Which Infectious Diseases Drive the Highest Absenteeism Costs—An Analysis Based on National Data Covering the Entire Polish Population in the Period of 2018–2023
Abstract
1. Introduction
2. Materials and Methods
- = Gross domestic product in the selected year (EUR);
- = Number of employed individuals in the selected year;
- β = Correction factor (0, 65);
- = Number of working days in the selected year;
- = Number of workdays missed due to disease (aggregated).
3. Results
3.1. Sickness Absence Due to Infectious Diseases
3.2. Productivity Losses from Infectious Diseases
3.3. Infectious Diseases as a Public Health Challenge: Comparison with Other Major Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charalampous, P.; Haagsma, J.A.; Jakobsen, L.S.; Gorasso, V.; Noguer, I.; Padron-Monedero, A.; Sarmiento, R.; Santos, J.V.; McDonald, S.A.; Plass, D.; et al. Burden of infectious disease studies in Europe and the United Kingdom: A review of methodological design choices. Epidemiol. Infect. 2023, 151, e19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rosinska, M.; Czarkowski, M.P.; Sadkowska-Todys, M. Choroby zakaźne w Polsce w 2022 roku. Przegląd Epidemiol. Epidemiol. Rev. 2024, 78, 524–542. [Google Scholar] [CrossRef]
- Jo, C. Cost-of-illness studies: Concepts, scopes, and methods. Clin. Mol. Hepatol. 2014, 20, 327–337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Larg, A.; Moss, J.R. Cost-of-illness studies: A guide to critical evaluation. Pharmacoeconomics 2011, 29, 653–671. [Google Scholar] [CrossRef] [PubMed]
- de Courville, C.; Cadarette, S.M.; Wissinger, E.; Alvarez, F.P. The economic burden of influenza among adults aged 18 to 64: A systematic literature review. Influenza Other Respir. Viruses 2022, 16, 376–385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blanchet Zumofen, M.H.; Frimpter, J.; Hansen, S.A. Impact of influenza and influenza-like illness on work productivity outcomes: A systematic literature review. Pharmacoeconomics 2023, 41, 253–273. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vardavas, C.; Nikitara, K.; Zisis, K.; Athanasakis, K.; Phalkey, R.; Leonardi-Bee, J.; Johnson, H.; Tsolova, S.; Ciotti, M.; Suk, J.E. Cost-effectiveness of emergency preparedness measures in response to infectious respiratory disease outbreaks: A systematic review and econometric analysis. BMJ Open 2021, 11, e045113. [Google Scholar] [CrossRef]
- Fisman, D.; Postma, M.; Levin, M.J.; Mould-Quevedo, J. Absenteeism and productivity loss due to influenza or influenza-like illness in adults in Europe and North America. Diseases 2024, 12, 331. [Google Scholar] [CrossRef]
- Gianino, M.M.; Politano, G.; Scarmozzino, A.; Stillo, M.; Amprino, V.; Di Carlo, S.; Benso, A.; Zotti, C.M. Cost of sickness absenteeism during seasonal influenza outbreaks of medium intensity among health care workers. Int. J. Environ. Res. Public Health 2019, 16, 747. [Google Scholar] [CrossRef]
- Łyszczarz, B. Incidence and cost of COVID-19-related work absence based on social insurance data from Poland. Eur. J. Public Health 2023, 33 (Suppl. 2), ckad160.922. [Google Scholar] [CrossRef]
- Lampropoulos, I.C.; Rouka, E.; Pantazopoulos, I.; Aggelopoulos, E.; Papagiannis, D.; Malli, F.; Gourgoulianis, K.I. Indirect costs arising from COVID-19-related work absenteeism from October 2020 to July 2022: A retrospective study from Central Greece. Cureus 2025, 17, e81358. [Google Scholar] [CrossRef]
- Golicki, D.; Jaśkowiak, K.; Dobrowolska, I.; Niewada, M. Indirect costs of pneumococcal diseases in Poland: Estimation based on the data of the Social Insurance Institution (ZUS) regarding sickness absence. J. Health Policy Outcomes Res. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Si, L.; Zang, X.; Gu, Y.-Y.; Jiang, Y.; Liu, G.G.; Wu, J. Incorporating productivity loss in health economic evaluations: A review of guidelines and practices worldwide for research agenda in China. BMJ Glob. Health 2022, 7, e009777. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yuasa, A.; Yonemoto, N.; Kamei, K.; Murofushi, T.; LoPresti, M.; Taneja, A.; Horgan, J.; Ikeda, S. Systematic literature review of the use of productivity losses/gains in cost-effectiveness analyzes of immune-mediated disorders. Adv. Ther. 2022, 39, 5327–5350. [Google Scholar] [CrossRef]
- Setiawan, E.; Cassidy-Seyoum, S.A.; Thriemer, K.; Carvalho, N.; Devine, A. A systematic review of methods for estimating productivity losses due to illness or caregiving in low- and middle-income countries. Pharmacoeconomics 2024, 42, 865–877. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Putri, W.C.W.S.; Muscatello, D.J.; Stockwell, M.S.; Newall, A.T. Economic burden of seasonal influenza in the United States. Vaccine 2018, 36, 3960–3966. [Google Scholar] [CrossRef] [PubMed]
- Seweryn, M. Potential savings resulting from avoided hospitalizations and avoided productivity losses due to low influenza vaccination coverage in Poland. J. Health Inequal. 2018, 4, 75–79. [Google Scholar] [CrossRef]
- Cassini, A.; Colzani, E.; Pini, A.; Mangen, M.-J.J.; Plass, D.; McDonald, S.A.; Maringhini, G.; van Lier, A.; Haagsma, J.A.; Havelaar, A.H.; et al. BCoDE consortium. Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): Results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries, 2009 to 2013. Eurosurveillance 2018, 23, 17–00454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2021 (GBD 2021) Results; IHME: Seattle, WA, USA, 2022; Available online: https://vizhub.healthdata.org/gbd-results/ (accessed on 17 August 2025).
- Samsudin, E.Z.; Yasin, S.M.; Ruslan, N.H.; Abdullah, N.N.; Noor, A.F.A.; Hair, A.F.A. Socioeconomic impacts of airborne and droplet-borne infectious diseases on industries: A systematic review. BMC Infect. Dis. 2024, 24, 93. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramos, S.C.; Maldonado, J.E.; Vandeplas, A.; Ványolós, I. Long COVID: A tentative assessment of its impact on labor market participation and potential economic effects in the EU. In European Economy Economic Briefs; European Commission: Luxembourg, 2024. [Google Scholar]
- Schmid, J.A.; Jarczok, M.N.; Sonntag, D.; Herr, R.M.; Fischer, J.E.; Schmidt, B. Associations between supportive leadership behavior and the costs of absenteeism and presenteeism: An epidemiological and economic approach. J. Occup. Environ Med. 2017, 59, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Mennini, F.S.; Gitto, L. Approaches to estimating indirect costs in healthcare. J. Eur. Econ. 2022, 21, 17–45. Available online: https://mpra.ub.uni-muenchen.de/112129/ (accessed on 8 September 2025). [CrossRef]
- Raport, E.Y. Metodyka Pomiaru Kosztów Pośrednich w Polskim Systemie Ochrony Zdrowia; INFARMA—Związek Pracodawców Innowacyjnych Firm Farmaceutycznych: Warszawa, Poland, 2013. [Google Scholar]
- Zakład Ubezpieczeń Społecznych (ZUS). Statystyka. Available online: https://www.zus.pl/baza-wiedzy/statystyka (accessed on 12 May 2025).
- Statistics Poland (GUS). Available online: https://stat.gov.pl/ (accessed on 15 May 2025).
- European Commission. 2024 Ageing Report. In Underlying Assumptions & Projection Methodologies; European Commission: Brussels, Belgium, 2023; ISSN 2443-8014. [Google Scholar] [CrossRef]
- Rada, M. Rozporządzenie Zmieniające Rozporządzenie w Sprawie Ustanowienia Określonych Ograniczeń, Nakazów i Zakazów w Związku z Wystąpieniem Stanu Epidemii. Dz.U. 2022, 1025. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220001025 (accessed on 8 September 2025).
- Mokros, Ł.; Świtaj, P.; Bieńkowski, P.; Święcicki, Ł.; Sienkiewicz-Jarosz, H. Depression and loneliness may predict work inefficiency among professionally active adults. Int. Arch. Occup. Environ. Health 2022, 95, 1775–1783. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Melchior, M.; Ferrie, J.E.; Alexanderson, K.; Goldberg, M.; Kivimaki, M.; Singh-Manoux, A.; Vahtera, J.; Westerlund, H.; Zins, M.; Head, J. Using sickness absence records to predict future depression in a working population: Prospective findings from the GAZEL cohort. Am. J. Public Health 2009, 99, 1417–1422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orlewska, K.; Stępień, R.; Orlewska, E. Burden of cancer in Poland analyzed using potential years of life lost. Contemp. Oncol. 2020, 24, 13–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Macioch, T.; Hermanowski, T. The indirect costs of cancer-related absenteeism in the workplace in Poland. J. Occup. Environ. Med. 2011, 53, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Ong, K.L.; Aali, A.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbasi-Kangevari, M.; Abbastabar, H.; et al. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2100–2132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Q.; Bi, L.; Wang, B.; Lv, T.; Zhang, P. Global trends in the burden of ischemic heart disease based on the Global Burden of Disease Study 2021: The role of metabolic risk factors. BMC Public Health 2025, 25, 310. [Google Scholar] [CrossRef] [PubMed]
- Mela, A.; Rdzanek, E.; Poniatowski, Ł.A.; Jaroszyński, J.; Furtak-Niczyporuk, M.; Gałązka-Sobotka, M.; Olejniczak, D.; Niewada, M.; Staniszewska, A. Economic costs of cardiovascular diseases in Poland: Estimates for 2015–2017. Front. Pharmacol. 2020, 11, 1231. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheehan, D.V. Depression: Underdiagnosed, undertreated, underappreciated. Manag. Care 2004, 13 (Suppl. 6), 6–8. [Google Scholar] [PubMed]
- Bertilsson, M.; Löve, J.; Martinsson, J.; Wängnerud, L.; Hensing, G. Association of stigmatizing attitudes with people’s opinion of depression as a valid reason for sickness absence: A Swedish vignette study. Work 2022, 73, 495–504. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Horsbøl, T.A. Labor Market Participation for Patients Diagnosed with Haematological Malignancies: Observational and Longitudinal Studies on Disability Pension, Return to Work and Long-Term Sickness Absence. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2014. [Google Scholar]
- Saarinen, S.L.; Borregaard, B.; Ekholm, O.; Christensen, A.V.; Thorup, C.B.; Thomsen, T.; Thrysoee, L.; Mols, R.E.; Juel, K.; Berg, S.K.; et al. Self-reported mental and physical health is associated with not returning to work in patients with ischemic heart disease. Int. J. Cardiol. 2024, 409, 132180. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.K.; Liu, R.; Karimullina, K.; Hall, I.; Amlôt, R.; Rubin, G.J. A systematic review of infectious illness presenteeism: Prevalence, reasons and risk factors. BMC Public Health 2019, 19, 799. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.; Wei, H.; Han, Y.; Catt, H.; Denning, D.W.; Hall, I.; Regan, M.; Verma, A.; Whitfield, C.A.; van Tongeren, M. Risk factors associated with respiratory infectious disease-related presenteeism: A rapid review. BMC Public Health 2021, 21, 1955. [Google Scholar] [CrossRef]
- Łyszczarz, B. Productivity losses from short-term work absence due to neoplasms in Poland. Sci Rep. 2024, 14, 3289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mikos, M.; Juszczyk, G.; Czerw, A.; Strzępek, Ł.; Banaś, T.; Cipora, E.; Deptała, A.; Badowska-Kozakiewicz, A. Refusal to take sick leave after being diagnosed with a communicable disease as an estimate of the phenomenon of presenteeism in Poland. Med. Princ. Pract. 2020, 29, 134–141. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, W.; Sun, H.; Woodcock, S.; Anis, A.H. Valuing productivity loss due to absenteeism: Firm-level evidence from a Canadian linked employer-employee survey. Health Econ. Rev. 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zuzak, T.Z.; Bogaczyk, A.; Januszek, N.; Januszek, S.; Kluz, T. The impact of the SARS-CoV-2 pandemic on screening tests rates in breast and cervical cancer. Med. Public Health 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Augustynowicz, A.; Borowska, M.; Lewtak, K.; Borowicz, J.; Waszkiewicz, M.; Karakiewicz, B.; Opolski, J.; Banaś, T.; Czerw, A. Financing of immunization programs by local government units in Poland as an element of health policy. Vaccines 2021, 10, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Year | Average EUR/PLN Exchange Rate | GDP (in EUR) | Employment | Assumed Number of Working Days per Year | GDP per Worker (Adjusted with CF) | Value of One Working Day |
---|---|---|---|---|---|---|
2018 | 4.2623 | € 497,496,656,735 | 16,409,000 | 227 | € 19,707 | € 86.81 |
2019 | 4.3018 | € 531,809,475,103 | 16,467,000 | 228 | € 20,992 | € 92.07 |
2020 | 4.4742 | € 520,016,092,262 | 16,555,000 | 230 | € 20,527 | € 89.25 |
2021 | 4.5652 | € 574,771,751,511 | 16,780,000 | 229 | € 22,265 | € 97.23 |
2022 | 4.6881 | € 654,315,180,990 | 16,796,000 | 228 | € 25,322 | € 111.06 |
2023 | 4.5430 | € 748,758,529,606 | 17,323,000 | 227 | € 28,095 | € 123.77 |
2018 | 2019 | 2020 | ||||
---|---|---|---|---|---|---|
ICD-10 | No. of Sick Leave Days | No. of Issued Sick Leave Certificates | Number of Sick Leave Days | Number of Issued Sick Leave Certificates | Number of Sick Leave Days | Number of Issued Sick Leave Certificates |
A00–A09: Intestinal infectious diseases (e.g., salmonella, rotavirus) | 648,836 | 173,970 | 694,686 | 197,828 | 449,569 | 121,195 |
A15–A19: Tuberculosis | 231,495 | 7856 | 183,922 | 6986 | 148,399 | 5756 |
A30-A49: Other bacterial diseases (e.g., whooping cough, diphtheria, tetanus) | 163,011 | 11,750 | 143,287 | 11,382 | 109,984 | 8752 |
A50–A64: Infections with a predominantly sexual mode of transmission | 11,847 | 1199 | 8815 | 995 | 6735 | 795 |
A80–A89: Viral infections of the central nervous system | 46,756 | 2642 | 35,246 | 2464 | 20,576 | 1115 |
B00–B09: Viral infections with skin and mucous membrane lesions (e.g., varicella, herpes) | 506,862 | 62,916 | 543,155 | 68,757 | 452,063 | 54,740 |
B15–B19: Viral hepatitis | 150,788 | 12,337 | 99,410 | 9746 | 56,801 | 4742 |
B20–B24: HIV | 26,796 | 1761 | 20,291 | 1565 | 17,354 | 1173 |
B25–B34: Other viral infections (e.g., cytomegalovirus, influenza-like illness, adenovirus) | 80,848 | 14,223 | 93,480 | 17,740 | 757,523 | 111,861 |
B95–B97: Bacterial and viral agents as cause of diseases | 5722 | 948 | 5364 | 990 | 33,062 | 4261 |
J09–J11: Influenza | 1,222,976 | 184,225 | 681,099 | 117,729 | 669,537 | 105,428 |
U07–U09: COVID-19 | n.a. | n.a. | n.a. | n.a. | 4,835,175 | 617,906 |
J12–J22: Pneumonia and other acute lower respiratory tract infections | 4,436,183 | 595,022 | 3,652,994 | 513,629 | 2,661,591 | 318,384 |
Total | 7,532,120 | 1,068,849 | 6,161,749 | 949,811 | 10,218,369 | 1,356,108 |
2021 | 2022 | 2023 | ||||
---|---|---|---|---|---|---|
ICD-10 | Number of Sick Leave Days | Number of Issued Sick Leave Certificates | Number of Sick Leave Days | Number of Issued Sick Leave Certificates | Number of Sick Leave Days | Number of Issued Sick Leave Certificates |
A00–A09: Intestinal infectious diseases (e.g., salmonella, rotavirus) | 520,087 | 155,822 | 706,365 | 225,089 | 603,897 | 195,958 |
A15–A19: Tuberculosis | 140,810 | 5467 | 159,786 | 6233 | 170,969 | 6466 |
A30–A49: Other bacterial diseases (e.g., whooping cough, diphtheria, tetanus) | 92,582 | 7460 | 115,012 | 9112 | 146,911 | 12,022 |
A50–A64: Infections with a predominantly sexual mode of transmission | 7732 | 978 | 8209 | 1071 | 7942 | 1234 |
A80–A89: Viral infections of the central nervous system | 23,671 | 2063 | 41,770 | 4930 | 39,916 | 3257,000 |
B00–B09: Viral infections with skin and mucous membrane lesions (e.g., varicella, herpes) | 358,186 | 47,340 | 427,682 | 58,493 | 432,638 | 60,504 |
B15–B19: Viral hepatitis | 34,731 | 3808 | 38,723 | 4417 | 40,538 | 5235 |
B20–B24: HIV | 16,724 | 1244 | 17,773 | 1511 | 20,275 | 1758 |
B25–B34: Other viral infections (e.g., cytomegalovirus, influenza-like illness, adenovirus) | 431,428 | 87,368 | 536,578 | 121,900 | 518,635 | 126,662 |
B95–B97: Bacterial and viral agents as cause of diseases | 27,092 | 3673 | 11,719 | 1950 | 12,498 | 2254 |
J09–J11: Influenza | 141,995 | 24,232 | 622,188 | 115,588 | 1,077,152 | 198,951 |
U07–U09: COVID-19 | 5,404,746 | 652,002 | 4,923,944 | 737,221 | 2,560,970 | 407,646 |
J12–J22: Pneumonia and other acute lower respiratory tract infections | 2,632,891 | 321,987 | 2,749,099 | 385,331 | 2,987,672 | 436,289 |
Total | 9,832,675 | 1,313,444 | 10,358,848 | 1,672,846 | 8,620,013 | 1,458,236 |
ICD-10 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | Total |
---|---|---|---|---|---|---|---|
A00–A09: Intestinal infectious diseases (e.g., salmonella, rotavirus) | € 56,328,799 | € 63,960,027 | € 39,908,874 | € 50,565,852 | € 78,449,253 | € 74,742,746 | € 363,955,551 |
A15–A19: Tuberculosis | € 20,097,275 | € 16,933,775 | € 13,173,588 | € 13,690,359 | € 17,745,914 | € 21,160,384 | € 102,801,294 |
A30–A49: Other bacterial diseases (e.g., whooping cough, diphtheria, tetanus) | € 14,151,825 | € 13,192,493 | € 9,763,435 | € 9,001,355 | € 12,773,291 | € 18,182,789 | € 77,065,188 |
A50–A64: Infections with a predominantly sexual mode of transmission | € 1,028,499 | € 811,601 | € 597,875 | € 751,750 | € 911,696 | € 982,960 | € 5,084,381 |
A80–A89: Viral infections of the central nervous system | € 4,059,129 | € 3,245,114 | € 1,826,561 | € 2,301,431 | € 4,638,997 | € 4,940,299 | € 21,011,530 |
B00–B09: Viral infections with skin and mucous membrane lesions (e.g., varicella, herpes) | € 44,003,304 | € 50,008,506 | € 40,130,270 | € 34,824,905 | € 47,498,579 | € 53,546,469 | € 270,012,032 |
B15–B19: Viral hepatitis | € 13,090,684 | € 9,152,720 | € 5,042,305 | € 3,376,748 | € 4,300,596 | € 5,017,282 | € 39,980,334 |
B20–B24: HIV | € 2,326,299 | € 1,868,201 | € 1,540,539 | € 1,626,004 | € 1,973,878 | € 2,509,384 | € 11,844,304 |
B25–B34: Other viral infections (e.g., cytomegalovirus, influenza-like illness, adenovirus) | € 7,018,832 | € 8,606,742 | € 67,246,385 | € 41,945,914 | € 59,592,623 | € 64,190,092 | € 248,600,588 |
B95–B97: Bacterial and viral agents as cause of diseases | € 496,756 | € 493,866 | € 2,934,960 | € 2,634,040 | € 1,301,518 | € 1,546,845 | € 9,407,985 |
J09–J11: Influenza | € 106,172,852 | € 62,709,067 | € 59,435,744 | € 13,805,571 | € 69,100,513 | € 133,316,275 | € 444,540,022 |
U07–U09: COVID-19 | n.a. | n.a. | € 429,287,756 | € 525,480,521 | € 546,855,703 | € 316,964,532 | € 1,818,588,513 |
J12–J22: Pneumonia and other acute lower respiratory tract infections | € 385,127,920 | € 336,332,669 | € 236,273,186 | € 255,984,821 | € 305,316,321 | € 369,776,318 | € 1,888,811,235 |
Total | € 653,902,174 | € 567,314,780 | € 907,161,479 | € 955,989,271 | € 1,150,458,881 | € 1,066,876,374 | € 5,301,702,958 |
Measure | Communicable Diseases | Non-Communicable Diseases |
---|---|---|
DALYs (Disability-Adjusted Life Years) total | 14.9% | 74.4% |
YLDs (Years Lived with Disability) | 3.4% | 85.0% |
YLLs (Years of Life Lost) | 13.8% | 69.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seweryn, M.; Juszczyk, G.; Czech, M. Which Infectious Diseases Drive the Highest Absenteeism Costs—An Analysis Based on National Data Covering the Entire Polish Population in the Period of 2018–2023. Healthcare 2025, 13, 2284. https://doi.org/10.3390/healthcare13182284
Seweryn M, Juszczyk G, Czech M. Which Infectious Diseases Drive the Highest Absenteeism Costs—An Analysis Based on National Data Covering the Entire Polish Population in the Period of 2018–2023. Healthcare. 2025; 13(18):2284. https://doi.org/10.3390/healthcare13182284
Chicago/Turabian StyleSeweryn, Michał, Grzegorz Juszczyk, and Marcin Czech. 2025. "Which Infectious Diseases Drive the Highest Absenteeism Costs—An Analysis Based on National Data Covering the Entire Polish Population in the Period of 2018–2023" Healthcare 13, no. 18: 2284. https://doi.org/10.3390/healthcare13182284
APA StyleSeweryn, M., Juszczyk, G., & Czech, M. (2025). Which Infectious Diseases Drive the Highest Absenteeism Costs—An Analysis Based on National Data Covering the Entire Polish Population in the Period of 2018–2023. Healthcare, 13(18), 2284. https://doi.org/10.3390/healthcare13182284