, 20, 102786. [Google Scholar] [CrossRef] [PubMed]
- Baghdadi, L.R. Effect of methotrexate use on the development of type 2 diabetes in rheumatoid arthritis patients: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0235637, Erratum in PLoS ONE 2020, 15, e0243960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zălar, D.M.; Pop, C.; Buzdugan, E.; Kiss, B.; Ştefan, M.G.; Ghibu, S.; Bâlteanu, V.A.; Crişan, D.; Buruiană-Simic, A.; Grozav, A.; et al. Pharmacological Effects of Methotrexate and Infliximab in a Rats Model of Diet-Induced Dyslipidemia and Beta-3 Overexpression on Endothelial Cells. J. Clin. Med. 2021, 10, 3143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kisiel, B.; Kruszewski, R.; Juszkiewicz, A.; Raczkiewicz, A.; Bachta, A.; Tłustochowicz, M.; Staniszewska-Varga, J.; Kłos, K.; Duda, K.; Bogusławska-Walecka, R.; et al. Methotrexate, Cyclosporine A, and Biologics Protect against Atherosclerosis in Rheumatoid Arthritis. J. Immunol. Res. 2015, 2015, 759610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gawałko, M.; Balsam, P.; Lodziński, P.; Grabowski, M.; Krzowski, B.; Opolski, G.; Kosiuk, J. Cardiac Arrhythmias in Autoimmune Diseases. Circ. J. 2020, 84, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.W.; Han, M.; Jung, I.; Ahn, S.S. New-onset atrial fibrillation in seropositive rheumatoid arthritis: Association with disease-modifying anti-rheumatic drugs treatment. Rheumatology 2024, 63, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Gao, Y.; Shi, J.; Huang, Z.; Dai, R.; Fu, Y.; Zhou, Y.; Kong, W.; Cui, Q. MicroRNA-disease Network Analysis Repurposes Methotrexate for the Treatment of Abdominal Aortic Aneurysm in Mice. Genom. Proteom. Bioinform. 2023, 21, 1030–1042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Periman, L.M.; Mah, F.S.; Karpecki, P.M. A Review of the Mechanism of Action of Cyclosporine A: The Role of Cyclosporine A in Dry Eye Disease and Recent Formulation Developments. Clin. Ophthalmol. 2020, 14, 4187–4200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xue, W.; Zhang, Q.; Xu, Y.; Wang, W.; Zhang, X.; Hu, X. Effects of tacrolimus and cyclosporine treatment on metabolic syndrome and cardiovascular risk factors after renal transplantation: A meta-analysis. Chin. Med. J. 2014, 127, 2376–2381. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, M.; Ayasse, M.; Ahmed, A.; Gwillim, E.C.; Janmohamed, S.R.; Yousaf, A.; Patel, K.R.; Thyssen, J.P.; Silverberg, J.I. Association between atopic dermatitis and hypertension: A systematic review and meta-analysis. Br. J. Dermatol. 2022, 186, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Kotha, S.; Lawendy, B.; Asim, S.; Gomes, C.; Yu, J.; Orchanian-Cheff, A.; Tomlinson, G.; Bhat, M. Impact of immunosuppression on incidence of post-transplant diabetes mellitus in solid organ transplant recipients: Systematic review and meta-analysis. World J. Transplant. 2021, 11, 432–442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nogueiras-Álvarez, R.; Mora-Cuesta, V.M.; Cifrián-Martínez, J.M.; de Cos-Cossío, M.; García-Sáiz, M.d.M. Calcineurin inhibitors’ impact on cardiovascular and renal function, a descriptive study in lung transplant recipients from the North of Spain. Sci. Rep. 2022, 12, 21207. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhang, M.; Zhang, B.; Zhang, Y.; Zhao, Q. Systematic review and meta-analysis of calcineurin inhibitors on long-term prognosis of renal transplant patients. Transpl. Immunol. 2022, 75, 101741. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A. Managing dyslipidemia in solid organ transplant patients. Indian Hear. J. 2024, 76 (Suppl. S1), S93–S95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Su, J.H.; Hong, Y.; Han, C.C.; Yu, J.; Guan, X.; Zhu, Y.M.; Wang, C.; Ma, M.M.; Pang, R.P.; Ou, J.S.; et al. Dual action of macrophage miR-204 confines cyclosporine A-induced atherosclerosis. Br. J. Pharmacol. 2024, 181, 640–658. [Google Scholar] [CrossRef] [PubMed]
- Perito, E.R.; Phelps, A.; Vase, T.; Feldstein, V.A.; Lustig, R.H.; Rosenthal, P. Subclinical Atherosclerosis in Pediatric Liver Transplant Recipients: Carotid and Aorta Intima-Media Thickness and Their Predictors. J. Pediatr. 2018, 193, 119–127.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martins-Teixeira, M.B.; Carvalho, I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem 2020, 15, 933–948. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, B.C.; Boddy, A.V. Is there scope for better individualisation of anthracycline cancer chemotherapy? Br. J. Clin. Pharmacol. 2021, 87, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Bayles, C.E.; Hale, D.E.; Konieczny, A.; Anderson, V.D.; Richardson, C.R.; Brown, K.V.; Nguyen, J.T.; Hecht, J.; Schwartz, N.; Kharel, M.K.; et al. Upcycling the anthracyclines: New mechanisms of action, toxicology, and pharmacology. Toxicol. Appl. Pharmacol. 2023, 459, 116362. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.Y.; Peng, L.M.; Chen, X.P. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future. Front. Cardiovasc. Med. 2022, 9, 966261. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, T.; Yu, H.; Li, T.; Dong, Y. Mechanisms of Cardiovascular Toxicities Induced by Cancer Therapies and Promising Biomarkers for Their Prediction: A Scoping Review. Heart Lung Circ. 2024, 33, 605–638. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; et al. Defining cardiovascular toxicities of cancer therapies: An International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Hear. J. 2022, 43, 280–299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahlmann, M.; Hempel, G. The effect of cyclophosphamide on the immune system: Implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 2016, 78, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Lu, J.; Wang, J.; Chen, L.; Wang, Y.; Li, L.; Miao, L.; Zhang, H. Prevention of Cyclophosphamide-Induced Immunosuppression in Mice with Traditional Chinese Medicine Xuanfei Baidu Decoction. Front. Pharmacol. 2021, 12, 730567, Erratum in Front. Pharmacol. 2022, 12, 808424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Huang, S.; Ye, Q.; Zeng, X.; Yu, H.; Qi, D.; Qiao, S. Prevention of Cyclophosphamide-Induced Immunosuppression in Mice with the Antimicrobial Peptide Sublancin. J. Immunol. Res. 2018, 2018, 4353580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feng, L.; Huang, Q.; Huang, Z.; Li, H.; Qi, X.; Wang, Y.; Liu, Z.; Liu, X.; Lu, L. Optimized Animal Model of Cyclophosphamide-induced Bone Marrow Suppression. Basic Clin. Pharmacol. Toxicol. 2016, 119, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Marumo, A.; Omori, I.; Tara, S.; Otsuka, Y.; Konuma, R.; Adachi, H.; Wada, A.; Kishida, Y.; Konishi, T.; Nagata, A.; et al. Cyclophosphamide-induced cardiotoxicity at conditioning for allogeneic hematopoietic stem cell transplantation would occur among the patients treated with 120 mg/kg or less. Asia-Pac. J. Clin. Oncol. 2022, 18, e507–e514. [Google Scholar] [CrossRef] [PubMed]
- Iqubal, A.; Iqubal, M.K.; Sharma, S.; Ansari, M.A.; Najmi, A.K.; Ali, S.M.; Ali, J.; Haque, S.E. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019, 218, 112–131. [Google Scholar] [CrossRef] [PubMed]
- Dhesi, S.; Chu, M.P.; Blevins, G.; Paterson, I.; Larratt, L.; Oudit, G.Y.; Kim, D.H. Cyclophosphamide-Induced Cardiomyopathy: A Case Report, Review, and Recommendations for Management. J. Investig. Med. High Impact Case Rep. 2013, 1, 2324709613480346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pudil, R.; Mueller, C.; Čelutkienė, J.; Henriksen, P.A.; Lenihan, D.; Dent, S.; Barac, A.; Stanway, S.; Moslehi, J.; Suter, T.M.; et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur. J. Hear. Fail. 2020, 22, 1966–1983. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rytter, M.J.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The immune system in children with malnutrition—A systematic review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roseboom, T.; de Rooij, S.; Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 2006, 82, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Bourke, C.D.; Berkley, J.A.; Prendergast, A.J. Immune Dysfunction as a Cause and Consequence of Malnutrition. Trends Immunol. 2016, 37, 386–398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Billingsley, H.E.; Hummel, S.L.; Carbone, S. The role of diet and nutrition in heart failure: A state-of-the-art narrative review. Prog. Cardiovasc. Dis. 2020, 63, 538–551. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dos Reis Padilha, G.; Sanches Machado d’Almeida, K.; Ronchi Spillere, S.; Corrêa Souza, G. Dietary Patterns in Secondary Prevention of Heart Failure: A Systematic Review. Nutrients 2018, 10, 828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Phillips, S.M. The impact of protein quality on the promotion of resistance exercise-induced changes in muscle mass. Nutr. Metab. 2016, 13, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watanabe, Y.; Tatsuno, I. Prevention of Cardiovascular Events with Omega-3 Polyunsaturated Fatty Acids and the Mechanism Involved. J. Atheroscler. Thromb. 2020, 27, 183–198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elagizi, A.; Lavie, C.J.; O’Keefe, E.; Marshall, K.; O’Keefe, J.H.; Milani, R.V. An Update on Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Health. Nutrients 2021, 13, 204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodriguez, D.; Lavie, C.J.; Elagizi, A.; Milani, R.V. Update on Omega-3 Polyunsaturated Fatty Acids on Cardio-vascular Health. Nutrients 2022, 14, 5146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stach, K.; Stach, W.; Augoff, K. Vitamin B6 in Health and Disease. Nutrients 2021, 13, 3229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Creighton, J.V.; de Souza Gonçalves, L.; Artioli, G.G.; Tan, D.; Elliott-Sale, K.J.; Turner, M.D.; Doig, C.L.; Sale, C. Physio-logical Roles of Carnosine in Myocardial Function and Health. Adv. Nutr. Int. Rev. J. 2022, 13, 1914–1929. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dakshinamurti, K. Vitamins and their derivatives in the prevention and treatment of metabolic syndrome diseases (diabetes). Can. J. Physiol. Pharmacol. 2015, 93, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Percudani, R.; Peracchi, A. The B6 database: A tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinform. 2009, 10, 273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGill, M.R. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016, 15, 817–828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguayo-Cerón, K.A.; Sánchez-Muñoz, F.; Gutierrez-Rojas, R.A.; Acevedo-Villavicencio, L.N.; Flores-Zarate, A.V.; Huang, F.; Giacoman-Martinez, A.; Villafaña, S.; Romero-Nava, R. Glycine: The Smallest Anti-Inflammatory Micronutrient. Int. J. Mol. Sci. 2023, 24, 11236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6 and Its Role in Cell Metabolism and Physiology. Cells 2018, 7, 84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sîrbe, C.; Rednic, S.; Grama, A.; Pop, T.L. An Update on the Effects of Vitamin D on the Immune System and Autoimmune Diseases. Int. J. Mol. Sci. 2022, 23, 9784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Altura, B.M.; Altura, B.T.; Gebrewold, A.; Ising, H.; Günther, T. Magnesium deficiency and hypertension: Correlation between magnesium-deficient diets and microcirculatory changes in situ. Science 1984, 223, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maier, J.A.; Bernardini, D.; Rayssiguier, Y.; Mazur, A. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta 2004, 1689, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feske, S.; Skolnik, E.Y.; Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 2012, 12, 532–547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashique, S.; Kumar, S.; Hussain, A.; Mishra, N.; Garg, A.; Gowda, B.H.J.; Farid, A.; Gupta, G.; Dua, K.; Taghizadeh-Hesary, F. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J. Health Popul. Nutr. 2023, 42, 74, Erratum in J. Health Popul. Nutr. 2023, 42, 117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Gobbo, L.C.; Imamura, F.; Wu, J.H.; de Oliveira Otto, M.C.; Chiuve, S.E.; Mozaffarian, D. Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2013, 98, 160–173. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fundora, M.P.; Kamidani, S.; Oster, M.E. COVID Vaccination as a Strategy for Cardiovascular Disease Prevention. Curr. Cardiol. Rep. 2023, 25, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Novaretti, M.C.; Dinardo, C.L. Immunoglobulin: Production, mechanisms of action and formulations. Rev. Bras. Hematol. Hemoter. 2011, 33, 377–382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allegra, A.; Tonacci, A.; Musolino, C.; Pioggia, G.; Gangemi, S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia. Front. Immunol. 2021, 12, 738915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuruvilla, M.; de la Morena, M.T. Antibiotic prophylaxis in primary immune deficiency disorders. J. Allergy Clin. Immunol. Pr. 2013, 1, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Freeman, A.F.; Holland, S.M. Antimicrobial prophylaxis for primary immunodeficiencies. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 525–530. [Google Scholar] [CrossRef] [PubMed]
Deficiency Category | Selected Detailed Causes |
---|---|
Systemic Diseases: |
|
Infections: |
|
Medications: |
|
Trauma and Surgery: |
|
Hereditary Diseases: |
|
Radiation and Toxins: |
|
Other Causes: |
|
Drug | Disease | Effect | Study Design | Ref. |
---|---|---|---|---|
Glucocorticoids (GCs) | Immune-mediated inflammatory diseases | The increased cumulative risk of all-cause CVD; GCs are associated with dose-dependent risk of atherosclerotic diseases, heart failure, atrial fibrillation, and abdominal aortic aneurysms. | Retrospective, population-based cohort study | [136] |
Chronic inflammatory diseases | Cumulative dose of GCs (but not daily dose) is associated with an increased incidence of hypertension; Giant cell arteritis is associated with the highest cumulative dose of GCs; GCs may prevent hypertension development in polymyalgia rheumatica | Retrospective, population-based record-linkage cohort study | [140] | |
RA | Daily dose ≥7.5 mg of prednisolone equivalent dose significantly increases the risk of hypertension; | Retrospective, cohort study | [141] | |
SLE | GCs use in SLE patients is associated with an increased risk of diabetes | Meta-analysis | [143] | |
SLE | ≥30 mg/day prednisone significantly increases serum concentration of TG, TC, LDL-C, and ApoB and decreases HDL-C and ApoA1. | Retrospective, single-center study | [147] | |
SLE | Duration of GCs therapy together with other factors including hypertension, antiphospholipid syndrome, azathioprine use, and age of patient are independent indicators for premature atherosclerosis (pAS). The authors proposed a scoring system that allows for the prediction of pAS incidence in SLE patients | Cross-sectional study | [148] | |
RA | GCs use combined with age, male gender, smoking, hyperlipidemia, hypertension, diabetes, and CRP concentration are associated with increased risk of coronary artery disease | Meta-analysis | [149] | |
Methotrexate (MTX) | RA | MTX use is independently associated with a significant reduction in mortality from CVD in RA | Meta-analysis | [152] |
RA | MTX use is associated with a significantly decreased risk of CVE (RR = 0.798, 95% CI 0.726–0.876, p < 0.001) | Meta-analysis | [153] | |
RA | MTX and regular exercises are associated with a decreased risk of hypertension in RA patients | Systematic review | [152] | |
RA | MTX decreases the risk of DM2 development in RA patients (RR 0.48, 95% CI 0.16, 1.43) | Meta-analysis | [155] | |
Diet-induced dyslipidemia | MTX significantly decreases ongoing inflammation and oxidative stress; MTX significantly decreases the concentration of TC, LDL-C, TG, and AI; MTX treatment significantly decreases the thickness of media and intima in the murine aorta. | Preclinical study (murine model) | [156] | |
RA | ≥20 mg/week of MTX significantly lower intima–media thickness in carotid and femoral arteries; MTX treatment correlates negatively with the presence of atherosclerotic plaques in carotid and femoral arteries | N/A | [157] | |
RA | The use of MTX decreased the risk of incident AF. In patients ≥50 years MTX decreased the occurrence of AF in males | Case-control study | [159] | |
Cyclosporine A (CsA) | Kidney transplantation | CsA treatment is associated with a higher incidence of hyperlipidemia and hypertension but a lower rate of diabetes compared to tacrolimus treatment. | Meta-analysis | [162] |
Atopic dermatitis | Systemic CsA is associated with an increased incidence of hypertension | Meta-analysis | [163] | |
Post-transplant diabetes mellitus (PTDM) | Cyclosporine treatment in kidney transplant recipients is significantly less diabetogenic than tacrolimus and sirolimus | Meta-analysis | [164] | |
Lung transplantation | CsA is associated with a higher rates of developing hypertension and renal function impairment development and a lower rates of hyperlipidemia compared to tacrolimus | Retrospective, observational study | [165] | |
Kidney transplantation | CsA is associated with a lower risk of new-onset diabetes and a higher risk of dyslipidemia compared to tacrolimus; No difference in patient survival between CsA and tacrolimus | Meta-analysis | [166] | |
Liver transplantation | Carotid intima–media thickness was significantly lower in CsA group compared to the tacrolimus group | Cross-sectional study | [169] |
Last and first name: | ||
Cardiological disease: | ||
Parameter | Yes | No |
Age | ||
| □ □ | □ □ |
Chronic diseases | ||
| □ □ □ □ □ □ □ □ | □ □ □ □ □ □ □ □ |
Medicaments | ||
| □ □ □ | □ □ □ |
Nutritional status | ||
| □ □ □ □ | □ □ □ □ |
Deficiency of non-nutritive bioactive compounds (e.g., extensive information about the diet used) | ||
| □ | □ |
Addiction | ||
| □ □ □ □ | □ □ □ □ |
Stress coping assessment | ||
| □ □ □ | □ □ □ |
Other information | ||
| □ | □ |
Conclusions: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napiórkowska-Baran, K.; Doligalska, A.; Drozd, M.; Czarnowska, M.; Łaszczych, D.; Dolina, M.; Szymczak, B.; Schmidt, O.; Bartuzi, Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2—Secondary Immunodeficiencies. Healthcare 2024, 12, 1977. https://doi.org/10.3390/healthcare12191977
Napiórkowska-Baran K, Doligalska A, Drozd M, Czarnowska M, Łaszczych D, Dolina M, Szymczak B, Schmidt O, Bartuzi Z. Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2—Secondary Immunodeficiencies. Healthcare. 2024; 12(19):1977. https://doi.org/10.3390/healthcare12191977
Chicago/Turabian StyleNapiórkowska-Baran, Katarzyna, Agata Doligalska, Magdalena Drozd, Marta Czarnowska, Dariusz Łaszczych, Marcin Dolina, Bartłomiej Szymczak, Oskar Schmidt, and Zbigniew Bartuzi. 2024. "Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2—Secondary Immunodeficiencies" Healthcare 12, no. 19: 1977. https://doi.org/10.3390/healthcare12191977
APA StyleNapiórkowska-Baran, K., Doligalska, A., Drozd, M., Czarnowska, M., Łaszczych, D., Dolina, M., Szymczak, B., Schmidt, O., & Bartuzi, Z. (2024). Management of a Patient with Cardiovascular Disease Should Include Assessment of Primary and Secondary Immunodeficiencies: Part 2—Secondary Immunodeficiencies. Healthcare, 12(19), 1977. https://doi.org/10.3390/healthcare12191977