Functional and Combined Training Promote Body Recomposition and Lower Limb Strength in Postmenopausal Women: A Randomized Clinical Trial and a Time Course Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Intervention Protocols
2.3.1. Functional Training
2.3.2. Combined Training
2.3.3. Control Group
2.4. Data Collection Procedure
2.4.1. Body Composition
2.4.2. Lower Limb Muscle Strength
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- North, B.J.; Sinclair, D.A. The Intersection between Aging and Cardiovascular Disease. Circ. Res. 2012, 110, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Garatachea, N.; Pareja-Galeano, H.; Sanchis-Gomar, F.; Santos-Lozano, A.; Fiuza-Luces, C.; Morán, M.; Emanuele, E.; Joyner, M.J.; Lucia, A. Exercise Attenuates the Major Hallmarks of Aging. Rejuvenation Res. 2015, 18, 57–89. [Google Scholar] [CrossRef]
- Byrne, C.; Faure, C.; Keene, D.J.; Lamb, S.E. Ageing, Muscle Power and Physical Function: A Systematic Review and Implications for Pragmatic Training Interventions. Sports Med. 2016, 46, 1311–1332. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Hsu, C.-Y.; Liu, J.-F. Effects of Dietary and Exercise Intervention on Weight Loss and Body Composition in Obese Postmenopausal Women: A Systematic Review and Meta-Analysis. Menopause 2018, 25, 772–782. [Google Scholar] [CrossRef]
- Baker, A.; Sirois-Leclerc, H.; Tulloch, H. The Impact of Long-Term Physical Activity Interventions for Overweight/Obese Postmenopausal Women on Adiposity Indicators, Physical Capacity, and Mental Health Outcomes: A Systematic Review. J. Obes. 2016, 2016, 6169890. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.C.; Valencia, W.M. Exercise and Older Adults. Clin. Geriatr. Med. 2018, 34, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Tu, Y.-K.; Wang, T.-G.; Huang, Y.-T.; Chien, K.-L. Effects of Resistance Training, Endurance Training and Whole-Body Vibration on Lean Body Mass, Muscle Strength and Physical Performance in Older People: A Systematic Review and Network Meta-Analysis. Age Ageing 2018, 47, 367–373. [Google Scholar] [CrossRef]
- Hood, D.A.; Memme, J.M.; Oliveira, A.N.; Triolo, M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annu. Rev. Physiol. 2019, 81, 19–41. [Google Scholar] [CrossRef]
- Vasconcelos, A.B.S.; de Resende-Neto, A.G.; Nogueira, A.C.; Aragão-Santos, J.C.; Monteiro, M.R.P.; Morais Junior, G.S.; Avelar, G.G.; Camargo, E.A.; Nóbrega, O.d.T.; Da Silva-Grigoletto, M.E. Functional and Traditional Training Improve Muscle Power and Reduce Proinflammatory Cytokines in Older Women: A Randomized Controlled Trial. Exp. Gerontol. 2020, 135, 110920. [Google Scholar] [CrossRef]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International Exercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. J. Nutr. Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.d.F.; Soares, Y.M.; Silva, A.S. Concurrent Training or Combined Training? Rev. Bras. Med. Esporte 2019, 25, 105–106. [Google Scholar] [CrossRef]
- La Scala Teixeira, C.V.; Evangelista, A.L.; Novaes, J.S.; Da Silva Grigoletto, M.E.; Behm, D.G. “You’re Only as Strong as Your Weakest Link”: A Current Opinion about the Concepts and Characteristics of Functional Training. Front. Physiol. 2017, 8, 643. [Google Scholar] [CrossRef] [PubMed]
- Forman, D.E.; Arena, R.; Boxer, R.; Dolansky, M.A.; Eng, J.J.; Fleg, J.L.; Haykowsky, M.; Jahangir, A.; Kaminsky, L.A.; Kitzman, D.W.; et al. Prioritizing Functional Capacity as a Principal End Point for Therapies Oriented to Older Adults with Cardiovascular Disease: A Scientific Statement for Healthcare Professionals from the American Heart Association. Circulation 2017, 135, e894–e918. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement from the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef] [PubMed]
- Batsis, J.A.; Villareal, D.T. Sarcopenic Obesity in Older Adults: Aetiology, Epidemiology and Treatment Strategies. Nat. Rev. Endocrinol. 2018, 14, 513–537. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N. Body Composition in Healthy Aging. Ann. N. Y. Acad. Sci. 2006, 904, 437–448. [Google Scholar] [CrossRef] [PubMed]
- JafariNasabian, P.; Inglis, J.E.; Reilly, W.; Kelly, O.J.; Ilich, J.Z. Aging Human Body: Changes in Bone, Muscle and Body Fat with Consequent Changes in Nutrient Intake. J. Endocrinol. 2017, 234, R37–R51. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R. Skeletal Muscle Mass and Distribution in 468 Men and Women Aged 18–88 Yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef]
- Flynn, M.G.; Markofski, M.M.; Carrillo, A.E. Elevated Inflammatory Status and Increased Risk of Chronic Disease in Chronological Aging: Inflamm-Aging or Inflamm-Inactivity? Aging Dis. 2019, 10, 147. [Google Scholar] [CrossRef]
- Rossi, F.E.; Lira, F.S.; Silva, B.S.A.; Freire, A.P.C.F.; Ramos, E.M.C.; Gobbo, L.A. Influence of Skeletal Muscle Mass and Fat Mass on the Metabolic and Inflammatory Profile in Sarcopenic and Non-Sarcopenic Overfat Elderly. Aging Clin. Exp. Res. 2019, 31, 629–635. [Google Scholar] [CrossRef]
- Srikanthan, P.; Karlamangla, A.S. Muscle Mass Index As a Predictor of Longevity in Older Adults. Am. J. Med. 2014, 127, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I. Skeletal Muscle Cutpoints Associated with Elevated Physical Disability Risk in Older Men and Women. Am. J. Epidemiol. 2004, 159, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Savina, C.; Gennaro, E.; De Felice, M.R.; Rosano, A.; Pandolfo, M.M.; Del Balzo, V.; Cannella, C.; Ritz, P.; Chumlea, W.C. A Systematic Review of the Literature Concerning the Relationship between Obesity and Mortality in the Elderly. J. Nutr. Health Aging 2012, 16, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Seino, S.; Kitamura, A.; Abe, T.; Taniguchi, Y.; Yokoyama, Y.; Amano, H.; Nishi, M.; Nofuji, Y.; Narita, M.; Ikeuchi, T.; et al. Dose-Response Relationships between Body Composition Indices and All-Cause Mortality in Older Japanese Adults. J. Am. Med. Dir. Assoc. 2020, 21, 726–733.e4. [Google Scholar] [CrossRef]
- Bosch, T.A.; Steinberger, J.; Sinaiko, A.R.; Moran, A.; Jacobs, D.R.; Kelly, A.S.; Dengel, D.R. Identification of Sex-Specific Thresholds for Accumulation of Visceral Adipose Tissue in Adults: Threshold Accumulation of VAT in Adults. Obesity 2015, 23, 375–382. [Google Scholar] [CrossRef]
- Jiang, Z.; Marriott, K.; Maly, M.R. Impact of Inter- and Intramuscular Fat on Muscle Architecture and Capacity. Crit. Rev. Biomed. Eng. 2019, 47, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.K.; Chandrakumar, A.; Whyte, R.; Reitsma, S.; Gillick, H.; Pokhoy, A.; Papaioannou, A.; Adachi, J.D. Bone Marrow and Muscle Fat Infiltration Are Correlated among Postmenopausal Women with Osteoporosis: The AMBERS Cohort Study. J. Bone Miner. Res. 2020, 35, 516–527. [Google Scholar] [CrossRef]
- Mile, M.; Balogh, L.; Papp, G.; Pucsok, J.M.; Szabó, K.; Barna, L.; Csiki, Z.; Lekli, I. Effects of Functional Training on Sarcopenia in Elderly Women in the Presence or Absence of ACE Inhibitors. Int. J. Environ. Res. Public Health 2021, 18, 6594. [Google Scholar] [CrossRef]
- Timmons, J.F.; Minnock, D.; Hone, M.; Cogan, K.E.; Murphy, J.C.; Egan, B. Comparison of Time-Matched Aerobic, Resistance, or Concurrent Exercise Training in Older Adults. Scand. J. Med. Sci. Sports 2018, 28, 2272–2283. [Google Scholar] [CrossRef]
- de Resende-Neto, A.G.; Oliveira Andrade, B.C.; Cyrino, E.S.; Behm, D.G.; De-Santana, J.M.; Da Silva-Grigoletto, M.E. Effects of Functional and Traditional Training in Body Composition and Muscle Strength Components in Older Women: A Randomized Controlled Trial. Arch. Gerontol. Geriatr. 2019, 84, 103902. [Google Scholar] [CrossRef] [PubMed]
- de Resende-Neto, A.G.; Aragão-Santos, J.C.; Oliveira-Andrade, B.C.; Silva Vasconcelos, A.B.; De Sá, C.A.; Aidar, F.J.; De Santana, J.M.; Cadore, E.L.; Da Silva-Grigoletto, M.E. The Efficacy of Functional and Traditional Exercise on the Body Composition and Determinants of Physical Fitness of Older Women: A Randomized Crossover Trial. J. Aging Res. 2019, 2019, 5315376. [Google Scholar] [CrossRef] [PubMed]
- Manini, T.; Marko, M.; VanArnam, T.; Cook, S.; Fernhall, B.; Burke, J.; Ploutz-Snyder, L. Efficacy of Resistance and Task-Specific Exercise in Older Adults Who Modify Tasks of Everyday Life. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Wiszomirska, I.; Krynicki, B.; Kaczmarczyk, K.; Gajewski, J. The Impact of Functional Training on Postural Stability and Body Composition in Women over 60. J. Sports Med. Phys. Fit. 2015, 55, 654–662. [Google Scholar]
- Barakat, C.; Pearson, J.; Escalante, G.; Campbell, B.; De Souza, E.O. Body Recomposition: Can Trained Individuals Build Muscle and Lose Fat at the Same Time? Strength Cond. J. 2020, 42, 7–21. [Google Scholar] [CrossRef]
- Damas, F.; Libardi, C.A.; Ugrinowitsch, C. The Development of Skeletal Muscle Hypertrophy through Resistance Training: The Role of Muscle Damage and Muscle Protein Synthesis. Eur. J. Appl. Physiol. 2018, 118, 485–500. [Google Scholar] [CrossRef]
- Walker, S. Evidence of Resistance Training-Induced Neural Adaptation in Older Adults. Exp. Gerontol. 2021, 151, 111408. [Google Scholar] [CrossRef]
- Da Silva-Grigoletto, M.E. Validación de la escala de valoración subjetiva del esfuerzo OMNI-GSE para el control de la intensidad global en sesiones de objetivos múltiples en personas mayores. Kronos Act. Fís. Salud 2013, 12, 32–40. [Google Scholar]
- Methenitis, S. A Brief Review on Concurrent Training: From Laboratory to the Field. Sports 2018, 6, 127. [Google Scholar] [CrossRef]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical Impedance Analysis versus Reference Methods in the Assessment of Body Composition in Athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef]
- Fonseca, F.R.; Karloh, M.; de Araujo, C.L.P.; dos Reis, C.M.; Mayer, A.F. Validation of a bioelectrical impedance analysis system for body composition assessment in patients with COPD. J. Bras. Pneumol. 2018, 44, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Mialich, M.S.; Sicchieri, J.M.F.; Junior, A.A.J. Analysis of Body Composition: A Critical Review of the Use of Bioelectrical Impedance Analysis. Int. J. Clin. Nutr. 2014, 2, 1–10. [Google Scholar]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.; Chavis, M.; Watkins, J.; Wilson, T. The Five-Times-Sit-to-Stand Test: Validity, Reliability and Detectable Change in Older Females. Aging Clin. Exp. Res. 2012, 24, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Hsu, K.-J.; Liao, C.-D.; Tsai, M.-W.; Chen, C.-N. Effects of Exercise and Nutritional Intervention on Body Composition, Metabolic Health, and Physical Performance in Adults with Sarcopenic Obesity: A Meta-Analysis. Nutrients 2019, 11, 2163. [Google Scholar] [CrossRef] [PubMed]
- Liberman, K.; Forti, L.N.; Beyer, I.; Bautmans, I. The Effects of Exercise on Muscle Strength, Body Composition, Physical Functioning and the Inflammatory Profile of Older Adults: A Systematic Review. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 30–53. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-Response Relationship between Weekly Resistance Training Volume and Increases in Muscle Mass: A Systematic Review and Meta-Analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, B.J.; Contreras, B.; Krieger, J.; Grgic, J.; Delcastillo, K.; Belliard, R.; Alto, A. Resistance Training Volume Enhances Muscle Hypertrophy but Not Strength in Trained Men. Med. Sci. Sports Exerc. 2019, 51, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.A.; Kamen, G.; Frost, G. Neural Adaptations to Resistive Exercise: Mechanisms and Recommendations for Training Practices. Sports Med. 2006, 36, 133–149. [Google Scholar] [CrossRef]
- Sale, D.G. Neural Adaptation to Resistance Training. Med. Sci. Sports Exerc. 1988, 20, S135–S145. [Google Scholar] [CrossRef]
- Nascimento, M.A.D.; Gerage, A.M.; Silva, D.R.P.D.; Ribeiro, A.S.; Machado, D.G.D.S.; Pina, F.L.C.; Tomeleri, C.M.; Venturini, D.; Barbosa, D.S.; Mayhew, J.L.; et al. Effect of Resistance Training with Different Frequencies and Subsequent Detraining on Muscle Mass and Appendicular Lean Soft Tissue, IGF-1, and Testosterone in Older Women. Eur. J. Sport Sci. 2019, 19, 199–207. [Google Scholar] [CrossRef]
- Brown, J.C.; Harhay, M.O.; Harhay, M.N. Appendicular Lean Mass and Mortality among Prefrail and Frail Older Adults. J. Nutr. Health Aging 2017, 21, 342–345. [Google Scholar] [CrossRef]
- Westerterp, K.R. Exercise, Energy Balance and Body Composition. Eur. J. Clin. Nutr. 2018, 72, 1246–1250. [Google Scholar] [CrossRef]
- Buchmann, N.; Fielitz, J.; Spira, D.; König, M.; Norman, K.; Pawelec, G.; Goldeck, D.; Demuth, I.; Steinhagen-Thiessen, E. Muscle Mass and Inflammation in Older Adults: Impact of the Metabolic Syndrome. Gerontology 2022, 68, 989–998. [Google Scholar] [CrossRef]
- Antonio, J.; Ellerbroek, A.; Silver, T.; Orris, S.; Scheiner, M.; Gonzalez, A.; Peacock, C.A. A High Protein Diet (3.4 g/Kg/d) Combined with a Heavy Resistance Training Program Improves Body Composition in Healthy Trained Men and Women—A Follow-up Investigation. J. Int. Soc. Sports Nutr. 2015, 12, 39. [Google Scholar] [CrossRef]
- Riobó Serván, P. Consideraciones y Recomendaciones En El Caso de Estudios Nutricionales Realizados En Adultos. Nutr. Hosp. 2015, 31 (Suppl. 3), 84–90. [Google Scholar] [CrossRef]
- Swift, D.L.; McGee, J.E.; Earnest, C.P.; Carlisle, E.; Nygard, M.; Johannsen, N.M. The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. Prog. Cardiovasc. Dis. 2018, 61, 206–213. [Google Scholar] [CrossRef]
- Colquhoun, R.J.; Gai, C.M.; Aguilar, D.; Bove, D.; Dolan, J.; Vargas, A.; Couvillion, K.; Jenkins, N.D.M.; Campbell, B.I. Training Volume, Not Frequency, Indicative of Maximal Strength Adaptations to Resistance Training. J. Strength Cond. Res. 2018, 32, 1207–1213. [Google Scholar] [CrossRef]
- Alcaraz, P.E.; Perez-Gomez, J.; Chavarrias, M.; Blazevich, A.J. Similarity in Adaptations to High-Resistance Circuit vs. Traditional Strength Training in Resistance-Trained Men. J. Strength Cond. Res. 2011, 25, 2519–2527. [Google Scholar] [CrossRef]
- Faro, J.; Wright, J.A.; Hayman, L.L.; Hastie, M.; Gona, P.N.; Whiteley, J.A. Functional Resistance Training and Affective Response in Female College-Age Students. Med. Sci. Sports Exerc. 2019, 51, 1186–1194. [Google Scholar] [CrossRef]
PART 1 | PART 2 | PART 3 | PART 4 | |
---|---|---|---|---|
FUNCTIONAL TRAINING (FT) | Mobility, muscle activation, and motor coordination. | Exercises for muscle power, agility, and balance. | Exercises for strength in functional patterns using free weights. | Interval running. |
Time: 3 min. | Time: 10 min Stations: 5 Passages: 2 Density: 30/30 RPE: 6–7. | Time: 10 min Stations: 8 Passages: 2 Density: 40/40 RPE: 7–9 Intensity: 8–12 RM. | Time: 10 min Density: 40/40 RPE: 6–7. | |
COMBINED TRAINING (CT) | General and specific warm-up. | Exercises for strength using analytical machines. | Intermittent walking and running. | Active stretching. |
Time: 3 min. | Time: 16 min. Stations: 8. Passages: 2. Density: 40/40. RPE: 7–9. Intensity: 8–12 RM. | Time: 10 min. Density: 40/40. RPE: 6–7. | Time: 5 min. Density: 40/40. RPE: 3–4. |
Characteristics | FT | CT | CG | p |
---|---|---|---|---|
Anthropometry (mean and standard deviation) | ||||
Age (years) | 63.6 ± 3.4 | 65.2 ± 4.5 | 67.1 ± 5.8 | 0.063 |
Height (m) | 1.54 ± 0.06 | 1.55 ± 0.06 | 1.53 ± 0.06 | 0.802 |
BMI (kg/m2) | 28.84 ± 4.81 | 27.80 ± 4.54 | 29.23 ± 5.28 | 0.527 |
Smoking (relative and absolute frequency) | ||||
Smoker | 3.2 (1) | 0.0 (0) | 10.7 (3) | 0.362 |
Ex-smoker | 25.8 (8) | 18.5 (5) | 21.4 (6) | |
Never smoked | 71.0 (22) | 81.5 (22) | 67.9 (19) | |
Medical History (relative and absolute frequency) | ||||
Hypertension | 45.2 (14) | 51.9 (14) | 57.1 (16) | 0.653 |
Diabetes | 19.4 (6) | 14.8 (4) | 25.0 (7) | 0.650 |
Dyslipidemia | 41.9 (13) | 51.9 (14) | 39.3 (11) | 0.613 |
Alcohol intake | 29.0 (9) | 25.9 (7) | 25.0 (7) | 0.934 |
W0 | W4 | W8 | W12 | W16 | |
---|---|---|---|---|---|
FT (s) | 6.88 ± 1.70 | 6.01 ± 1.63 * | 5.64 ± 1.49 *# | 5.28 ± 1.22 *# | 5.04 ± 1.06 *# |
CT (s) | 8.01 ± 1.79 | 7.19 ± 1.81 * | 6.33 ± 1.58 * | 5.97 ± 1.37 *# | 5.82 ± 1.28 * |
CG (s) | 7.43 ± 1.66 | 7.51 ± 1.89 | 7.96 ± 2.02 | 7.76 ± 2.02 | 7.68 ± 2.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-Monteiro, M.R.; Aragão-Santos, J.C.; Vasconcelos, A.B.S.; de Resende-Neto, A.G.; de Almeida, A.F.S.; Gobbo, L.A.; Hermosilla-Perona, F.; Heredia-Elvar, J.R.; Del Vecchio, F.B.; Aidar, F.J.; et al. Functional and Combined Training Promote Body Recomposition and Lower Limb Strength in Postmenopausal Women: A Randomized Clinical Trial and a Time Course Analysis. Healthcare 2024, 12, 932. https://doi.org/10.3390/healthcare12090932
Pereira-Monteiro MR, Aragão-Santos JC, Vasconcelos ABS, de Resende-Neto AG, de Almeida AFS, Gobbo LA, Hermosilla-Perona F, Heredia-Elvar JR, Del Vecchio FB, Aidar FJ, et al. Functional and Combined Training Promote Body Recomposition and Lower Limb Strength in Postmenopausal Women: A Randomized Clinical Trial and a Time Course Analysis. Healthcare. 2024; 12(9):932. https://doi.org/10.3390/healthcare12090932
Chicago/Turabian StylePereira-Monteiro, Marcos Raphael, José Carlos Aragão-Santos, Alan Bruno Silva Vasconcelos, Antônio Gomes de Resende-Neto, André Filipe Santos de Almeida, Luis Alberto Gobbo, Francisco Hermosilla-Perona, Juan Ramón Heredia-Elvar, Fabricio Boscolo Del Vecchio, Felipe J. Aidar, and et al. 2024. "Functional and Combined Training Promote Body Recomposition and Lower Limb Strength in Postmenopausal Women: A Randomized Clinical Trial and a Time Course Analysis" Healthcare 12, no. 9: 932. https://doi.org/10.3390/healthcare12090932
APA StylePereira-Monteiro, M. R., Aragão-Santos, J. C., Vasconcelos, A. B. S., de Resende-Neto, A. G., de Almeida, A. F. S., Gobbo, L. A., Hermosilla-Perona, F., Heredia-Elvar, J. R., Del Vecchio, F. B., Aidar, F. J., & Da Silva-Grigoletto, M. E. (2024). Functional and Combined Training Promote Body Recomposition and Lower Limb Strength in Postmenopausal Women: A Randomized Clinical Trial and a Time Course Analysis. Healthcare, 12(9), 932. https://doi.org/10.3390/healthcare12090932