Efficacy of a Rehabilitation Program Using Mirror Therapy and Cognitive Therapeutic Exercise on Upper Limb Functionality in Patients with Acute Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedure
2.3. Instruments
2.4. Intervention
2.4.1. Mirror Therapy
2.4.2. Cognitive Therapeutic Exercise
2.4.3. Task-Oriented Training
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simats, A.; Liesz, A. Systemic inflammation after stroke: Implications for post-stroke comorbidities. EMBO Mol. Med. 2022, 14, e16269. [Google Scholar] [CrossRef]
- González-Santos, J.; Rodríguez-Fernández, P.; Pardo-Hernández, R.; González-Bernal, J.J.; Fernández-Solana, J.; Santamaría-Peláez, M. A Cross-Sectional Study: Determining Factors of Functional Independence and Quality of Life of Patients One Month after Having Suffered a Stroke. Int. J. Environ. Res. Public Health 2023, 20, 995. [Google Scholar] [CrossRef]
- Potter, T.B.H.; Tannous, J.; Vahidy, F.S. A Contemporary Review of Epidemiology, Risk Factors, Etiology, and Outcomes of Premature Stroke. Curr. Atheroscler. Rep. 2022, 24, 939–948. [Google Scholar] [CrossRef]
- Neil, H.P. Stroke Rehabilitation. Crit. Care Nurs. Clin. N. Am. 2023, 35, 95–99. [Google Scholar] [CrossRef]
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
- Namaganda, P.; Nakibuuka, J.; Kaddumukasa, M.; Katabira, E. Stroke in young adults, stroke types and risk factors: A case control study. BMC Neurol. 2022, 22, 335. [Google Scholar] [CrossRef]
- Park, Y.S.; An, C.S.; Lim, C.G. Effects of a Rehabilitation Program Using a Wearable Device on the Upper Limb Function, Performance of Activities of Daily Living, and Rehabilitation Participation in Patients with Acute Stroke. Int. J. Environ. Res. Public Health 2021, 18, 5524. [Google Scholar] [CrossRef]
- Wondergem, R.; Pisters, M.F.; Wouters, E.J.; Olthof, N.; De Bie, R.A.; Visser-Meily, J.M.A.; Veenhof, C. The Course of Activities in Daily Living: Who Is at Risk for Decline after First Ever Stroke? Cerebrovasc. Dis. 2017, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Pérez-Bellmunt, A.; Llurda-Almuzara, L.; Plaza-Manzano, G.; De-la-Llave-Rincón, A.I.; Navarro-Santana, M.J. Is Dry Needling Effective for the Management of Spasticity, Pain, and Motor Function in Post-Stroke Patients? A Systematic Review and Meta-Analysis. Pain Med. 2021, 22, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Tater, P.; Pandey, S. Post-stroke Movement Disorders: Clinical Spectrum, Pathogenesis, and Management. Neurol. India 2021, 69, 272–283. [Google Scholar] [CrossRef]
- Thieme, H.; Morkisch, N.; Mehrholz, J.; Pohl, M.; Behrens, J.; Borgetto, B.; Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev. 2018, 7, CD008449. [Google Scholar] [CrossRef]
- Raghavan, P. Upper Limb Motor Impairment Post Stroke. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 599. [Google Scholar] [CrossRef] [PubMed]
- Santamaría-Peláez, M.; Pardo-Hernández, R.; González-Bernal, J.J.; Soto-Cámara, R.; González-Santos, J.; Fernández-Solana, J. Reliability and Validity of the Motor Activity Log (MAL-30) Scale for Post-Stroke Patients in a Spanish Sample. Int. J. Environ. Res. Public Health 2022, 19, 14964. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Solana, J.; Pardo-Hernández, R.; González-Bernal, J.J.; Sánchez-González, E.; González-Santos, J.; Soto-Cámara, R.; Santamaría-Pelaez, M. Psychometric Properties of the Action Research Arm Test (ARAT) Scale in Post-Stroke Patients-Spanish Population. Int. J. Environ. Res. Public Health 2022, 19, 14918. [Google Scholar] [CrossRef] [PubMed]
- Gor-García-Fogeda, M.D.; Molina-Rueda, F.; Cuesta-Gómez, A.; Carratalá-Tejada, M.; Alguacil-Diego, I.M.; Miangolarra-Page, J.C. Scales to assess gross motor function in stroke patients: A systematic review. Arch. Phys. Med. Rehabil. 2014, 95, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Sharififar, S.; Shuster, J.J.; Bishop, M.D. Adding electrical stimulation during standard rehabilitation after stroke to improve motor function. A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2018, 61, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Persson, H.C.; Danielsson, A.; Sunnerhagen, K.S. A cross sectional study of upper extremity strength ten days after a stroke; relationship between patient-reported and objective measures. BMC Neurol. 2015, 15, 178. [Google Scholar] [CrossRef]
- Coleman, E.R.; Moudgal, R.; Lang, K.; Hyacinth, H.I.; Awosika, O.O.; Kissela, B.M.; Feng, W. Early Rehabilitation after Stroke: A Narrative Review. Curr. Atheroscler. Rep. 2017, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Prange-Lasonder, G.B.; Alt Murphy, M.; Lamers, I.; Hughes, A.M.; Buurke, J.H.; Feys, P.; Keller, T.; Klamroth-Marganska, V.; Tarkka, I.M.; Timmermans, A.; et al. European evidence-based recommendations for clinical assessment of upper limb in neurorehabilitation (CAULIN): Data synthesis from systematic reviews, clinical practice guidelines and expert consensus. J. Neuroeng. Rehabil. 2021, 18, 162. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, J.; Borschmann, K.N.; Kwakkel, G.; Burridge, J.H.; Eng, J.J.; Walker, M.F.; Bird, M.L.; Cramer, S.C.; Hayward, K.S.; O’Sullivan, M.J.; et al. Setting the scene for the Second Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2019, 14, 450–456. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Y.; Li, C.; Hua, Y.; Hu, J.; Wang, Y.; Ya, R.; Meng, Q.; Bai, Y. Mirror therapy for unilateral neglect after stroke: A systematic review. Eur. J. Neurol. 2022, 29, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, S.; Asai, T.; Koyama, S. Agency over Phantom Limb Enhanced by Short-Term Mirror Therapy. Front. Hum. Neurosci. 2017, 11, 483. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Guo, Y.; Wu, G.; Liu, X.; Fang, Q. Mirror therapy for motor function of the upper extremity in patients with stroke: A meta-analysis. J. Rehabil. Med. 2018, 50, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Perfetti, C.; Ghedina, R.; Hernández, D.J. El Ejercicio Terapéutico Cognoscitivo Para La Reeducación Motora Del Hemipléjico Adulto; Edika Med: Barcelona, Spain, 1999. [Google Scholar]
- Lee, S.; Bae, S.; Jeon, D.; Kim, K.Y. The effects of cognitive exercise therapy on chronic stroke patients’ upper limb functions, activities of daily living and quality of life. J. Phys. Ther. Sci. 2015, 27, 2787–2791. [Google Scholar] [CrossRef] [PubMed]
- Almhdawi, K.A.; Mathiowetz, V.G.; White, M.; delMas, R.C. Efficacy of Occupational Therapy Task-oriented Approach in Upper Extremity Post-stroke Rehabilitation. Occup. Ther. Int. 2016, 23, 444–456. [Google Scholar] [CrossRef] [PubMed]
- Cano-de-la-Cuerda, R.; Molero-Sánchez, A.; Carratalá-Tejada, M.; Alguacil-Diego, I.M.; Molina-Rueda, F.; Miangolarra-Page, J.C.; Torricelli, D. Theories and control models and motor learning: Clinical applications in neuro-rehabilitation. Neurologia 2015, 30, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Bayón-Calatayud, M.; Gil-Agudo, A.; Benavente-Valdepeñas, A.M.; Drozdowskyj-Palacios, O.; Sanchez-Martín, G.; Del Alamo-Rodriguez, M.J. Eficacia de nuevas terapias en la neurorrehabilitación del miembro superior en pacientes con ictus. Rehabilitación 2014, 48, 232–240. [Google Scholar] [CrossRef]
- Michaelsen, S.M.; Dannenbaum, R.; Levin, M.F. Task-specific training with trunk restraint on arm recovery in stroke: Randomized control trial. Stroke 2006, 37, 186–192. [Google Scholar] [CrossRef]
- Bai, Z.; Zhang, J.; Zhang, Z.; Shu, T.; Niu, W. Comparison Between Movement-Based and Task-Based Mirror Therapies on Improving upper Limb Functions in Patients with Stroke: A Pilot Randomized Controlled Trial. Front. Neurol. 2019, 10, 288. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, Y.; He, H.; Lin, S.; Zhu, R.; Liu, Z.; Liu, J.; Liu, X.; Chen, S.; Zou, J.; et al. Synergistic Effect of Combined Mirror Therapy on Upper Extremity in Patients with Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2020, 11, 155. [Google Scholar] [CrossRef]
- Saavedra-García, A.; Moral-Munoz, J.A.; Lucena-Anton, D. Mirror therapy simultaneously combined with electrical stimulation for upper limb motor function recovery after stroke: A systematic review and meta-analysis of randomized controlled trials. Clin. Rehabil. 2021, 35, 39–50. [Google Scholar] [CrossRef]
- Pérez-Cruzado, D.; Merchán-Baeza, J.A.; González-Sánchez, M.; Cuesta-Vargas, A.I. Systematic review of mirror therapy compared with conventional rehabilitation in upper extremity function in stroke survivors. Aust. Occup. Ther. J. 2017, 64, 91–112. [Google Scholar] [CrossRef]
- Hiragami, S.; Inoue, Y.; Harada, K. Minimal clinically important difference for the Fugl-Meyer assessment of the upper extremity in convalescent stroke patients with moderate to severe hemiparesis. J. Phys. Ther. Sci. 2019, 31, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.E.; Crowner, B.E.; Kluding, P.M.; Nichols, D.; Rose, D.K.; Yoshida, R.; Pinto Zipp, G. Outcome measures for individuals with stroke: Process and recommendations from the American Physical Therapy Association neurology section task force. Phys. Ther. 2013, 93, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- Ferrer González, B. Adaptación y Validación al Español de la Escala Fugl-Meyer en el Manejo de la Rehabilitación de Pacientes Con Ictus; Universidad de Sevilla: Sevilla, Spain, 2015. [Google Scholar]
- Page, S.J.; Fulk, G.D.; Boyne, P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 2012, 92, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estadística (INE). Problemas o Enfermedades Crónicas o de Larga Evolución en Los Últimos 12 Meses Según Sexo, País de Nacimiento y Grupo de Edad; Población de 15 y Más Años; Instituto Nacional de Estadística: Madrid, Spain, 2014; Available online: https://www.ine.es/jaxi/Datos.htm?path=/t15/p420/a2014/p01/l0/&file=02009.px (accessed on 30 November 2023).
- Madhoun, H.Y.; Tan, B.; Feng, Y.; Zhou, Y.; Zhou, C.; Yu, L. Task-based mirror therapy enhances the upper limb motor function in subacute stroke patients: A randomized control trial. Eur. J. Phys. Rehabil. Med. 2020, 56, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Li, L.; Li, X.; Zha, H.; Liu, Z.; Peng, Y.; Liu, X.; Liu, H.; Yang, Q.; Wang, J. Therapeutic Role of Additional Mirror Therapy on the Recovery of Upper Extremity Motor Function after Stroke: A Single-Blind, Randomized Controlled Trial. Neural. Plast. 2022, 2022, 8966920. [Google Scholar] [CrossRef]
- Mirela Cristina, L.; Matei, D.; Ignat, B.; Popescu, C.D. Mirror therapy enhances upper extremity motor recovery in stroke patients. Acta. Neurol. Belg. 2015, 115, 597–603. [Google Scholar] [CrossRef]
- Park, Y.; Chang, M.; Kim, K.M.; An, D.H. The effects of mirror therapy with tasks on upper extremity function andself-care in stroke patients. J. Phys. Ther. Sci. 2015, 27, 1499. [Google Scholar] [CrossRef]
- Lim, K.B.; Lee, H.J.; Yoo, J.; Yun, H.J.; Hwang, H.J. Efficacy of Mirror Therapy Containing Functional Tasks in Poststroke Patients. Ann. Rehabil. Med. 2016, 40, 629–636. [Google Scholar] [CrossRef]
- Kim, H.; Shim, J. Investigation of the effects of mirror therapy on the upper extremityfunctions of stroke patients using the manual function test. J. Phys. Ther. Sci. 2015, 27, 227. [Google Scholar] [CrossRef]
- Carmichael, S.T. Cellular and molecular mechanisms of neural repair after stroke: Making waves. Ann. Neurol. 2006, 59, 735–742. [Google Scholar] [CrossRef]
- Choi, W. Effects of Cognitive Exercise Therapy on Upper Extremity Sensorimotor Function and Activities of Daily Living in Patients with Chronic Stroke: A Randomized Controlled Trial. Healthcare 2022, 10, 429. [Google Scholar] [CrossRef]
- Morioka, S.; Yamada, M.; Komori, T. Frontal Lobe Activity during the Performance of Spatial Tasks: fNIRS Study. J. Phys. Ther. Sci. 2008, 20, 135–139. [Google Scholar] [CrossRef]
- Sanes, J.N. Skill learning: Motor cortex rules for learning and memory. Curr. Biol. 2000, 10, R495–R497. [Google Scholar] [CrossRef] [PubMed]
- Deblock-Bellamy, A.; Lamontagne, A.; Blanchette, A.K. Cognitive-Locomotor Dual-Task Interference in Stroke Survivors and the Influence of the Tasks: A Systematic Review. Front. Neurol. 2020, 11, 882. [Google Scholar] [CrossRef] [PubMed]
- Bunketorp-Käll, L.; Lundgren-Nilsson, Å.; Samuelsson, H.; Pekny, T.; Blomvé, K.; Pekna, M.; Pekny, M.; Blomstrand, C.; Nilsson, M. Long-Term Improvements after Multimodal Rehabilitation in Late Phase after Stroke: A Randomized Controlled Trial. Stroke 2017, 48, 1916–1924. [Google Scholar] [CrossRef]
- Navarro-López, V.; Del Valle-Gratacós, M.; Fernández-Matías, R.; Carratalá-Tejada, M.; Cuesta-Gómez, A.; Molina-Rueda, F. The Long-Term Maintenance of upper Limb Motor Improvements Following Transcranial Direct Current Stimulation Combined with Rehabilitation in People with Stroke: A Systematic Review of Randomized Sham-Controlled Trials. Sensors 2021, 21, 5216. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; van Wijck, F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2014, 2014, CD010820. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | |
1 | Being over 18 years old |
2 | Having been diagnosed with residual hemiparesis due to an ischemic or hemorrhagic stroke |
3 | Presenting a level of movement in the affected upper limbs within stages II to IV according to the Brunnstrom scale [31] |
4 | Obtaining a score in the Montreal Cognitive Assessment (MoCA) equal to or higher than 26 [32,33] |
5 | Obtaining informed consent from all participants |
Exclusion criteria (based on diagnostic information provided by the neurologist’s clinical evaluation) | |
1 | Participants exhibiting hemineglect |
2 | Wernicke’s aphasia or mixed aphasia |
3 | Visual impairment (homonymous hemianopsia) |
Variables | Group | First Evaluation Mean (SD) | Second Evaluation Mean (SD) | Treatment Group | Mean Difference | SD | p | 95% CI | Observed Power | |
---|---|---|---|---|---|---|---|---|---|---|
LI | LS | |||||||||
Functionality | CG | 90.25 (29.978) | 92.78 (29.873) | CTE | −7.90 | 2.264 | 0.001 ** | −12.392 | −3.425 | 0.994 |
MT | −10.56 | 2.260 | <0.001 ** | −15.041 | −6.088 | |||||
CTE | 86.33 (26.774) | 97.23 (24.433) | CG | 7.90 | 2.264 | 0.001 ** | 3.425 | 12.392 | ||
MT | −2.65 | 2.263 | 0.243 | −7.139 | 1.827 | |||||
MT | 89.95 (27.964) | 103.08 (25.998) | CG | 10.56 | 2.260 | <0.001 ** | 6.088 | 15.041 | ||
CTE | 2.65 | 2.263 | 0.243 | −1.827 | 7.139 | |||||
Motor domain | CG | 40.48 (21.903) | 42.03 (22.208) | CTE | −6.28 | 1.919 | 0.001 ** | −10.086 | −2.485 | 0.977 |
MT | −7.88 | 1.915 | <0.001 ** | −11.677 | −4.092 | |||||
CTE | 36.85 (20.314) | 45.05 (18.474) | CG | 6.28 | 1.919 | 0.001 ** | 2.485 | 10.086 | ||
MT | −1.59 | 1.915 | 0.406 | −5.392 | 2.195 | |||||
MT | 38.83 (19.945) | 48.43 (20.671) | CG | 7.88 | 1.915 | <0.001 ** | 4.092 | 11.677 | ||
CTE | 1.59 | 1.915 | 0.406 | −2.195 | 5.392 | |||||
Sensory domain | CG | 9.15 (3.585) | 9.10 (3.720) | CTE | −1.67 | 0.425 | <0.001 ** | −2.512 | −0.827 | 0.955 |
MT | −1.17 | 0.425 | 0.007 * | −2.018 | −0.335 | |||||
CTE | 9.57 (3.720) | 11.05 (2.062) | CG | 1.67 | 0.425 | <0.001 ** | 0.827 | 2.512 | ||
MT | 0.49 | 0.425 | 0.248 | −0.348 | 1.335 | |||||
MT | 9.38 (3.600) | 10.43 (3.145) | CG | 1.17 | 0.425 | 0.007 * | 0.335 | 2.018 | ||
CTE | −0.49 | 0.425 | 0.248 | −1.335 | 0.348 | |||||
Range of motion and pain domain | CG | 40.63 (10.883) | 41.65 (9.919) | CTE | 0.46 | 0.903 | 0.612 | −1.328 | 2.247 | 0.595 |
MT | −1.69 | 0.903 | 0.063 | −3.486 | 0.092 | |||||
CTE | 39.90 (8.924) | 40.63 (9.903) | CG | −0.46 | 0.903 | 0.612 | −2.247 | 1.328 | ||
MT | −2.16 | 0.905 | 0.019 * | −3.949 | −0.364 | |||||
MT | 41.75 (9.009) | 44.23 (6.379) | CG | 1.69 | 0.903 | 0.063 | −0.092 | 3.486 | ||
CTE | 2.16 | 0.905 | 0.019 * | 0.364 | 3.949 |
Variables | Group | First Evaluation Mean (SD) | Third Evaluation Mean (SD) | Treatment Group | Mean Difference | SD | p | 95% CI | Observed Power | |
---|---|---|---|---|---|---|---|---|---|---|
LI | LS | |||||||||
Functionality | CG | 90.25 (29.978) | 94.95 (27.556) | CTE | −7.78 | 2.815 | 0.007 * | −13.356 | −2.203 | 0.983 |
MT | −12.41 | 2.811 | <0.001 ** | −17.978 | −6.843 | |||||
CTE | 86.33 (26.774) | 99.65 (25.172) | CG | 7.78 | 2.815 | 0.007 * | 2.203 | 13.356 | ||
MT | −4.63 | 2.815 | 0.103 | −10.206 | 0.944 | |||||
MT | 89.95 (27.964) | 107.13 (23.516) | CG | 12.41 | 2.811 | <0.001 ** | 6.843 | 17.978 | ||
CTE | 4.63 | 2.815 | 0.103 | −0.944 | 10.206 | |||||
Motor domain | CG | 40.48 (21.903) | 43.05 (20.539) | CTE | −6.63 | 2.165 | 0.003 * | −10.920 | −2.343 | 0.993 |
MT | −10.28 | 2.161 | <0.001 ** | −14.564 | −6.004 | |||||
CTE | 36.85 (20.314) | 46.75 (18.648) | CG | 6.63 | 2.165 | 0.003 * | 2.343 | 10.920 | ||
MT | −3.65 | 2.161 | 0.094 | −7.934 | 0.628 | |||||
MT | 38.83 (19.945) | 52.00 (18.753) | CG | 10.28 | 2.161 | <0.001 ** | 6.004 | 14.564 | ||
CTE | 3.65 | 2.161 | 0.094 | −0.628 | 7.934 | |||||
Sensory domain | CG | 9.15 (3.585) | 9.65 (3.585) | CTE | −1.26 | 0.468 | 0.008 * | −2.192 | −0.339 | 0.721 |
MT | −1.02 | 0.467 | 0.030 * | −1.952 | −0.100 | |||||
CTE | 9.57 (3.720) | 11.15 (2.155) | CG | 1.26 | 0.468 | 0.008 * | 0.339 | 2.192 | ||
MT | 0.24 | 0.467 | 0.609 | −0.686 | 1.165 | |||||
MT | 9.38 (3.600) | 10.80 (2.747) | CG | 1.02 | 0.467 | 0.030 * | 0.100 | 1.952 | ||
CTE | −0.24 | 0.467 | 0.609 | −1.165 | 0.686 | |||||
Range of motion and pain domain | CG | 40.63 (10.883) | 42.25 (9.647) | CTE | −0.711 | 1.230 | 0.564 | −3.147 | 1.724 | 0.150 |
MT | −1.359 | 1.231 | 0.272 | −3.797 | 1.079 | |||||
CTE | 39.90 (8.924) | 42.50 (7.643) | CG | 0.711 | 1.230 | 0.564 | −1.724 | 3.147 | ||
MT | −0.647 | 1.233 | 0.601 | −3.090 | 1.795 | |||||
MT | 41.75 (9.009) | 44.33 (7.180) | CG | 1.359 | 1.231 | 0.272 | −1.079 | 3.797 | ||
CTE | 0.647 | 1.233 | 0.601 | −1.795 | 3.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Solana, J.; Álvarez-Pardo, S.; Moreno-Villanueva, A.; Santamaría-Peláez, M.; González-Bernal, J.J.; Vélez-Santamaría, R.; González-Santos, J. Efficacy of a Rehabilitation Program Using Mirror Therapy and Cognitive Therapeutic Exercise on Upper Limb Functionality in Patients with Acute Stroke. Healthcare 2024, 12, 569. https://doi.org/10.3390/healthcare12050569
Fernández-Solana J, Álvarez-Pardo S, Moreno-Villanueva A, Santamaría-Peláez M, González-Bernal JJ, Vélez-Santamaría R, González-Santos J. Efficacy of a Rehabilitation Program Using Mirror Therapy and Cognitive Therapeutic Exercise on Upper Limb Functionality in Patients with Acute Stroke. Healthcare. 2024; 12(5):569. https://doi.org/10.3390/healthcare12050569
Chicago/Turabian StyleFernández-Solana, Jessica, Sergio Álvarez-Pardo, Adrián Moreno-Villanueva, Mirian Santamaría-Peláez, Jerónimo J. González-Bernal, Rodrigo Vélez-Santamaría, and Josefa González-Santos. 2024. "Efficacy of a Rehabilitation Program Using Mirror Therapy and Cognitive Therapeutic Exercise on Upper Limb Functionality in Patients with Acute Stroke" Healthcare 12, no. 5: 569. https://doi.org/10.3390/healthcare12050569