Evaluation of Motor Control Through Functional Movement Patterns of the Lumbar Spine Among Elite Special Forces Operators: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants
2.3. Evaluation Protocol
Card of Basic Information and Location of Pain Complaints
2.4. Assessment of Motor Control Using Dissociation Tests
2.4.1. The Testing Procedure and Evaluation Method
2.4.2. Selected Motor Control Assessment Tests
- 1.
- Flexion control test of the lumbopelvic complex.
- 2.
- Lumbar extension control test.
- 3.
- Lumbopelvic complex rotation control test.
- 4.
- Control test of lumbar spine flexion.
- 5.
- Rotation control test of the lumbopelvic complex.
- 6.
- Lumbar spine flexion control test.
- 7.
- Lumbar spine flexion control test.
2.5. Statistical Analysis
3. Results
3.1. Musculoskeletal Pain Complaints Among Operators
3.2. Results of the Lumbar Spine Motor Control Testing
4. Discussion
4.1. Summary of Results
4.2. Interpretation of Results and Clinical Implications
4.3. Limitations and Future Development of Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallagher, R.; Perez, S.; DeLuca, D.; Kurtzer, I. Anticipatory weight shift between arms when reaching from a crouched posture. J. Neurophysiol. 2021, 126, 1361–1374. [Google Scholar] [CrossRef]
- O’Sullivan, P.B.; Beales, D.J. Diagnosis and classification of pelvic girdle pain disorders—Part 1: A mechanism based approach within a biopsychosocial framework. Man. Ther. 2007, 12, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Wuytack, F.; Begley, C.; Daly, D. Risk factors for pregnancy-related pelvic girdle pain: A scoping review. BMC Pregnancy Childbirth 2020, 20, 739. [Google Scholar] [CrossRef] [PubMed]
- Wolski, L.; Stannard, J.; Toohey, L.; Fogarty, A.; Drew, M. Musculoskeletal Complaint Epidemiology in Australian Special Operation Forces Trainees. Mil. Med. 2023, 188, e3539–e3546. [Google Scholar] [CrossRef] [PubMed]
- Heebner, N.R.; Abt, J.P.; Lovalekar, M.; Beals, K.; Sell, T.C.; Morgan, J.; Kane, S.; Lephart, S. Physical and Performance Characteristics Related to Unintentional Musculoskeletal Injury in Special Forces Operators: A Prospective Analysis. J. Athl. Train. 2017, 52, 1153–1160. [Google Scholar] [CrossRef]
- Stannard, J.; Fortington, L. Musculoskeletal injury in military Special Operations Forces: A systematic review. BMJ Mil. Health 2021, 167, 255–265. [Google Scholar] [CrossRef]
- Desgagnés, A.; Patricio, P.; Bérubé, N.; Bernard, S.; Lamothe, M.; Massé-Alarie, H. Motor control of the spine in pregnancy-related lumbopelvic pain: A systematic review. Clin. Biomech. 2022, 98, 105716. [Google Scholar] [CrossRef]
- Ganesh, G.S.; Kaur, P.; Meena, S. Systematic reviews evaluating the effectiveness of motor control exercises in patients with non-specific low back pain do not consider its principles—A review. J. Bodyw. Mov. Ther. 2021, 26, 374–393. [Google Scholar] [CrossRef]
- Comerford, M.J.; Mottram, S.L. Functional stability re-training: Principles and strategies for managing mechanical dysfunction. Man. Ther. 2001, 6, 3–14. [Google Scholar] [CrossRef]
- Studnicki, R.; Szymczyk, P.; Adamczewski, T.; Studzińska, K.; Hansdorfer-Korzon, R.; Silva, A.F.; Kawczyński, A. Manual traction is effective in alleviating lumbosacral spine pain: Evidence from a randomized controlled trial. Heliyon 2024, 10, e31013. [Google Scholar] [CrossRef]
- Naderza, W.; Niespodziński, B.; Studnicki, R. Analyzing the Impact of Accumulated Training Shots on Electromyography Parameters in Trained Archery Athletes: Exploring Fatigue and Its Association with Training Practices. Appl. Sci. 2024, 14, 6109. [Google Scholar] [CrossRef]
- Studnicki, R.; Naderza, W.; Niespodziński, B.; Hansdorfer-Korzon, R.; Kawczyński, A. Efectos de la manipulación del hombro en las medidas de electromiografía en atletas de tiro con arco durante la recuperación de la fatiga: Una comparación entre sexos (Effects of shoulder manipulation on electromyography measures in archery athletes during recovery from fatigue: A comparison between sexes). Retos 2024, 60, 720–729. [Google Scholar]
- Comerford, M.J. Kinetic Control—The Management of Uncontrolled Movement; Elsevier BV.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Taanila, H.; Suni, J.; Pihlajamäki, H.; Mattila, V.M.; Ohrankämmen, O.; Vuorinen, P.; Parkkari, J. Aetiology and risk factors of musculoskeletal disorders in physically active conscripts: A follow-up study in the Finnish Defence Forces. BMC Musculoskelet. Disord. 2010, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Hansdorfer-Korzon, R.; Wnuk, D.; Ławnicki, J.; Śliwiński, M.; Gruszecka, A. Regarding the Necessity of Functional Assessment Including Motor Control Assessment of Post-Mastectomy Patients Qualified for Latissimus Dorsi Breast Reconstruction Procedure-Pilot Study. Int. J. Environ. Res. Public Health 2020, 17, 2845. [Google Scholar] [CrossRef]
- Śliwiński, M.; Wąż, P.; Zaręba, W.; Hansdorfer-Korzon, R. Motor Control Evaluation as a Significant Component in Upper Limb Function Assessment in Female Breast Cancer Patients after Mastectomy. Healthcare 2021, 9, 973. [Google Scholar] [CrossRef]
- Daneshjoo, A.; Mokhtar, A.H.; Rahnama, N.; Yusof, A. The effects of comprehensive warm-up programs on proprioception, static and dynamic balance on male soccer players. PLoS ONE 2012, 7, e51568. [Google Scholar] [CrossRef]
- Pinto, B.L.; Beaudette, S.M.; Brown, S.H.M. Tactile cues can change movement: An example using tape to redistribute flexion from the lumbar spine to the hips and knees during lifting. Hum. Mov. Sci. 2018, 60, 32–39. [Google Scholar] [CrossRef]
- Kang, M.H.; Choi, S.H.; Oh, J.S. Postural taping applied to the low back influences kinematics and EMG activity during patient transfer in physical therapists with chronic low back pain. J. Electromyogr. Kinesiol. 2013, 23, 787–793. [Google Scholar] [CrossRef]
- Grabara, M.; Bieniec, A. Functional Movement Patterns, Spinal Posture and Prevalence of Musculoskeletal Symptoms among Elite Ice Hockey Players: A Cross Sectional Study. J. Hum. Kinet. 2023, 87, 59–70. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Lendal, M.S.; Kjaer, M. Musculoskeletal sports medicine injuries in special operations forces soldiers. Transl. SPORTS Med. 2021, 4, 872–881. [Google Scholar] [CrossRef]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef]
- Urits, I.; Burshtein, A.; Sharma, M.; Testa, L.; Gold, P.A.; Orhurhu, V.; Viswanath, O.; Jones, M.R.; Sidransky, M.A.; Spektor, B.; et al. Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Curr. Pain Headache Rep. 2019, 23, 23. [Google Scholar] [CrossRef]
- Dingenen, B.; Blandford, L.; Comerford, M.; Staes, F.; Mottram, S. The assessment of movement health in clinical practice: A multidimensional perspective. Phys. Ther. Sport 2018, 32, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Mörl, F.; Günther, M.; Riede, J.M.; Hammer, M.; Schmitt, S. Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine. Biomech. Model. Mechanobiol. 2020, 19, 2015–2047. [Google Scholar] [CrossRef] [PubMed]
- Widmer, J.; Cornaz, F.; Scheibler, G.; Spirig, J.M.; Snedeker, J.G.; Farshad, M. Biomechanical contribution of spinal structures to stability of the lumbar spine-novel biomechanical insights. Spine J. 2020, 20, 1705–1716. [Google Scholar] [CrossRef]
- Cuellar, W.A.; Wilson, A.; Blizzard, C.L.; Otahal, P.; Callisaya, M.L.; Jones, G.; Hides, J.A.; Winzenberg, T.M. The assessment of abdominal and multifidus muscles and their role in physical function in older adults: A systematic review. Physiotherapy 2017, 103, 21–39. [Google Scholar] [CrossRef]
- Pinto, S.M.; Boghra, S.B.; Macedo, L.G.; Zheng, Y.P.; Pang, M.Y.; Cheung, J.P.; Karppinen, J.; Samartzis, D.; Wong, A.Y. Does Motor Control Exercise Restore Normal Morphology of Lumbar Multifidus Muscle in People with Low Back Pain?—A Systematic Review. J. Pain Res. 2021, 14, 2543–2562. [Google Scholar] [CrossRef]
- Shapiro, I.M.; Risbud, M.V. The Intervertebral Disc: Molecular and Structural Studies of the Disc in Health and Disease; Springer: Vienna, Austria, 2013. [Google Scholar]
- Inoue, N.; Orías, A.A.E.; Segami, K. Biomechanics of the Lumbar Facet Joint. Spine Surg. Relat. Res. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Narouei, S.; Barati, A.H.; Akuzawa, H.; Talebian, S.; Ghiasi, F.; Akbari, A.; Alizadeh, M.H. Effects of core stabilization exercises on thickness and activity of trunk and hip muscles in subjects with nonspecific chronic low back pain. J. Bodyw. Mov. Ther. 2020, 24, 138–146. [Google Scholar] [CrossRef]
Age [Years] | Height [cm] | Weight [kg] | Body Mass Index (BMI) | Declared Service Time in Combat Units [Years] |
---|---|---|---|---|
40.26 ± 4.5 | 178.9 ± 6.25 | 84.57 ± 8.0 | 26.40 ± 1.45 | 8.54 ± 6.0 |
Reported Pain Location | Respondents Reporting Pain [%] |
---|---|
Lumbar spine | 69.57 |
Knee area | 60.87 |
Shoulder girdle | 52.17 |
Foot and ankle | 30.43 |
Hip joint area | 26.09 |
Head and cervical spine | 21.74 |
Thoracic spine and ribs | 21.64 |
Elbow Complex | 13.04 |
Wrist and hand | 8.70 |
Test of control of lumbar spine flexion in the supine position—hip flexion | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 11 | 8 | 4 | |
Test of control of lumbar spine extension in the supine position—hip extension | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 14 | 4 | 5 | |
Test of control of lumbar rotation in the supine position, lowering the knee. Right lower extremity | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 7 | 4 | 12 | |
Control of the lumbar rotation in the supine position, lowering the knee. Left lower limb | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 9 | 4 | 10 | |
Test of control of lumbar spine flexion in the sitting position—straightening of the knee joints in the sitting position | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 15 | 2 | 6 | |
Test of control of lumbar spine rotation in the sitting position test—knee joint straightening. Lower right limb | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 9 | 5 | 9 | |
Test of control of lumbar spine flexion in the sitting position test—leaning forward in the sitting position | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 13 | 2 | 8 | |
Control test of lumbar spine flexion during the standing test, leaning forward while standing | ||||
n = 23 | X, X | V, X | V, V | p-value < 0.0001 |
Result | 13 | 3 | 7 |
Lumbar flexion control test in the supine position—hip flexion | |||
XX | VX | VV | |
Result [%] | 47.83 | 34.78 | 17.39 |
Lumbar flexion control test in the supine position—hip extension | |||
XX | VX | VV | |
Result [%] | 60.87 | 17.39 | 21.74 |
Lumbar rotation control test in the supine position—lowering the knee. Right lower limb | |||
XX | VX | VV | |
Result [%] | 30.43 | 17.39 | 52.17 |
Lumbar rotation control test in the supine position—lowering the knee. Left lower limb | |||
XX | VX | VV | |
Result [%] | 39.13 | 17.39 | 43.48 |
Lumbar flexion control test in the sitting position—straightening the knee joints in the sitting position | |||
XX | VX | VV | |
Result [%] | 65.22 | 8.70 | 26.09 |
Rotation control of the lumbar spine in the sitting position test—straightening of the knee joint. Right lower limb | |||
XX | VX | VV | |
Result [%] | 43.48 | 13.04 | 43.48 |
Rotation control of the lumbar spine in the sitting position test—straightening of the knee joint. Left lower limb | |||
XX | VX | VV | |
Result [%] | 39.13 | 21.74 | 39.13 |
Control of lumbar flexion in the sitting position test—leaning forward in the sitting position | |||
XX | VX | VV | |
Result [%] | 56.52 | 8.70 | 34.78 |
Control of lumbar flexion in the standing test—leaning forward while standing | |||
XX | VX | VV | |
Result [%] | 56.52 | 13.04 | 30.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hansdorfer Korzon, R.; Szamotulska, J.; Wąż, P.; Śliwiński, M.; Ławnicki, J.; Studnicki, R. Evaluation of Motor Control Through Functional Movement Patterns of the Lumbar Spine Among Elite Special Forces Operators: A Pilot Study. Healthcare 2025, 13, 2050. https://doi.org/10.3390/healthcare13162050
Hansdorfer Korzon R, Szamotulska J, Wąż P, Śliwiński M, Ławnicki J, Studnicki R. Evaluation of Motor Control Through Functional Movement Patterns of the Lumbar Spine Among Elite Special Forces Operators: A Pilot Study. Healthcare. 2025; 13(16):2050. https://doi.org/10.3390/healthcare13162050
Chicago/Turabian StyleHansdorfer Korzon, Rita, Jolanta Szamotulska, Piotr Wąż, Maciej Śliwiński, Jakub Ławnicki, and Rafał Studnicki. 2025. "Evaluation of Motor Control Through Functional Movement Patterns of the Lumbar Spine Among Elite Special Forces Operators: A Pilot Study" Healthcare 13, no. 16: 2050. https://doi.org/10.3390/healthcare13162050
APA StyleHansdorfer Korzon, R., Szamotulska, J., Wąż, P., Śliwiński, M., Ławnicki, J., & Studnicki, R. (2025). Evaluation of Motor Control Through Functional Movement Patterns of the Lumbar Spine Among Elite Special Forces Operators: A Pilot Study. Healthcare, 13(16), 2050. https://doi.org/10.3390/healthcare13162050