Is Acute Lower Back Pain Associated with Heart Rate Variability Changes? A Protocol for Systematic Reviews
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Intervention
2.3. Comparator
2.4. Outcomes
2.5. Inclusion and Exclusion Criteria
2.6. Research Question
2.7. Literature Search Strategy
2.8. Data Extraction and Statistical Analysis Plan
2.8.1. Search and Selection
2.8.2. Extraction
2.8.3. Synthesis and Presentation
2.9. Risk of Bias
- Random sequence generation: This domain assesses whether the study employed a randomly generated sequence for assigning participants.
- Allocation concealment: This domain evaluates the method used to hide the allocation sequence, enabling the determination of whether intervention assignments were planned before or during enrollment.
- 3.
- Blinding of participants and personnel: This domain evaluates the measures, if present, implemented to keep participants and study personnel unaware of the assigned interventions.
- 4.
- Blinding of outcome assessment: This dimension assesses if those determining outcome measurements possess knowledge of intervention assignments, which may introduce bias. This section details any measures taken to blind outcome assessors from knowing the participants’ intervention.
- 5.
- Incomplete outcome data: This domain oversees the availability of comprehensive information on dropouts, exclusions, participant distribution in each intervention group, reasons for dropouts/exclusions and any re-inclusions in the conducted analyses. The absence of outcome data, stemming from attrition or exclusions during the study, increases the risk of biased effect estimates. The term “incomplete outcome data” encompasses both attrition and exclusions, and if an individual participant’s outcome is unavailable, it is labeled as ‘missing’.
- 6.
- Selective reporting: This domain outlines the likelihood of selectively reporting results and presenting the findings.
- 7.
- Other sources of bias: Any significant concerns regarding bias not covered in the other domains should be highlighted here.
2.10. The Status and Timeline of the Study
3. Expected Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Forte, G.; Troisi, G.; Pazzaglia, M.; Pascalis, V.D.; Casagrande, M. Heart rate variability and pain: A systematic review. Brain Sci. 2022, 12, 153. [Google Scholar] [CrossRef]
- Marchand, S. Physiopathology of Pain. In Physiopathology of Pain; Springer: Berlin/Heidelberg, Germany, 2017; pp. 75–95. [Google Scholar] [CrossRef]
- Ripoll, D.R.; Adrover-Roig, D.; Rodríguez, M.P.A. Neurociencia Cognitiva; Editorial Médica Panamericana: Madrid, Spain, 2014. [Google Scholar]
- Abd-Elsayed, A.; Deer, T.R. Different types of pain. In Pain: A Review Guide; Springer: Berlin/Heidelberg, Germany, 2019; pp. 15–16. [Google Scholar] [CrossRef]
- Allegri, M.; Montella, S.; Salici, F.; Valente, A.; Marchesini, M.; Compagnone, C.; Baciarello, M.; Manferdini, M.E.; Fanelli, G. Mechanisms of low back pain: A guide for diagnosis and therapy. F1000Research 2016, 5, 1530. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Rojas, R.; Brown, N.; Waddington, G.; Goecke, R. A systematic review of neurophysiological sensing for the assessment of acute pain. NPJ Digit. Med. 2023, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Low Back Pain. Available online: https://www.who.int/news-room/fact-sheets/detail/low-back-pain#:~:text=In%202020%2C%20low%20back%20pain,expansion%20and%20ageing%20(1) (accessed on 3 August 2023).
- Liu, Y.-T.; Chiu, C.-W.; Chang, C.-F.; Lee, T.-C.; Chen, C.-Y.; Chang, S.-C.; Lee, C.-Y.; Lo, L.-C. Efficacy and safety of acupuncture for acute low back pain in emergency department: A pilot cohort study. Evid.-Based Complement. Altern. Med. 2015, 2015, 179731. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Fatoye, F.; Gebrye, T.; Ryan, C.G.; Useh, U.; Mbada, C. Global and regional estimates of clinical and economic burden of low back pain in high-income countries: A systematic review and meta-analysis. Front. Public Health 2023, 11, 1098100. [Google Scholar] [CrossRef] [PubMed]
- Urits, I.; Burshtein, A.; Sharma, M.; Testa, L.; Gold, P.A.; Orhurhu, V.; Viswanath, O.; Jones, M.R.; Sidransky, M.A.; Spektor, B. Low back pain, a comprehensive review: Pathophysiology, diagnosis, and treatment. Curr. Pain Headache Rep. 2019, 23, 23. [Google Scholar] [CrossRef]
- Dionne, C.E.; Dunn, K.M.; Croft, P.R.; Nachemson, A.L.; Buchbinder, R.; Walker, B.F.; Wyatt, M.; Cassidy, J.D.; Rossignol, M.; Leboeuf-Yde, C. A consensus approach toward the standardization of back pain definitions for use in prevalence studies. Spine 2008, 33, 95–103. [Google Scholar] [CrossRef]
- Stevans, J.M.; Delitto, A.; Khoja, S.S.; Patterson, C.G.; Smith, C.N.; Schneider, M.J.; Freburger, J.K.; Greco, C.M.; Freel, J.A.; Sowa, G.A. Risk factors associated with transition from acute to chronic low back pain in US patients seeking primary care. JAMA Netw. Open 2021, 4, e2037371. [Google Scholar] [CrossRef]
- Li, W.; Gong, Y.; Liu, J.; Guo, Y.; Tang, H.; Qin, S.; Zhao, Y.; Wang, S.; Xu, Z.; Chen, B. Peripheral and central pathological mechanisms of chronic low back pain: A narrative review. J. Pain Res. 2021, 14, 1483–1494. [Google Scholar] [CrossRef]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Alonso-García, M.; Sarría-Santamera, A. The economic and social burden of low back pain in Spain: A national assessment of the economic and social impact of low back pain in Spain. Spine 2020, 45, E1026–E1032. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.; Nowakowski, K.; Didier-Laurent, B.; Gombert, M.; Cottin, F. Effect of spinal manipulative treatment on cardiovascular autonomic control in patients with acute low back pain. Chiropr. Man. Ther. 2017, 25, 33. [Google Scholar] [CrossRef]
- Rajendra Acharya, U.; Paul Joseph, K.; Lim, C.M.; Suri, J.S.J.M. Heart rate variability: A review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Benarroch, E. Pain-autonomic interactions. Neurol. Sci. 2006, 27, s130–s133. [Google Scholar] [CrossRef]
- Pham, T.; Lau, Z.J.; Chen, S.A.; Makowski, D. Heart rate variability in psychology: A review of HRV indices and an analysis tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Enix, D.; Snyder, B.; Giggey, K.; Tepe, R. Effects of Biofreeze and chiropractic adjustments on acute low back pain: A pilot study. J. Chiropr. Med. 2008, 7, 59–65. [Google Scholar] [CrossRef]
- Bandeira, P.M.; Reis, F.J.; Sequeira, V.C.; Chaves, A.C.; Fernandes, O.; Arruda-Sanchez, T. Heart rate variability in patients with low back pain: A systematic review. Scand. J. Pain 2021, 21, 426–433. [Google Scholar] [CrossRef]
- Zangrando, F.; Piccinini, G.; Tagliolini, C.; Marsilli, G.; Iosa, M.; Vulpiani, M.C.; Paolucci, T. The efficacy of a preparatory phase of a touch-based approach in treating chronic low back pain: A randomized controlled trial. J. Pain Res. 2017, 10, 941–949. [Google Scholar] [CrossRef]
- Zhang, J.; Dean, D.; Nosco, D.; Strathopulos, D.; Floros, M. Effect of chiropractic care on heart rate variability and pain in a multisite clinical study. J. Manip. Physiol. Ther. 2006, 29, 267–274. [Google Scholar] [CrossRef]
- Stewart, L.; Moher, D.; Shekelle, P. Why prospective registration of systematic reviews makes sense. Syst. Rev. 2012, 1, 7. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014; pp. 1–10. [Google Scholar]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J. Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef] [PubMed]
- Aguayo-Albasini, J.L.; Flores-Pastor, B.; Soria-Aledo, V. Sistema GRADE: Clasificación de la calidad de la evidencia y graduación de la fuerza de la recomendación. Cirugía Española 2014, 92, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Altman, D.G. Chapter 8: Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions, Version 5.2.0; Higgins, J.P.T., Green, S., Eds.; The Cochrane Collaboration: Hoboken, NJ, USA, 2017. [Google Scholar]
- Hooten, W.M. Chronic pain and mental health disorders: Shared neural mechanisms, epidemiology, and treatment. Mayo Clin. Proc. 2016, 91, 955–970. [Google Scholar] [CrossRef]
- Woo, A.K. Depression and anxiety in pain. Rev. Pain 2010, 4, 8–12. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef]
- Grimm, D.R.; Cunningham, B.M.; Burke, J.R. Autonomic nervous system function among individuals with acute musculoskeletal injury. J. Manip. Physiol. Ther. 2005, 28, 44–51. [Google Scholar] [CrossRef]
- An, E.; Nolty, A.A.; Amano, S.S.; Rizzo, A.A.; Buckwalter, J.G.; Rensberger, J. Heart rate variability as an index of resilience. Mil. Med. 2020, 185, 363–369. [Google Scholar] [CrossRef]
- Blasco Lafarga, C.; Martínez Navarro, I.; Mateo March, M.; Roldán Aliaga, A.; Cordellat Marzal, A.; Monteagudo Chiner, P. Gender differences in elite athletes heart rate dynamics following a supra maximal complex effort. Sports Med. 2017, 1, 1–8. [Google Scholar] [CrossRef]
- Mateo, M.; Blasco-Lafarga, C.; Martínez-Navarro, I.; Guzmán, J.F.; Zabala, M. Heart rate variability and pre-competitive anxiety in BMX discipline. Eur. J. Appl. Physiol. 2012, 112, 113–123. [Google Scholar] [CrossRef]
- Miller, D.J.; Sargent, C.; Roach, G.D. A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults. Sensors 2022, 22, 6317. [Google Scholar] [CrossRef]
- Attar, E.T.; Balasubramanian, V.; Subasi, E.; Kaya, M. Stress analysis based on simultaneous heart rate variability and EEG monitoring. IEEE J. Transl. Eng. Health Med. 2021, 9, 2700607. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Schwerdtfeger, A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: A meta-analysis. Psychol. Med. 2020, 50, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, J.; Montgomery, P.; Hopewell, S.; Shepard, L.D. Empty reviews: A description and consideration of Cochrane systematic reviews with no included studies. PLoS ONE 2012, 7, e36626. [Google Scholar] [CrossRef]
Search Strategy | |
---|---|
1 | heart rate variability OR vagus nerve OR autonomic nervous system AND |
2 | acute lower back pain OR acute lower backaches OR sciatica |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis-Soler, G.; Tortosa-Martinez, J.; Sebastia-Amat, S.; Chulvi-Medrano, I.; Cortell-Tormo, J.M. Is Acute Lower Back Pain Associated with Heart Rate Variability Changes? A Protocol for Systematic Reviews. Healthcare 2024, 12, 397. https://doi.org/10.3390/healthcare12030397
Sanchis-Soler G, Tortosa-Martinez J, Sebastia-Amat S, Chulvi-Medrano I, Cortell-Tormo JM. Is Acute Lower Back Pain Associated with Heart Rate Variability Changes? A Protocol for Systematic Reviews. Healthcare. 2024; 12(3):397. https://doi.org/10.3390/healthcare12030397
Chicago/Turabian StyleSanchis-Soler, Gema, Juan Tortosa-Martinez, Sergio Sebastia-Amat, Ivan Chulvi-Medrano, and Juan Manuel Cortell-Tormo. 2024. "Is Acute Lower Back Pain Associated with Heart Rate Variability Changes? A Protocol for Systematic Reviews" Healthcare 12, no. 3: 397. https://doi.org/10.3390/healthcare12030397
APA StyleSanchis-Soler, G., Tortosa-Martinez, J., Sebastia-Amat, S., Chulvi-Medrano, I., & Cortell-Tormo, J. M. (2024). Is Acute Lower Back Pain Associated with Heart Rate Variability Changes? A Protocol for Systematic Reviews. Healthcare, 12(3), 397. https://doi.org/10.3390/healthcare12030397