Evaluating the Accuracy of Upper Limb Movement in the Sagittal Plane among Computer Users during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Measuring Instrument
2.4. Data Collection
2.5. Statistical Analysis
2.6. Research Ethics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz Ibán, M.A.; Alonso Güemes, S.; Ruiz Díaz, R.; Asenjo Gismero, C.V.; Lorente Gomez, A.; Diaz Heredia, J. Evaluation of the inter and intraobserver reproducibility of the GRASP method: A goniometric method to measure the isolated glenohumeral range of motion in the shoulder joint. J. Exp. Orthop. 2021, 8, 37. [Google Scholar] [CrossRef]
- Chim, J.M.Y.; Chen, T.L. Prediction of Work from Home and Musculoskeletal Discomfort: An Investigation of Ergonomic Factors in Work Arrangements and Home Workstation Setups Using the COVID-19 Experience. Int. J. Environ. Res. Public Health 2023, 20, 3050. [Google Scholar] [CrossRef]
- Alhakami, A.M.; Madkhli, A.; Ghareeb, M.; Faqih, A.; Abu-Shamla, I.; Batt, T.; Refaei, F.; Sahely, A.; Qassim, B.; Shami, A.M.; et al. The Prevalence and Associated Factors of Neck Pain among Ministry of Health Office Workers in Saudi Arabia: A Cross Sectional Study. Healthcare 2022, 10, 1320. [Google Scholar] [CrossRef]
- Borhany, T.; Shahid, E.; Siddique, W.A.; Ali, H. Musculoskeletal problems in frequent computer and internet users. J. Family Med. Prim. Care 2018, 7, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Jun, D.; Johnston, V.; McPhail, S.M.; O’Leary, S. A Longitudinal Evaluation of Risk Factors and Interactions for the Development of Nonspecific Neck Pain in Office Workers in Two Cultures. Hum. Factors 2021, 63, 663–683. [Google Scholar] [CrossRef]
- Malińska, M.; Bugajska, J.; Bartuzi, P. Occupational and non-occupational risk factors for neck and lower back pain among computer workers: A cross-sectional study. Int. J. Occup. Saf. Ergon. 2021, 27, 1108–1115. [Google Scholar] [CrossRef]
- Bertelmann, T.; Heutelbeck, A.; Bopp, S.; Sagebiel, L.L.; Eichberg, S.; Hallier, E.; Hilgers, R.; Quiering, C.; Hoerauf, H. Prevalence of Back Pain among German Ophthalmologists. Ophthalmic. Res. 2021, 64, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, Q.; Liu, G.; Shao, T. Prevalence of neck/shoulder pain among public hospital workers in China and its associated factors: A cross-sectional study. Sci. Rep. 2020, 10, 12311. [Google Scholar] [CrossRef] [PubMed]
- Guduru, R.K.R.; Domeika, A.; Obcarskas, L.; Ylaite, B. The Ergonomic Association between Shoulder, Neck/Head Disorders and Sedentary Activity: A Systematic Review. J. Healthc. Eng. 2022, 2022, 5178333. [Google Scholar] [CrossRef]
- Lucki, M.; Wareńczak, A.; Chlebuś, E.; Daroszewski, P.; Lisiński, P. The ICF Classification as a Simple Tool to Aid in the Assessment of Healthcare Services in a Non-COVID-19 Hospital during the COVID-19 Pandemic. Healthcare 2021, 9, 398. [Google Scholar] [CrossRef]
- Sadeghian, F.; Raei, M.; Amiri, M. Persistent of Neck/Shoulder Pain among Computer Office Workers with Specific Attention to Pain Expectation, Somatization Tendency, and Beliefs. Int. J. Prev. Med. 2014, 9, 1169–1177. [Google Scholar]
- Christensen, S.W.; Hirata, R.P.; Graven-Nielsen, T. The effect of experimental neck pain on pressure pain sensitivity and axioscapular motor control. J. Pain 2015, 16, 367–379. [Google Scholar] [CrossRef]
- Markopoulos, P.; Shen, X.; Wang, Q.; Timmermans, A. Neckio: Motivating Neck Exercises in Computer Workers. Sensors 2020, 20, 4928. [Google Scholar] [CrossRef]
- Qu, N.; Lindstrøm, R.; Hirata, R.P.; Graven-Nielsen, T. Origin of neck pain and direction of movement influence dynamic cervical joint motion and pressure pain sensitivity. Clin. Biomech. 2019, 61, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Kolber, M.J.; Hanney, W.J. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: A technical report. Int. J. Sports Phys. Ther. 2012, 7, 306–313. [Google Scholar] [PubMed]
- Werner, C.; Schönhammer, J.G.; Steitz, M.K.; Lambercy, O.; Luft, A.R.; Demkó, L.; Easthope, C.A. Using Wearable Inertial Sensors to Estimate Clinical Scores of Upper Limb Movement Quality in Stroke. Front. Physiol. 2022, 13, 877563. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, A.; Bhagubai, M.M.C.; Wolterink, G.; Held, J.P.O.; Luft, A.R.; Veltink, P.H. Assessment of Upper Limb Movement Impairments after Stroke Using Wearable Inertial Sensing. Sensors 2020, 20, 4770. [Google Scholar] [CrossRef]
- Khan, S.U.; Majid, M.; Linguraru, M.G.; Muhammad Anwar, S. Upper Limb Movement Execution Classification using Electroencephalography for Brain Computer Interface. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar]
- Vandael, K.; Stanton, T.R.; Meulders, A. Assessing kinesthetic proprioceptive function of the upper limb: A novel dynamic movement reproduction task using a robotic arm. PeerJ 2021, 9, e11301. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Fang, B.; Li, J.; Sun, F.; Liu, H. Wearable sensing devices for upper limbs: A systematic review. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 117–130. [Google Scholar] [CrossRef]
- Alarcón-Aldana, A.C.; Callejas-Cuervo, M.; Bo, A.P.L. Upper Limb Physical Rehabilitation Using Serious Videogames and Motion Capture Systems: A Systematic Review. Sensors 2020, 20, 5989. [Google Scholar] [CrossRef]
- Krishnan, R.; Björsell, N.; Gutierrez-Farewik, E.M.; Smith, C. A survey of human shoulder functional kinematic representations. Med. Biol. Eng. Comput. 2019, 57, 339–367. [Google Scholar] [CrossRef]
- Mekbib, D.B.; Han, J.; Zhang, L.; Fang, S.; Jiang, H.; Zhu, J.; Roe, A.W.; Xu, D. Virtual reality therapy for upper limb rehabilitation in patients with stroke: A meta-analysis of randomized clinical trials. Brain Inj. 2020, 34, 456–465. [Google Scholar] [CrossRef]
- Francisco-Martínez, C.; Prado-Olivarez, J.; Padilla-Medina, J.A.; Díaz-Carmona, J.; Pérez-Pinal, F.J.; Barranco-Gutiérrez, A.I.; Martínez-Nolasco, J.J. Upper Limb Movement Measurement Systems for Cerebral Palsy: A Systematic Literature Review. Sensors 2021, 21, 7884. [Google Scholar] [CrossRef] [PubMed]
- Platts, K.; Breckon, J.; Marshall, E. Enforced home-working under lockdown and its impact on employee wellbeing: A cross-sectional study. BMC Public Health 2022, 22, 199. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Kurillo, G.; Bajcsy, R.; Abresch, R.T.; Nicorici, A.; Johnson, L.; Han, J.J. mHealth application for upper extremity range of motion and reachable workspace. Stud. Health Technol. Inform. 2013, 184, 478–480. [Google Scholar]
- Zawadzki, J.; Bober, T.; Siemieński, A. Validity analysis of the Biodex System 3 dynamometer under static and isokinetic conditions. Acta Bioeng Biomech. 2010, 12, 25–32. [Google Scholar]
- Gueye, T.; Dedkova, M.; Rogalewicz, V.; Grunerova-Lippertova, M.; Angerova, Y. Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: Equally efficient in older patients. Neurol Neurochir. Pol. 2021, 55, 91–96. [Google Scholar] [CrossRef]
- Breen, P.P.; Nisar, A.; Olaighin, G. Evaluation of a single accelerometer based biofeedback system for real-time correction of neck posture in computer users. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009; pp. 7269–7272. [Google Scholar]
- Moreira, S.; Criado, M.B.; Santos, P.C.; Ferreira, M.S.; Gonçalves, C.; Machado, J. Occupational Health: Physical Activity, Musculoskeletal Symptoms and Quality of Life in Computer Workers: A Narrative Review. Healthcare 2022, 10, 2457. [Google Scholar] [CrossRef] [PubMed]
- Gosain, L.; Ahmad, I.; Rizvi, M.R.; Sharma, A.; Saxena, S. Prevalence of musculoskeletal pain among computer users working from home during the COVID-19 pandemic: A cross-sectional survey. Bull. Fac. Phys. Ther. 2022, 27, 51. [Google Scholar] [CrossRef]
- Kotani, K.; Barrero, L.H.; Lee, D.L.; Dennerlein, J.T. Effect of horizontal position of the computer keyboard on upper extremity posture and muscular load during computer work. Ergonomics 2007, 50, 1419–1432. [Google Scholar] [CrossRef]
- Lin, J.P.; Chen, S.Q.; Li, M.; Xu, G.Q.; Zhang, T.; Wang, S.Z. Correlation analysis of cervical spine dysfunction, pain and muscle strength in office workers. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2022, 40, 192–195. (In Chinese) [Google Scholar] [PubMed]
- Amiri Arimi, S.; Ghamkhar, L.; Kahlaee, A.H. The Relevance of Proprioception to Chronic Neck Pain: A Correlational Analysis of Flexor Muscle Size and Endurance, Clinical Neck Pain Characteristics, and Proprioception. Pain Med. 2018, 19, 2077–2088. [Google Scholar] [CrossRef] [PubMed]
Study Groups | p | ||||
---|---|---|---|---|---|
CG | SpG | ShG | |||
Gender n (%) | Females | 9 (60.00%) | 13 (86.67%) | 11 (73.33%) | 0.26 a |
Males | 6 (40.00%) | 2 (13.33%) | 4 (26.67%) | ||
Age (years) | Mean ± SD | 64.8 ± 3.74 | 58.93 ± 12.94 | 63.2 ± 13.65 | 0.93 b |
Median | 66 | 64 | 67 | ||
Min–max | 58–70 | 27–76 | 24–78 | ||
Body weight (kg) | Mean ± SD | 72.27 ± 11.58 | 72.2 ± 10.84 | 76.3333 ± 11.62 | <0.0001 b |
Median | 74 | 72 | 74 | ||
Min-max | 55–94 | 54–96 | 59–98 | ||
Height (cm) | Mean ± SD | 1.73 ± 0.09 | 1.66 ± 0.07 | 1.66 ± 0.07 | 0.018 b |
Median | 1.72 | 1.68 | 1.66 | ||
Min–max | 1.62–1.95 | 1.56–1.79 | 1.56–1.78 | ||
BMI | Mean ± SD | 24.04 ± 2.56 | 26.199 ± 3.44 | 27.68 ± 3.21 | 0.01 b |
Median | 23.77 | 27.22 | 28.23 | ||
Min–max | 20.15–27.68 | 18.69–31.23 | 19.71–33.91 |
Study Groups | pb | |||||||
---|---|---|---|---|---|---|---|---|
CG | SpG | ShG | p | SpG vs. CG | ShG vs. CG | SpG vs. ShG | ||
Accuracy of mapping the given motion (%) | Mean ± SD | 83.8 ± 14.81 | 59 ± 18.73 | 57.4 ± 17.59 | 0.001 | 0.003 | 0.002 | 1 |
Minimum deflection value (mm) | Mean ± SD | 16.33 ± 9.08 | 31.4 ± 14.43 | 32.07 ± 20.66 | 0.026 | 0.04 | 0.09 | 1 |
Maximum deflection value (mm) | Mean ± SD | 108 ± 11.84 | 109.4 ± 13.71 | 108.93 ± 18.31 | 0.9 | 1 | 1 | 1 |
Value of the average change during lifting (mm) | Mean ± SD | 87.2 ± 7.73 | 94.18 ± 12.23 | 91.45 ± 15.59 | 0.3 | 0.28 | 0.61 | 0.82 |
Value of the maximum change during lifting (mm) | Mean ± SD | 115.06 ± 13.29 | 131.51 ± 23.23 | 128.1 ± 27.79 | 0.11 | 0.12 | 0.26 | 0.91 |
Average lifting time (s) | Mean ± SD | 1.25 ± 0.11 | 1.34 ± 0.1 | 1.32 ± 0.13 | 0.09 | 0.09 | 0.24 | 0.86 |
Maximum lifting time (s) | Mean ± SD | 2.19 ± 0.84 | 2.54 ± 0.5 | 2.26 ± 0.43 | 0.026 | 0.02 | 0.43 | 0.65 |
Value of the upper average change during rest (mm) | Mean ± SD | 1.5 ± 2.38 | 2.79 ± 3.11 | 1.39 ± 2.08 | 0.27 | 0.78 | 1 | 0.51 |
Value of the upper maximum change during rest (mm) | Mean ± SD | 1.87 ± 3.04 | 3.06 ± 3.36 | 2.07 ± 3.31 | 0.39 | 0.83 | 1 | 0.83 |
Value of the upper average time during rest (s) | Mean ± SD | 0.02 ± 0.03 | 0.04 ± 0.05 | 0.02 ± 0.03 | 0.16 | 0.36 | 1 | 0.49 |
Value of the upper maximum rest time (s) | Mean ± SD | 0.02 ± 0.04 | 0.05 ± 0.05 | 0.03 ± 0.05 | 0.26 | 0.49 | 1 | 0.78 |
Value of the average change during leaving (mm) | Mean ± SD | 91.03 ± 5.7 | 99.1 ± 13.28 | 96.84 ± 13.48 | 0.17 | 0.18 | 1 | 0.97 |
Value of the maximum change during descent (mm) | Mean ± SD | 112.1 ± 11.87 | 130.72 ± 23.88 | 129.48 ± 27.52 | 0.06 | 0.08 | 0.23 | 1 |
Average leaving time (s) | Mean ± SD | 1.55 ± 0.07 | 1.54 ± 0.1 | 1.47 ± 0.15 | 0.28 | 1 | 0.43 | 0.59 |
Maximum leave time (s) | Mean ± SD | 2.23 ± 0.59 | 2.97 ± 1 | 2.64 ± 0.99 | 0.04 | 0.03 | 0.47 | 0.79 |
Value of the lower average change during rest (mm) | Mean ± SD | 0.9 ± 0.44 | 0.58 ± 0.77 | 0.68 ± 0.81 | 0.17 | 0.26 | 0.49 | 1 |
Value of the lower maximum change during rest (mm) | Mean ± SD | 1.2 ± 0.86 | 0.87 ± 1.27 | 1.29 ± 2.07 | 0.25 | 0.36 | 0.71 | 1 |
Value of the lower average time during rest (s) | Mean ± SD | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.17 | 0.33 | 0.41 | 1 |
Value of the lower maximum rest time (s) | Mean ± SD | 0.02 ± 0.01 | 0.01 ± 0.02 | 0.02 ± 0.03 | 0.24 | 0.38 | 0.64 | 1 |
Energy expenditure during the session (kcal.) | Mean ± SD | 2.73 ± 0.19 | 2.82 ± 0.46 | 2.79 ± 0.62 | 0.48 | 1 | 1 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaskólski, A.; Lucka, E.; Lucki, M.; Lisiński, P. Evaluating the Accuracy of Upper Limb Movement in the Sagittal Plane among Computer Users during the COVID-19 Pandemic. Healthcare 2024, 12, 384. https://doi.org/10.3390/healthcare12030384
Jaskólski A, Lucka E, Lucki M, Lisiński P. Evaluating the Accuracy of Upper Limb Movement in the Sagittal Plane among Computer Users during the COVID-19 Pandemic. Healthcare. 2024; 12(3):384. https://doi.org/10.3390/healthcare12030384
Chicago/Turabian StyleJaskólski, Arkadiusz, Ewa Lucka, Mateusz Lucki, and Przemysław Lisiński. 2024. "Evaluating the Accuracy of Upper Limb Movement in the Sagittal Plane among Computer Users during the COVID-19 Pandemic" Healthcare 12, no. 3: 384. https://doi.org/10.3390/healthcare12030384
APA StyleJaskólski, A., Lucka, E., Lucki, M., & Lisiński, P. (2024). Evaluating the Accuracy of Upper Limb Movement in the Sagittal Plane among Computer Users during the COVID-19 Pandemic. Healthcare, 12(3), 384. https://doi.org/10.3390/healthcare12030384