Enhancing Cognitive Function in Older Adults through Processing Speed Training: Implications for Cognitive Health Awareness
Abstract
:1. Introduction
1.1. Processing Speed UFOV Cognitive Training
1.2. Purpose of the Study
2. Materials and Methods
2.1. Participants
2.2. Pre and Post Test Measures
- (1)
- Counting Back
- (2)
- Flash Fabrica
- (3)
- Double Decision
- (4)
- Hawk Eye
2.3. Intervention Training Tasks
2.4. Statistical Analysis
3. Results
4. Discussion
- (1)
- Strengths
- (2)
- Study limitations
- (3)
- Implications and future studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebok, G.W.; Ball, K.; Guey, L.T.; Jones, R.N.; Kim, H.Y.; King, J.W.; Marsiske, M.; Morris, J.N.; Tennstedt, S.L.; Unverzagt, F.W. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J. Am. Geriatr. Soc. 2014, 62, 16–24. [Google Scholar] [CrossRef]
- Silva-Fernandes, A.; Cruz, S.; Moreira, C.S.; Pereira, D.R.; Sousa, S.S.; Sampaio, A.; Carvalho, J. Processing speed mediates the association between physical activity and executive functioning in elderly adults. Front. Psychol. 2022, 13, 958535. [Google Scholar] [CrossRef]
- Lee, P.-L.; Chang, H.-H.; Huang, C.K.; Cheng, W.-C.; Lee, P.-Y.; Chao, H.-C. Memory training program for older adults. Educ. Gerontol. 2018, 44, 614–626. [Google Scholar] [CrossRef]
- Park, D.C.; Lautenschlager, G.; Hedden, T.; Davidson, N.S.; Smith, A.D.; Smith, P.K. Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 2002, 17, 299. [Google Scholar] [CrossRef]
- Salthouse, T.A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 1996, 103, 403. [Google Scholar] [CrossRef]
- Salthouse, T.A. Memory aging from 18 to 80. Alzheimer Dis. Assoc. Disord. 2003, 17, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Doi, T.; Lee, S.; Makizako, H.; Chen, L.-K.; Arai, H. Cognitive frailty predicts incident dementia among community-dwelling older people. J. Clin. Med. 2018, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Yakhno, N.N.; Zakharov, V.V.; Lokshina, A.B. Impairment of memory and attention in the elderly. Neurosci. Behav. Physiol. 2007, 37, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Lampit, A.; Valenzuela, M.; Gates, N.J. Computerized cognitive training is beneficial for older adults. J. Am. Geriatr. Soc. 2015, 63, 2610–2612. [Google Scholar] [CrossRef]
- Li, R.; Geng, J.; Yang, R.; Ge, Y.; Hesketh, T. Effectiveness of computerized cognitive training in delaying cognitive function decline in people with mild cognitive impairment: Systematic review and meta-analysis. J. Med. Internet Res. 2022, 24, e38624. [Google Scholar] [CrossRef] [PubMed]
- Ratner, E.; Atkinson, D. Response to Dr. Amit Lampit et al. J. Am. Geriatr. Soc. 2015, 63, 2614–2615. [Google Scholar] [CrossRef]
- Simons, D.J.; Boot, W.R.; Charness, N.; Gathercole, S.E.; Chabris, C.F.; Hambrick, D.Z.; Stine-Morrow, E.A. Do “brain-training” programs work? Psychol. Sci. Public Interest 2016, 17, 103–186. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, M.; Yang, F.; Cheng, L.J.; Lau, Y. Game-based brain training for improving cognitive function in community-dwelling older adults: A systematic review and meta-regression. Arch. Gerontol. Geriatr. 2021, 92, 104260. [Google Scholar] [CrossRef]
- Ball, K.; Owsley, C.; Sloane, M.E.; Roenker, D.L.; Bruni, J.R. Visual attention problems as a predictor of vehicle crashes in older drivers. Investig. Ophthalmol. Vis. Sci. 1993, 34, 3110–3123. [Google Scholar]
- Ball, K.; Owsley, C.; Beard, B. Clinical visual perimetry underestimates peripheral field problems in older adults. Clin. Vision Sci. 1990, 5, 113–125. [Google Scholar]
- Owsley, C.; Ball, K.; Keeton, D.M. Relationship between visual sensitivity and target localization in older adults. Vis. Res. 1995, 35, 579–587. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Wang, J.; Lyu, X.; Wang, X.; Liu, Y.; Zeng, X.; Yuan, H.; Wang, H.; Yu, X. Computerized multi-domain cognitive training reduces brain atrophy in patients with amnestic mild cognitive impairment. Transl. Psychiatry 2019, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Park, D.C.; Bischof, G.N. The aging mind: Neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 2013, 15, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Kueider, A.M.; Parisi, J.M.; Gross, A.L.; Rebok, G.W. Computerized cognitive training with older adults: A systematic review. PLoS ONE 2012, 7, e40588. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.D.; Fausto, B.A.; Tetlow, A.M.; Corona, R.T.; Valdés, E.G. Systematic review and meta-analyses of useful field of view cognitive training. Neurosci. Biobehav. Rev. 2018, 84, 72–91. [Google Scholar] [CrossRef]
- Fausto, B.A.; Maldonado, P.F.A.; Ross, L.A.; Lavallière, M.; Edwards, J.D. A systematic review and meta-analysis of older driver interventions. Accid. Anal. Prev. 2021, 149, 105852. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, K.; Webb, M. Driving in older adults: A literature review of interventions to promote safety and independence. N. Zealand J. Occup. Ther. 2021, 68, 4–10. [Google Scholar]
- Kelly, M.E.; Loughrey, D.; Lawlor, B.A.; Robertson, I.H.; Walsh, C.; Brennan, S. The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2014, 15, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Willis, S.L.; Tennstedt, S.L.; Marsiske, M.; Ball, K.; Elias, J.; Koepke, K.M.; Morris, J.N.; Rebok, G.W.; Unverzagt, F.W.; Stoddard, A.M. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA 2006, 296, 2805–2814. [Google Scholar] [CrossRef]
- Wolinsky, F.D.; Vander Weg, M.W.; Martin, R.; Unverzagt, F.W.; Ball, K.K.; Jones, R.N.; Tennstedt, S.L. The effect of speed-of-processing training on depressive symptoms in ACTIVE. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2009, 64, 468–472. [Google Scholar] [CrossRef]
- Wolinsky, F.D.; Mahncke, H.; Vander Weg, M.W.; Martin, R.; Unverzagt, F.W.; Ball, K.K.; Jones, R.N.; Tennstedt, S.L. Speed of processing training protects self-rated health in older adults: Enduring effects observed in the multi-site ACTIVE randomized controlled trial. Int. Psychogeriatr. 2010, 22, 470–478. [Google Scholar] [CrossRef]
- Wolinsky, F.D.; Vander Weg, M.W.; Martin, R.; Unverzagt, F.W.; Willis, S.L.; Marsiske, M.; Rebok, G.W.; Morris, J.N.; Ball, K.K.; Tennstedt, S.L. Does cognitive training improve internal locus of control among older adults? J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2010, 65, 591–598. [Google Scholar] [CrossRef]
- Ross, L.A.; Freed, S.A.; Edwards, J.D.; Phillips, C.B.; Ball, K. The impact of three cognitive training programs on driving cessation across 10 years: A randomized controlled trial. Gerontologist 2017, 57, 838–846. [Google Scholar] [CrossRef]
- Woutersen, K.; van den Berg, A.V.; Boonstra, F.N.; Theelen, T.; Goossens, J. Useful field of view test performance throughout adulthood in subjects without ocular disorders. PLoS ONE 2018, 13, e0196534. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Kanno, S.; Saito, M.; Hayashi, A.; Uchiyama, M.; Hiraoka, K.; Nishio, Y.; Hisanaga, K.; Mori, E. Counting-backward test for executive function in idiopathic normal pressure hydrocephalus. Acta Neurol. Scand. 2012, 126, 279–286. [Google Scholar] [CrossRef]
- Nouchi, R.; Taki, Y.; Takeuchi, H.; Hashizume, H.; Akitsuki, Y.; Shigemune, Y.; Sekiguchi, A.; Kotozaki, Y.; Tsukiura, T.; Yomogida, Y. Brain training game improves executive functions and processing speed in the elderly: A randomized controlled trial. PLoS ONE 2012, 7, e29676. [Google Scholar] [CrossRef]
- Ball, K.; Berch, D.B.; Helmers, K.F.; Jobe, J.B.; Leveck, M.D.; Marsiske, M.; Morris, J.N.; Rebok, G.W.; Smith, D.M.; Tennstedt, S.L. Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA 2002, 288, 2271–2281. [Google Scholar] [CrossRef]
- Kraft, J.N.; O’Shea, A.; Albizu, A.; Evangelista, N.D.; Hausman, H.K.; Boutzoukas, E.; Nissim, N.R.; Van Etten, E.J.; Bharadwaj, P.K.; Song, H. Structural neural correlates of double decision performance in older adults. Front. Aging Neurosci. 2020, 12, 278. [Google Scholar] [CrossRef]
- brainHQ. Hawk Eye. Available online: https://www.brainhq.com/why-brainhq/about-the-brainhq-exercises/brainspeed/hawk-eye/ (accessed on 23 January 2023).
- Mao, R.; Hao, X.; Chen, C. Effect of BrainHQ visual training on memory disorder in patients with stroke. Chin. J. Rehabil. Med. 2016, 31, 312–315. [Google Scholar] [CrossRef]
- Woods, A.J.; Cohen, R.; Marsiske, M.; Alexander, G.E.; Czaja, S.J.; Wu, S. Augmenting cognitive training in older adults (The ACT Study): Design and Methods of a Phase III tDCS and cognitive training trial. Contemp. Clin. Trials 2018, 65, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Penner, J.L.; McClement, S.; Lobchuk, M.; Daeninck, P. Family members’ experiences caring for patients with advanced head and neck cancer receiving tube feeding: A descriptive phenomenological study. J. Pain Symptom. Manage. 2012, 44, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Lampit, A.; Hallock, H.; Valenzuela, M. Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Med. 2014, 11, e1001756. [Google Scholar] [CrossRef]
- Sullivan, L.M. Repeated measures. Circulation 2008, 117, 1238–1243. [Google Scholar] [CrossRef]
- Hair, J., Jr.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed; Prentice Hall: Hoboken, NJ, USA, 1998. [Google Scholar]
- Ball, K.; Edwards, J.D.; Ross, L.A.; McGwin, G., Jr. Cognitive training decreases motor vehicle collision involvement of older drivers. J. Am. Geriatr. Soc. 2010, 58, 2107–2113. [Google Scholar] [CrossRef]
- Ross, L.A.; Edwards, J.D.; O’Connor, M.L.; Ball, K.K.; Wadley, V.G.; Vance, D.E. The Transfer of Cognitive Speed of Processing Training to Older Adults’ Driving Mobility Across 5 Years. J. Gerontol. B Psychol. Sci. Soc. Sci. 2016, 71, 87–97. [Google Scholar] [CrossRef]
- Lustig, C.; Shah, P.; Seidler, R.; Reuter-Lorenz, P.A. Aging, training, and the brain: A review and future directions. Neuropsychol. Rev. 2009, 19, 504–522. [Google Scholar] [CrossRef]
- Shenhav, A.; Musslick, S.; Lieder, F.; Kool, W.; Griffiths, T.L.; Cohen, J.D.; Botvinick, M.M. Toward a rational and mechanistic account of mental effort. Annu. Rev. Neurosci. 2017, 40, 99–124. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Heffner, K.L.; Ren, P.; Tivarus, M.E.; Brasch, J.; Chen, D.G.; Mapstone, M.; Porsteinsson, A.P.; Tadin, D. Cognitive and Neural Effects of Vision-Based Speed-of-Processing Training in Older Adults with Amnestic Mild Cognitive Impairment: A Pilot Study. J. Am. Geriatr. Soc. 2016, 64, 1293–1298. [Google Scholar] [CrossRef]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Psychology Press: New York, NY, USA, 2005. [Google Scholar]
- Park, D.C.; Reuter-Lorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef] [PubMed]
- Smid, C.R.; Karbach, J.; Steinbeis, N. Toward a science of effective cognitive training. Curr. Dir. Psychol. Sci. 2020, 29, 531–537. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Lu, C.T.; Wang, L.L. A Study on Use of Digital Games by Older Adults. J. Gerontechnology Serv. Manag. 2017, 5, 179–190. [Google Scholar] [CrossRef]
Characteristics | Experimental, N = 22 Mean (SD) | Control, N = 20 Mean (SD) | p |
---|---|---|---|
Age | 71.9 ± 4.8 (65–81) | 67.1 ± 4.8 (59–75) | 0.003 |
Female, n % | 19 (86.4) | 16 (80.0) | 0.580 |
Education, mean ± SD (range) | 8.1 ± 4.4 (0–15) | 10.1 ± 3.5 (6–16) | 0.126 |
MOCA * | 26.4 ± 2.6 | 25.4 ± 3.8 | 0.291 |
Session. | Content | Objective |
---|---|---|
1 | A 30 min introduction on the importance of Useful Field of View (UFOV); 30 min practicing video game: Double Decision Identify a vehicle and locate a road sign. The operation of this electronic game involves the appearance of two vehicles and a Route 66 sign on the screen. Participants are required to identify the correct vehicle and the location of the Route 66 sign. | Understanding the importance of UFOV Attention training |
2 | A 30 min period practicing attentional card game; 30 min practicing “Divided and Selective Attention” UFOV games Identifying different birds and determining their correct positions. The electronic game’s operation entails identifying a uniquely colored bird (black head, darker wings) among a group displayed on screen. | Training: attention and response |
3 | A 30 min period for nine squares fruit memory game activities; 30 min practicing “Divided and Selective Attention” UFOV games. Identifying different birds and determining their correct positions. This electronic game requires players to spot a distinctively colored bird (with a black head and darker wings) among a group on the screen, as per the aforementioned description. | Training: attention and response |
4 | A 30 min period for advance nine squares game; 30 min practicing “Divided and Selective Attention” UFOV games From session four to the final session, for participants engaged in two tasks: a) identifying birds transitioning from uniform, simple colors to complex, multilayered hues and detailed features (like stripes), necessitating enhanced concentration for subtle distinctions; b) observing a color progression where the initial stark contrast between subject and target gradually narrowed, increasing the challenge until the colors closely resembled each other. Background settings varied from beaches and mountains to general scenic landscapes. | Training: attention and response |
5 | A 30 min dragon–tiger divided attention game: practicing “Divided and Selective Attention”; 30 min practicing “Divided and Selective Attention” UFOV games. Content is same as session four description. | Attention training-multitasking, attention and response |
6 | A 30 min object-finding game: finding specific objects in the pictures activity; 30 min practicing “Divided and Selective Attention” UFOV games. Content is same as session four description. | Training: attention and response |
7 | A 30 min finding differences activity; 30 min practicing “Divided and Selective Attention” UFOV games. Same as session four description. | Training: attention and response |
8 | A 30 min flag-waving game; 30 min practicing “Divided and Selective Attention” UFOV games. Content is same as session four description. | Processing Speed Training, attention and response |
9 | A 30 min traditional non-online attention activity; 30 min practicing “Divided and Selective Attention” UFOV games. Same as session four description. | Training: attention and response |
10 | A 30 min traditional non-online attention activity; 30 min practicing “Divided and Selective Attention” UFOV games. Same as session four description. | Training: attention and response |
Session. | Content | Objective |
---|---|---|
1 | Reading club meeting | Meditation, concentration |
2 | Cleaning service inside a non-profit organization | Physical activity |
3 | Reading club meeting | Meditation, concentration |
4 | Reading club meeting | Meditation, concentration |
5 | Buddhist Studies | Concentration |
6 | Practicing African drums | Music appreciation |
7 | Volunteer Service Activities | Physical activity |
8 | Supporting community events | Community service |
9 | Supporting traffic management for the temple activity | Community service |
10 | Cooking class | Learning cooking |
Experimental Median (N = 22) | Control Median (N = 20) | Experimental | Control | |||||
---|---|---|---|---|---|---|---|---|
Pre- | Post- | Md Gain | Pre- | Post- | Md Gain | Intragroup diff Z(p) | Intragroup diff Z(p) | |
Counting back | 59.50 | 54.00 | −5.50 | 50.00 | 50.50 | 0.50 | −2.869 (0.004 **) | −0.112 (0.911) |
Fabrica | 57.00 | 51.50 | −5.50 | 52.50 | 53.00 | 0.50 | −2.138 (0.033 *) | −0.616 (0.538) |
Double decision | 1653.25 | 85.25 | −1568.00 | 419.00 | 290.00 | −129.00 | −4.075 (0.001 ***) | −1.388 (0.165) |
Hawkeye | 207.75 | 61.00 | −146.75 | 65.75 | 48.75 | −17.00 | −3.251 (0.001 ***) | −1.445 (0.149) |
Experimental | Control | |||||||
Counting back | ||||||||
M (SD) (sec.) | 71.00 (28.49) | 60.45 (24.59) | 54.45 (23.24) | 63.80 (46.58) | ||||
Mean gains | −10.55 (−3.90) | 9.35 (23.33) | ||||||
Effect size d | 0.391 | −0.23 | ||||||
At or below baseline, % a | 77 | 20 | ||||||
Fabrica | ||||||||
M (SD) (ba) | 57.87 (19.63) | 50.14 (18.35) | 51.67 (19.59) | 50.30 (20.07) | ||||
Mean gains | −7.73 (−1.28) | −1.37 (0.48) | ||||||
Effect size d | 0.406 | 0.069 | ||||||
At or below baseline, % a | 68 | 35 | ||||||
Double decision | ||||||||
M (SD) (ms) | 1480.02 (1045.64) | 297.25 (445.71) | 925.75 (1067.54) | 677.85 (867.08) | ||||
Mean gains | −1182.77 (−599.93) | −247.90 (−200.46) | ||||||
Effect size d | 1.379 | 0.252 | ||||||
At or below baseline, % a | 95 | 75 | ||||||
Hawkeye | ||||||||
M (SD) (ms) | 335.93 (453.79) | 95.12 (71.93) | 66.63 (29.21) | 67.68 (51.84) | ||||
Mean gains | −240.81 (−381.86) | 1.05 (22.63) | ||||||
Effect size d | 0.791 | −0.025 | ||||||
At or below baseline, % a | 100 | 55 |
Source | SS | df | MS | F(p) | ηp2 |
---|---|---|---|---|---|
Counting back (Time) | 7.49 | 1 | 7.49 | 0.012 (0.901) | 0.00 |
group | 913.31 | 1 | 913.31 | 0.59 (0.447) | 0.02 |
Time * group | 2073.39 | 1 | 2073.39 | 4.33 (0.044 *) | 0.10 |
Fabrica (Time) | 432.65 | 1 | 432.65 | 4.76 * (0.035) | 0.11 |
group | 191.49 | 1 | 191.49 | 0.29 (0.594) | 0.01 |
Time * group | 211.69 | 1 | 211.69 | 2.33 (0.135) | 0.06 |
Double Decision (Time) | 10,721,461.42 | 1 | 10,721,461.42 | 21.62 *** (0.001) | 0.35 |
group | 157,992.56 | 1 | 157,992.56 | 0.15 (0.704) | 0.00 |
Time * group | 457,8027.23 | 1 | 4,578,027.23 | 9.23 ** (0.004) | 0.19 |
Hawk Eye (Time) | 301,106.93 | 1 | 301,106.93 | 5.02 * (0.031) | 0.11 |
group | 461,225.10 | 1 | 461,225.10 | 8.77 ** (0.005) | 0.18 |
Time * group | 306,371.78 | 1 | 306,371.78 | 5.11 * (0.029) | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, P.-L.; Huang, C.-K.; Chen, Y.-Y.; Chang, H.-H.; Cheng, C.-H.; Lin, Y.-C.; Lin, C.-L. Enhancing Cognitive Function in Older Adults through Processing Speed Training: Implications for Cognitive Health Awareness. Healthcare 2024, 12, 532. https://doi.org/10.3390/healthcare12050532
Lee P-L, Huang C-K, Chen Y-Y, Chang H-H, Cheng C-H, Lin Y-C, Lin C-L. Enhancing Cognitive Function in Older Adults through Processing Speed Training: Implications for Cognitive Health Awareness. Healthcare. 2024; 12(5):532. https://doi.org/10.3390/healthcare12050532
Chicago/Turabian StyleLee, Pai-Lin, Chih-Kun Huang, Yi-Yi Chen, Hui-Hsiang Chang, Chun-Hua Cheng, Yu-Chih Lin, and Chia-Li Lin. 2024. "Enhancing Cognitive Function in Older Adults through Processing Speed Training: Implications for Cognitive Health Awareness" Healthcare 12, no. 5: 532. https://doi.org/10.3390/healthcare12050532
APA StyleLee, P.-L., Huang, C.-K., Chen, Y.-Y., Chang, H.-H., Cheng, C.-H., Lin, Y.-C., & Lin, C.-L. (2024). Enhancing Cognitive Function in Older Adults through Processing Speed Training: Implications for Cognitive Health Awareness. Healthcare, 12(5), 532. https://doi.org/10.3390/healthcare12050532