Pulmonary Function Changes in Fighter Pilots with Positive Pressure Ventilation
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGSM | anti-G straining maneuvers |
A-LOC | almost loss of consciousness |
FEV1 | forced expiratory volume in the first second |
FVC | forced vital capacity |
GAFCAM | German Air Force Centre for Aerospace Medicine |
G-LOC | G-induced loss of consciousness |
HPA | high-performance aircraft |
IQR | interquartile range |
PBG | positive pressure breathing during G |
PEF | peak expiratory flow |
PME | periodic medical examination |
TLC | total lung capacity |
V/Q | ventilation/perfusion |
VC | vital capacity |
References
- Eiken, O.; Kölegärd, R.; Bergsten, E.; Grönkvist, M. G protection: Interaction of straining maneuvers and positive pressure breathing. Aviat. Space Environ. Med. 2007, 78, 392–398. [Google Scholar]
- Parkhurst, M.J.; Leverett, S.D.; Shubrooks, S.J. Human tolerance to high, sustained +G z acceleration. Aerosp. Med. 1972, 43, 708–712. [Google Scholar]
- Sekiguchi, C.; Iwane, M.; Oshibuchi, M. Anti-G training of Japanese Air Self Defense Force fighter pilots. Aviat. Space Environ. Med. 1986, 57, 1029–1034. [Google Scholar]
- Whinnery, J.E. G-tolerance enhancement: Straining ability comparison of aircrewmen, nonaircrewmen, and trained centrifuge subjects. Aviat. Space Environ. Med. 1982, 53, 232–234. [Google Scholar]
- Alvim, K.M. Greyout, blackout, and G-loss of consciousness in the Brazilian Air Force: A 1991-92 survey. Aviat. Space Environ. Med. 1995, 66, 675–677. [Google Scholar] [PubMed]
- Cao, X.-S.; Wang, Y.; Xu, L.; Yang, C.-B.; Wang, B.; Geng, J.; Gao, Y.; Wu, Y.-H.; Wang, X.-Y.; Zhang, S.; et al. Visual symptoms and G-induced loss of consciousness in 594 Chinese Air Force aircrew—a questionnaire survey. Mil. Med. 2012, 177, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Morrissette, K.L.; McGowan, D.G. Further support for the concept of a G-LOC syndrome: A survey of military high-performance aviators. Aviat. Space Environ. Med. 2000, 71, 496–500. [Google Scholar]
- Slungaard, E.; McLeod, J.; Green, N.D.C.; Kiran, A.; Newham, D.J.; Harridge, S.D.R. Incidence of G-Induced Loss of Consciousness and Almost Loss of Consciousness in the Royal Air Force. Aerosp. Med. Hum. Perform. 2017, 88, 550–555. [Google Scholar] [CrossRef]
- Burton, R.R. G-induced loss of consciousness: Definition, history, current status. Aviat. Space Environ. Med. 1988, 59, 2–5. [Google Scholar]
- Green, N.D.C.; Ford, S.A. G-induced loss of consciousness: Retrospective survey results from 2259 military aircrew. Aviat. Space Environ. Med. 2006, 77, 619–623. [Google Scholar]
- Johanson, D.C.; Pheeny, H.T. A new look at the loss of consciousness experience within the U.S. Naval forces. Aviat. Space Environ. Med. 1988, 59, 6–8. [Google Scholar] [PubMed]
- Yilmaz, U.; Cetinguc, M.; Akin, A. Visual symptoms and G-LOC in the operational environment and during centrifuge training of Turkish jet pilots. Aviat. Space Environ. Med. 1999, 70, 709–712. [Google Scholar] [PubMed]
- Lyons, T.J.; Harding, R.; Freeman, J.; Oakley, C. G-induced loss of consciousness accidents: USAF experience 1982–1990. Aviat. Space Environ. Med. 1992, 63, 60–66. [Google Scholar]
- Glaister, D.H. The Effects of Gravity and Acceleration on the Lung; Technivision Services: Paris, France, 1970. [Google Scholar]
- Barr, P.-O.; Brismar, J.; Rosenhamer, G. Pulmonary Function and G-Stress during Inhalation of 100% Oxygen. Acta Physiol. Scand. 1969, 77, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, R.A.; Nolan, A.C.; Reed, J.H.; Wood, E.H. Regional pulmonary arterial-venous shunting caused by gravitational and inertial forces. J. Appl. Physiol. 1968, 25, 516–527. [Google Scholar] [CrossRef]
- Burrowes, K.S.; Tawhai, M.H. Computational predictions of pulmonary blood flow gradients: Gravity versus structure. Respir. Physiol. Neurobiol. 2006, 154, 515–523. [Google Scholar] [CrossRef]
- Dussault, C.; Gontier, E.; Verret, C.; Soret, M.; Boussuges, A.; Hedenstierna, G.; Montmerle-Borgdorff, S. Hyperoxia and hypergravity are independent risk factors of atelectasis in healthy sitting humans: A pulmonary ultrasound and SPECT/CT study. J. Appl. Physiol. 2016, 121, 66–77. [Google Scholar] [CrossRef]
- Pollock, R.D.; Gates, S.D.; Storey, J.A.; Radcliffe, J.J.; Stevenson, A.T. Indices of acceleration atelectasis and the effect of hypergravity duration on its development. Exp. Physiol. 2021, 106, 18–27. [Google Scholar] [CrossRef]
- Tacker, W.A., Jr.; Balldin, U.I.; Burton, R.R.; Glaister, D.H.; Gillingham, K.K.; Mercer, J.R. Induction and prevention of acceleration atelectasis. Aviat. Space Environ. Med. 1987, 58, 69–75. [Google Scholar]
- Leverett, S.D.; Burton, R.R. Physiological effect of high, sustained +Gz forces on man. Life Sci. Space Res. 1979, 17, 171–185. [Google Scholar] [CrossRef]
- Pollock, R.D.; Gates, S.D.; Radcliffe, J.J.; Stevenson, A.T. Indirect Measurements of Acceleration Atelectasis and the Role of Inspired Oxygen Concentrations. Aerosp. Med. Hum. Perform. 2021, 92, 780–785. [Google Scholar] [CrossRef]
- Eiken, O.; Kölegård, R.; Lindborg, B.; Mekjavic, I.B.; Linder, J. The effect of straining maneuvers on G-protection during assisted pressure breathing. Aviat. Space Environ. Med. 2003, 74, 822–826. [Google Scholar] [PubMed]
- Geng, X.; Zhan, C.; Yan, G.; Chu, X.; Lu, X.; Zhang, W. Centrifuge assessment of the +Gz protection afforded by pressure breathing for +Gz (PBG) with different pressure schedules. SAFE J. 2000, 30, 126–130. [Google Scholar]
- Burns, J.W.; Balldin, U.I. Assisted positive pressure breathing for augmentation of acceleration tolerance time. Aviat. Space Environ. Med. 1988, 59, 225–233. [Google Scholar] [PubMed]
- Bojahr, J.; Jörres, R.A.; Kronseder, A.; Weber, F.; Ledderhos, C.; Roiu, I.; Karrasch, S.; Nowak, D.; Teupser, D.; Königer, C. Effects of training flights of combat jet pilots on parameters of airway function, diffusing capacity and systemic oxidative stress, and their association with flight parameters. Eur. J. Med. Res. 2024, 29, 100. [Google Scholar] [CrossRef]
- Sammito, S.; Post, J. Effects of positive pressure ventilation on lung capacity in military pilots—A systematic literature review. Flugmed. Tropenmed. Reisemed. 2024, 31, 127–132. [Google Scholar] [CrossRef]
- Barthelmann, S.; Jakobs, F.M.; Wonhas, C.; Guettler, N.J. Influence of positive pressure breathing for g-protection (PBG) on lung function in high performance flying. Aerosp. Med. Hum. Perform. 2018, 89, 203. [Google Scholar]
- Scagliusi, A.; Condoluci, C.; Trivelloni, P.; Verde, P.; Perelli, P. Long term impact of positive pressure breathing for g-protection (PBG) in respiratory function: Italian Air Force pilot study. Aerosp. Med. Hum. Perform. 2016, 87, 216. [Google Scholar]
- Thomas, E.T.; Guppy, M.; Straus, S.E.; Bell, K.J.L.; Glasziou, P. Rate of normal lung function decline in ageing adults: A systematic review of prospective cohort studies. BMJ Open 2019, 9, e028150. [Google Scholar] [CrossRef]
- Sangani, R.; Lee, M.M.; Xu, H.; Dupuis, J.; O’Connor, G.T. The Upper Limit of Normal Rate of Lung Function Decline in Healthy Adults in the Framingham Heart Study. Chest Pulm. 2024, 2, 100058. [Google Scholar] [CrossRef]
- Burrows, B.; Cline, M.G.; Knudson, R.J.; Taussig, L.M.; Lebowitz, M.D. A descriptive analysis of the growth and decline of the FVC and FEV1. Chest 1983, 83, 717–724. [Google Scholar] [CrossRef]
- Cooper, B.G.; Stocks, J.; Hall, G.L.; Culver, B.; Steenbruggen, I.; Carter, K.W.; Thompson, B.R.; Graham, B.L.; Miller, M.R.; Ruppel, G.; et al. The Global Lung Function Initiative (GLI) Network: Bringing the world’s respiratory reference values together. Breathe 2017, 13, e56–e64. [Google Scholar] [CrossRef]
- Green, N.D. Lung volumes during +Gz acceleration and the effects of positive pressure breathing and chest counter-pressure. J. Gravit. Physiol. 1994, 1, P41–P44. [Google Scholar] [PubMed]
- Cornelissen, S.J.W.M.; Frijters, E.; Gray, G. Lung Function Changes with Acute +Gz Exposure as Assessed by Impulse Oscillometry. Aerosp. Med. Hum. Perform. 2025, 96, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Linder, J.; Krock, L.P.; Balldin, U.I.; Harms-Ringdahl, K. Muscle activity in pilots with and without pressure breathing during acceleration. Aviat. Space Environ. Med. 2003, 74, 626–632. [Google Scholar]
- Harding, R.M.; Bomar, J.B., Jr. Positive pressure breathing for acceleration protection and its role in prevention of inflight G-induced loss of consciousness. Aviat. Space Environ. Med. 1990, 61, 845–849. [Google Scholar]
- Travis, T.W.; Morgan, T.R. U.S. Air Force positive-pressure breathing anti-G system (PBG): Subjective health effects and acceptance by pilots. Aviat. Space Environ. Med. 1994, 65, A75–A79. [Google Scholar]
- Pecaric, M.; Buick, F. Determination of a pressure breathing schedule for improving +Gz tolerance. Aviat. Space Environ. Med. 1992, 63, 572–578. [Google Scholar]
- Shubrooks, S.J. Positive-pressure breathing as a protective technique during +Gz acceleration. J. Appl. Physiol. 1973, 35, 294–298. [Google Scholar] [CrossRef]
- Baillargeon, J. Characteristics of the healthy worker effect. Occup. Med. 2001, 16, 359–366. [Google Scholar]
HPA with PBG | HPA Without PBG | Fixed-Wing Aircraft | Total | pgroup | |
---|---|---|---|---|---|
n | 231 (100%) | 965 (100%) | 642 (100%) | 1838 (100%) | |
Gender | 0.765 | ||||
Male | 229 (99%) | 959 (99%) | 636 (99%) | 1824 (99%) | |
Female | 2 (1%) | 6 (1%) | 6 (1%) | 14 (1%) | |
Age [years] | 37.9 (33.0–43.9) | 40.0 (36.9–43.0) | 39.8 (40.5–49.2) | 39.9 (34.8–45.9) | 0.002 |
Follow-up [years] | 18.1 (14.0–24.8) | 19.9 (16.8–23.2) | 19.2 (12.6–28.4) | 19.7 (14.7–25.3) | 0.032 |
Smoking status | <0.001 | ||||
Active smoker | 25 (11%) | 160 (17%) | 82 (13%) | 267 (15%) | |
Former smoker | 28 (12%) | 138 (14%) | 150 (23%) | 316 (17%) | |
Never smoked | 173 (75%) | 644 (67%) | 404 (63%) | 1221 (66%) | |
Not specified | 5 (2%) | 23 (2%) | 6 (1%) | 34 (2%) | |
Body weight [kg] | |||||
Initial | 72.0 (68.0–78.0) | 72.0 (67.0–76.3) | 74.0 (68.2–80.0) | 72.1 (68.0–78.0) | <0.001 |
Last | 81.7 (76.0–89.0) | 82.0 (76.0–88.0) | 85.0 (78.0–92.1) | 83.0 (76.1–90.0) | <0.001 |
Difference | 9.9 (5.0–13.1) | 10.0 (5.6–15.0) | 10.0 (5.5–15.0) | 10.0 (5.5–15.0) | 0.329 |
pinitial vs. last | <0.001 | <0.001 | <0.001 | <0.001 | |
Body height [cm] | |||||
Initial | 180 (177–184) | 180 (176–184) | 182 (178–186) | 181 (177–185) | <0.001 |
Last | 181 (177–185) | 181 (177–185) | 183 (178–187) | 182 (178–186) | <0.001 |
Difference | −1 (−1–0) | −1 (−2–0) | −1 (−2–0) | −1 (−2–0) | 0.168 |
pinitial vs. last | <0.001 | <0.001 | <0.001 | <0.001 | |
BMI [kg/m2] | |||||
Initial | 22.2 (21.1–23.9) | 22.1 (21.0–23.3) | 22.4 (21.0–23.8) | 22.2 (21.0–23.5) | 0.013 |
Last | 24.8 (23.5–26.6) | 24.9 (23.5–26.5) | 25.2 (23.7–27.5) | 25.1 (23.6–26.9) | 0.012 |
Difference | 2.7 (1.5–3.9) | 2.8 (1.5–4.3) | 2.8 (1.5–4.4) | 2.8 (1.5–4.3) | 0.520 |
pinitial vs. Last | <0.001 | <0.001 | <0.001 | <0.001 |
HPA with PBG | HPA Without PBG | Fixed-Wing Aircraft | Total | pgroup | |
---|---|---|---|---|---|
n | 231 (100%) | 965 (100%) | 642 (100%) | 1838 (100%) | |
FVC [L] | |||||
Initial | 5.41 (5.04–5.85) | 5.48 (5.07–5.97) | 5.53 (5.09–6.07) | 5.50 (5.07–6.00) | 0.025 |
Last | 5.34 (4.99–5.87) | 5.42 (4.95–5.89) | 5.41 (4.92–5.97) | 5.41 (4.96–5.91) | 0.959 |
Difference | −0.05 (−0.36–0.28) | −0.03 (−0.40–0.33) | −0.14 (−0.52–0.24) | −0.07 (−0.44–0.30) | <0.001 |
pinitial vs. last | 0.123 | 0.031 | <0.001 | <0.001 | |
FEV1 [L/s] | |||||
Initial | 4.67 (4.34–5.10) | 4.67 (4.30–5.02) | 4.74 (4.37–5.18) | 4.69 (4.33–5.08) | 0.010 |
Last | 4.25 (3.86–4.60) | 4.31 (3.88–4.72) | 4.23 (3.77–4.71) | 4.28 (3.84–4.70) | 0.124 |
Difference | −0.46 (−0.75–−0.22) | −0.35 (−0.68–−0.03) | −0.54 (−0.86–−0.18) | −0.45 (−0.76–−0.12) | <0.001 |
pinitial vs. last | <0.001 | <0.001 | <0.001 | <0.001 | |
FEV1/FVC [%] | |||||
Initial | 87.0 (83.0–91.3) | 85.0 (81.0–90.0) | 85.3 (82.0–90.9) | 85.6 (82.0–90.0) | 0.005 |
Last | 78.9 (74.9–82.5) | 79.8 (75.7–83.6) | 78.7 (74.4–82.4) | 79.3 (75.0–83.1) | 0.001 |
Difference | −8.2 (−11.8–−5.0) | −6.0 (−10.0–−2.2) | −7.4 (−11.4–−3.6) | −6.8 (−10.7–−3.0) | <0.001 |
pinitial vs. last | <0.001 | <0.001 | <0.001 | <0.001 |
b | SE b | β | T | p | |
---|---|---|---|---|---|
(Constant) | 1.354 | 0.170 | 7.950 | <0.001 | |
Smoking status | 0.000 | 0.001 | −0.007 | −0.328 | 0.743 |
Age | −0.029 | 0.002 | −0.397 | −18.389 | <0.001 |
Gender | −0.159 | 0.146 | −0.023 | −1.087 | 0.277 |
Aircraft group | −0.039 | 0.019 | −0.043 | −2.016 | 0.044 |
b | SE b | β | T | p | |
---|---|---|---|---|---|
(Constant) | 0.602 | 0.161 | 3.751 | <0.001 | |
Smoking status | 0.000 | 0.001 | −0.004 | −0.193 | 0.847 |
Age | −0.023 | 0.001 | −0.343 | −15.511 | <0.001 |
Gender | −0.014 | 0.138 | −0.002 | −0.099 | 0.921 |
Aircraft group | −0.039 | 0.018 | −0.046 | −2.102 | 0.036 |
b | SE b | β | T | p | |
---|---|---|---|---|---|
(Constant) | −7.196 | 1.898 | −3.791 | <0.001 | |
Smoking status | −0.008 | 0.011 | −0.018 | −0.774 | 0.439 |
Age | −0.005 | 0.018 | −0.007 | −0.288 | 0.774 |
Gender | 0.576 | 1.628 | 0.008 | 0.353 | 0.724 |
Aircraft group | −0.092 | 0.217 | −0.010 | −0.425 | 0.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lengersdorf, A.; Post, J.; Guettler, N.; Sammito, S. Pulmonary Function Changes in Fighter Pilots with Positive Pressure Ventilation. Healthcare 2025, 13, 2020. https://doi.org/10.3390/healthcare13162020
Lengersdorf A, Post J, Guettler N, Sammito S. Pulmonary Function Changes in Fighter Pilots with Positive Pressure Ventilation. Healthcare. 2025; 13(16):2020. https://doi.org/10.3390/healthcare13162020
Chicago/Turabian StyleLengersdorf, Alexander, Janina Post, Norbert Guettler, and Stefan Sammito. 2025. "Pulmonary Function Changes in Fighter Pilots with Positive Pressure Ventilation" Healthcare 13, no. 16: 2020. https://doi.org/10.3390/healthcare13162020
APA StyleLengersdorf, A., Post, J., Guettler, N., & Sammito, S. (2025). Pulmonary Function Changes in Fighter Pilots with Positive Pressure Ventilation. Healthcare, 13(16), 2020. https://doi.org/10.3390/healthcare13162020