Differences in Functional Capacity between Oncologic and Non-Oncologic Populations: Reference Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Tests Used
2.2. Participants
2.3. Equipment and Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Population Ageing 2019 Highlights; ST/ESA/SER.A/430; United Nations: New York, NY, USA, 2019.
- WHO. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 1 November 2023).
- Forrest, K.; Zmuda, J.; Cauley, J. Patterns and determinants of muscle strength change with aging in older men. Aging Male 2005, 8, 151–156. [Google Scholar] [CrossRef]
- World Health Organization. Global Strategy and Action Plan on Ageing and Health; WHO: Geneva, Switzerland, 2017.
- Bazar, N.O.; Hernandez, C.B.; Bazar, L.V. Factores de riesgo asociados al cáncer de mama. Rev. Cuba. Med. Gen. Integral 2020, 36, e1147. [Google Scholar]
- Distefano, G.; Goodpaster, B.H. Effects of exercise and aging on skeletal muscle. Cold Spring Harb. Perspect. Med. 2018, 8, a029785. [Google Scholar] [CrossRef]
- Singh, B.; Hayes, S.C.; Spence, R.R.; Steele, M.L.; Millet, G.Y.; Gergele, L. Exercise and colorectal cancer: A systematic review and meta-analysis of exercise safety, feasibility and effectiveness. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 122. [Google Scholar] [CrossRef]
- Tzenios, N. Obesity as a risk factor for different types of cancer. EPRA Int. J. Res. Dev. 2023, 8, 97–100. [Google Scholar]
- Ciudin, A.; Simó-Servat, A.; Palmas, F.; Barahona, M.J. Obesidad sarcopénica: Un nuevo reto en la clínica práctica. Endocrinol. Diabetes Nutr. 2020, 67, 672–681. [Google Scholar] [CrossRef]
- Prado, C.M.; Wells, J.C.K.; Smith, S.R.; Stephan, B.C.M.; Siervo, M. Sarcopenic obesity: A critical appraisal of the current evidence. Clin. Nutr. 2012, 31, 583–601. [Google Scholar] [CrossRef]
- Roh, E.; Choi, K.M. Health consequences of sarcopenic obesity: A narrative review. Front. Endocrinol. 2020, 11, 332. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Atkins, J.L. Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proc. Nutr. Soc. 2015, 74, 405–412. [Google Scholar] [CrossRef]
- Daroux-Cole, L.; Pettengell, R.; Jewell, A. Exercise for cancer survivors: A review. OA Cancer 2013, 1, 5. [Google Scholar] [CrossRef]
- Norat, T.; Scoccianti, C.; Boutron-Ruault, M.-C.; Anderson, A.; Berrino, F.; Cecchini, M.; Espina, C.; Key, T.; Leitzmann, M.; Powers, H.; et al. European code against cancer 4th edition: Diet and cancer. Cancer Epidemiol. 2015, 39, S56–S66. [Google Scholar] [CrossRef]
- Lee, J.H.; Jun, H.-S. Role of myokines in regulating skeletal muscle mass and function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef]
- Arana Echarri, A.; Struszczak, L.; Beresford, M.; Campbell, J.P.; Jones, R.H.; Thompson, D.; Turner, J.E. Immune cell status, cardiorespiratory fitness and body composition among breast cancer survivors and healthy women: A cross sectional study. Front. Physiol. 2023, 14, 1107070. [Google Scholar] [CrossRef]
- Loose, D.; Van de Wiele, C. The immune system and cancer. Cancer Biother. Radiopharm. 2009, 24, 369–376. [Google Scholar] [CrossRef]
- Reiche, E.M.V.; Nunes, S.O.V.; Morimoto, H.K. Stress, Depression, The Immune System, And Cancer. Lancet Oncol. 2004, 5, 617–625. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Garatachea, N.; Berger, N.A.; Lucia, A. Exercise is the real polypill. Physiology 2013, 28, 330–358. [Google Scholar] [CrossRef]
- Kinugasa, Y.; Yamamoto, K. The challenge of frailty and sarcopenia in heart failure with preserved ejection fraction. Heart 2017, 103, 184–189. [Google Scholar] [CrossRef]
- Pacifico, J.; Geerlings, M.A.J.; Reijnierse, E.M.; Phassouliotis, C.; Lim, W.K.; Maier, A.B. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp. Gerontol. 2020, 131, 110801. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Bozzetti, F. Forcing the vicious circle: Sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann. Oncol. 2017, 28, 2107–2118. [Google Scholar] [CrossRef]
- Mijwel, S.; Cardinale, D.A.; Norrbom, J.; Chapman, M.; Ivarsson, N.; Wengström, Y.; Sundberg, C.J.; Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer. FASEB J. 2018, 32, 5495–5505. [Google Scholar] [CrossRef] [PubMed]
- Anjanappa, M.; Corden, M.; Green, A.; Roberts, D.; Hoskin, P.; McWilliam, A.; Choudhury, A. Sarcopenia in cancer: Risking more than muscle loss. Tech. Innov. Patient Support Radiat. Oncol. 2020, 16, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Ferrucci, L.M.; Caan, B.J.; Irwin, M.L. Effect of exercise on sarcopenia among cancer survivors: A systematic review. Cancers 2022, 14, 786. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chi, H.; Kok, S.; Chua, J.M.W.; Huang, X.-X.; Zhang, S.; Mah, S.; Foo, L.-X.; Peh, H.-Y.; Lee, H.-B.; et al. Multimodal prerehabilitation for elderly patients with sarcopenia in colorectal surgery. Ann. Coloproctol. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Arentson-Lantz, E.J.; English, K.L.; Paddon-Jones, D.; Fry, C.S. Fourteen days of bed rest induces a decline in satellite cell content and robust atrophy of skeletal muscle fibers in middle-aged adults. J. Appl. Physiol. 2016, 120, 965–975. [Google Scholar] [CrossRef]
- Monti, E.; Reggiani, C.; Franchi, M.V.; Toniolo, L.; Sandri, M.; Armani, A.; Zampieri, S.; Giacomello, E.; Sarto, F.; Sirago, G.; et al. Neuromuscular junction instability and altered intracellular calcium handling as early determinants of force loss during unloading in humans. J. Physiol. 2021, 599, 3037–3061. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.; Pinto, N.; Applebaum, M.A.; Mak, G.Z.; Cunningham, J.M.; LaBelle, J.L.; Nassin, M.L. The Addition of autologous stem cell transplantation to neoadjuvant chemotherapy, radiation, and HIPEC for patients with unresectable desmoplastic small round cell tumor: A single center case series. Int. J. Surg. Oncol. 2020, 5, e95. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, H.; Wu, X.; Gong, L.; Yang, D.; Li, X.; Chen, X.; Li, J.; Wang, W.; Wu, J.; et al. Perioperative outcomes of neoadjuvant chemotherapy plus camrelizumab compared with chemotherapy alone and chemoradiotherapy for locally advanced esophageal squamous cell cancer. Front. Immunol. 2023, 14, 1066527. [Google Scholar] [CrossRef]
- Courneya, K.S.; Segal, R.J.; Mackey, J.R.; Gelmon, K.; Reid, R.D.; Friedenreich, C.M.; Ladha, A.B.; Proulx, C.; Vallance, J.K.H.; Lane, K.; et al. Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: A multicenter randomized controlled trial. J. Clin. Oncol. 2007, 25, 4396–4404. [Google Scholar] [CrossRef]
- Galvão, D.A.; Nosaka, K.; Taaffe, D.R.; Spry, N.; Kristjanson, L.J.; McGuigan, M.R.; Suzuki, K.; Yamaya, K.; Newton, R.U. Resistance training and reduction of treatment side effects in prostate cancer patients. Med. Sci. Sport. Exerc. 2006, 38, 2045–2052. [Google Scholar] [CrossRef]
- Park, S.-Y.; Hwang, B.-O.; Song, N.-Y. The role of myokines in cancer: Crosstalk between skeletal muscle and tumor. BMB Rep. 2023, 56, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.-C.; et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, K.; May, C.R.; Patel, H.P.; Baxter, M.; Sayer, A.A.; Roberts, H.C. Implementation of grip strength measurement in medicine for older people wards as part of routine admission assessment: Identifying facilitators and barriers using a theory-led intervention. BMC Geriatr. 2018, 18, 79. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.; De Monsabert, B.G.; Berton, E.; Vigouroux, L. Handle shape affects the grip force distribution and the muscle loadings during power grip tasks. J. Appl. Biomech. 2015, 31, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised european consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Río, X.; Larrinaga-Undabarrena, A.; Coca, A.; Guerra-Balic, M. Reference values for handgrip strength in the basque country elderly population. Biology 2020, 9, 414. [Google Scholar] [CrossRef] [PubMed]
- Wiśniowska-Szurlej, A.; Ćwirlej-Sozańska, A.; Wołoszyn, N.; Sozański, B.; Wilmowska-Pietruszyńska, A. Association between handgrip strength, mobility, leg strength, flexibility, and postural balance in older adults under long-term care facilities. Biomed. Res. Int. 2019, 2019, 1042834. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Bubela, D.J.; Magasi, S.R.; Wang, Y.-C.; Gershon, R.C. Sit-to-stand test: Performance and determinants across the age-span. Isokinet. Exerc. Sci. 2010, 18, 235–240. [Google Scholar] [CrossRef]
- Teo, T.W.; Mong, Y.; Ng, S.S. The repetitive five-times-sit-to-stand test: Its reliability in older adults. Int. J. Ther. Rehabil. 2013, 20, 122–130. [Google Scholar] [CrossRef]
- Reider, N.; Gaul, C. Fall risk screening in the elderly: A comparison of the minimal chair height standing ability test and 5-repetition sit-to-stand test. Arch. Gerontol. Geriatr. 2016, 65, 133–139. [Google Scholar] [CrossRef]
- Wilson, M.G.; Michet, C.J.J.; Ilstrup, D.M.; Melton, L.J., 3rd. Idiopathic symptomatic osteoarthritis of the hip and knee: A population-based incidence study. Mayo Clin. Proc. 1990, 65, 1214–1221. [Google Scholar] [CrossRef]
- Arietaleanizbeaskoa, M.S.; Gil Rey, E.; Mendizabal Gallastegui, N.; García-Álvarez, A.; De La Fuente, I.; Domínguez-Martinez, S.; Pablo, S.; Coca, A.; Gutiérrez Santamaría, B.; Grandes, G. Implementing exercise in standard cancer care (bizi orain hybrid exercise program): Protocol for a randomized controlled trial. JMIR Res. Protoc. 2021, 10, e24835. [Google Scholar] [CrossRef]
- Rodriguez-Arietaleanizbeaskoa, M.; Mojas Ereño, E.; Arietaleanizbeaskoa, M.; Grandes, G.; Rodríguez Sánchez, A.; Urquijo, V.; Hernando Alday, I.; Dublang, M.; Angulo-Garay, G.; Cacicedo, J.; et al. Protocol for the SEHNeCa randomised clinical trial assesing supervised exercise for head and neck cancer patients. BMC Cancer 2023, 23, 271. [Google Scholar] [CrossRef]
- Courneya, K.S.; Friedenreich, C.M. Physical activity and cancer control. Semin. Oncol. Nurs. 2007, 23, 242–252. [Google Scholar] [CrossRef]
- Inbody. Available online: https://www.composicion-corporal-inbody.com/InBody-770.html (accessed on 1 November 2023).
- Ling, C.H.Y.; de Craen, A.J.M.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.M.; Westendorp, R.G.J.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamada, M.; Yoshida, T.; Miyachi, M.; Arai, H. Validating muscle mass cutoffs of four international sarcopenia-working groups in japanese people using DXA and BIA. J. Cachexia Sarcopenia Muscle 2021, 12, 1000–1010. [Google Scholar] [CrossRef]
- Suni, J.; Husu, P.; Rinne, M.; Suni, J.; Husu, P.; Rinne, M. Fitness for Health: The ALPHA-FIT Test Battery for Adults Aged 18–69. Tester’s Manual; UKK Institute: Tampere, Finland, 2009. [Google Scholar]
- Alcazar, J.; Losa-Reyna, J.; Rodriguez-Lopez, C.; Alfaro-Acha, A.; Rodriguez-Mañas, L.; Ara, I.; García-García, F.J.; Alegre, L.M. The sit-to-stand muscle power test: An easy, inexpensive and portable procedure to assess muscle power in older people. Exp. Gerontol. 2018, 112, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Baltasar-Fernandez, I.; Alcazar, J.; Losa-Reyna, J.; Soto-Paniagua, H.; Alegre, L.M.; Takai, Y.; Ruiz-Cárdenas, J.D.; Signorile, J.F.; Rodriguez-Mañas, L.; García-García, F.J.; et al. Comparison of available equations to estimate sit-to-stand muscle power and their association with gait speed and frailty in older people: Practical applications for the 5-rep sit-to-stand test. Exp. Gerontol. 2021, 156, 111619. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Hillsdale, MI, USA, 1988. [Google Scholar]
- Barberio, A.M.; Alareeki, A.; Viner, B.; Pader, J.; Vena, J.E.; Arora, P.; Friedenreich, C.M.; Brenner, D.R. Central body fatness is a stronger predictor of cancer risk than overall body size. Nat. Commun. 2019, 10, 383. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Spyrou, N.; Mantzoros, C.S. Body fatness associations with cancer: Evidence from recent epidemiological studies and future directions. Metabolism 2022, 137, 155326. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, N.M.; Arthur, R.; Manson, J.E.; Chlebowski, R.T.; Kroenke, C.H.; Peterson, L.; Cheng, T.-Y.D.; Feliciano, E.C.; Lane, D.; Luo, J.; et al. Association of body fat and risk of breast cancer in postmenopausal women with normal body mass index. JAMA Oncol. 2019, 5, 155–163. [Google Scholar] [CrossRef]
- Brown, K.A.; Scherer, P.E. Update on adipose tissue and cancer. Endocr. Rev. 2023, 44, 961–974. [Google Scholar] [CrossRef]
- Boneva-Asiova, Z.; Boyanov, M. Age-related changes of body composition and abdominal adipose tissue assessed by bio-electrical impedance analysis and computed tomography. Endocrinol. Nutr. 2011, 58, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Macek, P.; Terek-Derszniak, M.; Biskup, M.; Krol, H.; Smok-Kalwat, J.; Gozdz, S.; Zak, M. Assessment of age-induced changes in body fat percentage and BMI aided by bayesian modelling: A cross-sectional cohort study in middle-aged and older adults. Clin. Interv. Aging 2020, 15, 2301–2311. [Google Scholar] [CrossRef]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef]
- Morley, J.E.; Baumgartner, R.N.; Roubenoff, R.; Mayer, J.; Nair, K.S. Sarcopenia. J. Lab. Clin. Med. 2001, 137, 231–243. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritchevsky, S.B.; Nevitt, M.; Schwartz, A.V.; Simonsick, E.M.; Tylavsky, F.A.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M. Sarcopenia =/= Dynapenia. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 829–834. [Google Scholar] [CrossRef]
- Hardee, J.P.; Counts, B.R.; Carson, J.A. Understanding the role of exercise in cancer cachexia therapy. Am. J. Lifestyle Med. 2019, 13, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Baracos, V.E.; McCargar, L.J.; Mourtzakis, M.; Mulder, K.E.; Reiman, T.; Butts, C.A.; Scarfe, A.G.; Sawyer, M.B. Body composition as an independent determinant of 5-fluorouracil–based chemotherapy toxicity. Clin. Cancer Res. 2007, 13, 3264–3268. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, A.Y.; Meskers, C.G.M.; Ling, C.H.Y.; Narici, M.; Kurrle, S.E.; Cameron, I.D.; Westendorp, R.G.J.; Maier, A.B. Defining sarcopenia: The impact of different diagnostic criteria on the prevalence of sarcopenia in a large middle aged cohort. Age 2013, 35, 871–881. [Google Scholar] [CrossRef]
- Navarrete-Villanueva, D.; Gómez-Cabello, A.; Marín-Puyalto, J.; Moreno, L.A.; Vicente-Rodríguez, G.; Casajús, J.A. Frailty and physical fitness in elderly people: A systematic review and meta-analysis. Sports Med. 2021, 51, 143–160. [Google Scholar] [CrossRef]
- Suetta, C.; Haddock, B.; Alcazar, J.; Noerst, T.; Hansen, O.M.; Ludvig, H.; Kamper, R.S.; Schnohr, P.; Prescott, E.; Andersen, L.L.; et al. The Copenhagen sarcopenia study: Lean mass, strength, power, and physical function in a danish cohort aged 20–93 years. J. Cachexia Sarcopenia Muscle 2019, 10, 1316–1329. [Google Scholar] [CrossRef]
- Bean, J.F.; Leveille, S.G.; Kiely, D.K.; Bandinelli, S.; Guralnik, J.M.; Ferrucci, L. A comparison of leg power and leg strength within the InCHIANTI study: Which influences mobility more? J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M728–M733. [Google Scholar] [CrossRef]
- Losa-Reyna, J.; Alcazar, J.; Rodríguez-Gómez, I.; Alfaro-Acha, A.; Alegre, L.M.; Rodríguez-Mañas, L.; Ara, I.; García-García, F.J. Low relative mechanical power in older adults: An operational definition and algorithm for its application in the clinical setting. Exp. Gerontol. 2020, 142, 111141. [Google Scholar] [CrossRef]
- Glenn, J.M.; Gray, M.; Binns, A. Relationship of sit-to-stand lower-body power with functional fitness measures among older adults with and without sarcopenia. J. Geriatr. Phys. Ther. 2017, 40, 42–50. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef]
- Hurley, K.S.; Flippin, K.J.; Blom, L.C.; Bolin, J.E.; Hoover, D.L.; Judge, L.W. Practices, perceived benefits, and barriers to resistance training among women enrolled in college. Int. J. Exerc. Sci. 2018, 11, 226–238. [Google Scholar]
- Pedersen, B.K.; Saltin, B. Exercise as medicine—Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. 3), 1–72. [Google Scholar] [CrossRef]
- Kim, M.; Shinkai, S.; Murayama, H.; Mori, S. Comparison of segmental multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body composition in a community-dwelling older population. Geriatr. Gerontol. Int. 2015, 15, 1013–1022. [Google Scholar] [CrossRef]
Group | Age (years) | Height (cm) | Weight (kg) | BMI (kg/m2) | Fat (%) | Muscle Mass (kg) | 5STS (s) | MGS (kg) |
---|---|---|---|---|---|---|---|---|
Cancer (N = 374) | 57.29 (10.98) | 1.65 (0.08) | 71.96 (15.57) | 26.32 (5.13) | 32.71 (9.39) | 26.04 (5.73) | 13.41 (4.35) | 30.27 (10.23) |
Reference group (N = 1244) | 78.11 (5.85) | 1.54 (0.06) | 67.2 (10.58) | 28.45 (4.05) | 37.94 (6.02) | 39.33 (5.60) | 14.72 (4.36) | 20.65 (6.57) |
95% Confidence Interval | |||||||
---|---|---|---|---|---|---|---|
Variables | Mean (SD) Reference Group | Mean (SD) Cancer | Student t | p-Value | Cohen’s d | Inf. | Sup. |
BMI (kg/m2) | 28.5 (4.06) | 26.3 (5.14) | −8.35 | <0.001 | −0.49 | −0.61 | −0.37 |
Fat percentage (%) | 37.9 (6.02) | 32.7 (9.39) | −12.77 | <0.001 | −0.75 | −0.88 | −0.62 |
Muscle mass (kg) | 39.3 (5.6) | 26 (5.73) | −40.03 | <0.001 | −2.36 | −2.56 | −2.15 |
5STS (s) | 14.7 (4.37) | 13.4 (4.36) | −5.09 | <0.001 | −0.30 | −0.41 | −0.18 |
5STSAbs (W) | 121.91 (44.48) | 172.35 (66.72) | 16.8 | <0.001 | 0.975 | 0.86 | 1.14 |
5STSRel (W·kg−1) | 1.80 (0.53) | 2.37 (0.66) | 16.32 | <0.001 | 0.973 | 0.87 | 1.15 |
MGS (kg) | 20.7 (6.57) | 30.3 (10.23) | 21.52 | <0.001 | 1.26 | 1.12 | 1.41 |
Age Group and Gender | MGS * | STS * | 5STS rel * | |||
---|---|---|---|---|---|---|
Women | CP | CP | CP | |||
G1 = 50–59 (n = 73) | 24.3 (5.3) 3 | 19.0 | 13.2 (3.8) 4 | 9.4 | 2.2 (0.6) 2,3,4 | 1.6 |
G2 = 60–69 (n = 58) | 22.9 (4.8) 3 | 18.1 | 14.5 (6.0) | 8.5 | 2.0 (0.5) 1 | 1.5 |
G3 = 70–79 (n = 18) | 19.2 (4.0) 1,2 | 15.2 | 16.1 (5.0) | 11.1 | 1.7 (0.5) 1 | 1.2 |
G4 = 80–89 (n = 3) | 19.2 (0.4) | - | 22.0 (10.4) 1 | - | 1.3 (0.6) 1 | - |
Men | ||||||
G1 = 50–59 (n = 40) | 43.8 (7.9) 3,4 | 35.9 | 12.3 (4.0) 3 | 8.3 | 2.9 (0.7) 3 | 2.2 |
G2 = 60–69 (n = 59) | 40.4 (7.1) 3 | 33.3 | 12.8 (2.8) 3 | 10 | 2.7 (0.6) 3 | 2.1 |
G3 = 70–79 (n = 27) | 33.4 (5.8) 1,2 | 27.6 | 15.7 (5.7) 1,2 | 10 | 2.1 (0.5) 1,2 | 1.6 |
G4 = 80–89 (n = 2) | 29.0 (5.1) 1 | - | 16.6 (6.3) | - | 1.9 (0.8) | - |
Women and Men | ¥ | ¥ | ¥ | |||
G1 = 50–59 (n = 113) | 31.2 (11.3) | 12.9 (3.9) 3,4 | 2.5 (0.7) 3,4 | |||
G2 = 60–69 (n = 117) | 31.7 (10.7) | 13.7 (4.7) 3,4 | 2.3 (0.7) 3 | |||
G3 = 70–79 (n = 45) | 27.7 (8.7) | 15.8 (5.4) 1,2 | 2.0 (0.6) 1,2 | |||
G4 = 80–89 (n = 5) | 23.1 (6.0) | 19.8 (8.6) 1,2 | 1.6 (0.7) 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojas, E.; Santisteban, A.; Muñoz-Pérez, I.; Larrinaga-Undabarrena, A.; Arietaleanizbeaskoa, M.S.; Mendizabal-Gallastegui, N.; Grandes, G.; Cacicedo, J.; Río, X. Differences in Functional Capacity between Oncologic and Non-Oncologic Populations: Reference Values. Healthcare 2024, 12, 318. https://doi.org/10.3390/healthcare12030318
Mojas E, Santisteban A, Muñoz-Pérez I, Larrinaga-Undabarrena A, Arietaleanizbeaskoa MS, Mendizabal-Gallastegui N, Grandes G, Cacicedo J, Río X. Differences in Functional Capacity between Oncologic and Non-Oncologic Populations: Reference Values. Healthcare. 2024; 12(3):318. https://doi.org/10.3390/healthcare12030318
Chicago/Turabian StyleMojas, Egoitz, Aitor Santisteban, Iker Muñoz-Pérez, Arkaitz Larrinaga-Undabarrena, Maria Soledad Arietaleanizbeaskoa, Nere Mendizabal-Gallastegui, Gonzalo Grandes, Jon Cacicedo, and Xabier Río. 2024. "Differences in Functional Capacity between Oncologic and Non-Oncologic Populations: Reference Values" Healthcare 12, no. 3: 318. https://doi.org/10.3390/healthcare12030318
APA StyleMojas, E., Santisteban, A., Muñoz-Pérez, I., Larrinaga-Undabarrena, A., Arietaleanizbeaskoa, M. S., Mendizabal-Gallastegui, N., Grandes, G., Cacicedo, J., & Río, X. (2024). Differences in Functional Capacity between Oncologic and Non-Oncologic Populations: Reference Values. Healthcare, 12(3), 318. https://doi.org/10.3390/healthcare12030318