New Generation Automatic Massage Chairs for Enhancing Daytime Naps: A Crossover Placebo-Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Procedure
2.4. Body Composition
2.5. Visual Scale
2.6. Brain Activity/Sleep Architecture
2.7. Handgrip Strength Assessment
2.8. Massage Session
2.8.1. Massage Auto-Programs of the AEMC
2.8.2. Easy-Sleep Program
2.8.3. Fatigue-Recovery Program
2.8.4. Worker-Mode Program
2.9. Statistical Analysis
2.10. Power Analysis
2.11. Trial Registration
2.12. Data Availability
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutheil, F.; Danini, B.; Bagheri, R.; Fantini, M.L.; Pereira, B.; Moustafa, F.; Trousselard, M.; Navel, V. Effects of a short daytime nap on the cognitive performance: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 10212. [Google Scholar] [CrossRef]
- Lastella, M.; Halson, S.L.; Vitale, J.A.; Memon, A.R.; Vincent, G.E. To nap or not to nap? A systematic review evaluating napping behavior in athletes and the impact on various measures of athletic performance. Nat. Sci. Sleep 2021, 13, 841–862. [Google Scholar] [CrossRef]
- Nishida, M.; Ichinose, A.; Murata, Y.; Shioda, K. Effect of napping on a bean bag chair on sleep stage, muscle activity, and heart rate variability. PeerJ 2022, 10, e13284. [Google Scholar] [CrossRef]
- Ntoumas, I.; Karatzaferi, C.; Giannaki, C.D.; Papanikolaou, F.; Pappas, A.; Dardiotis, E.; Sakkas, G.K. The Impact of Relaxation Massage Prior to Bedtime on Sleep Quality and Quantity in People with Symptoms of Chronic Insomnia: A Home-Based Sleep Study. Healthcare 2025, 13, 180. [Google Scholar] [CrossRef] [PubMed]
- Labrique-Walusis, F.; Keister, K.J.; Russell, A.C. Massage therapy for stress management: Implications for nursing practice. Orthop. Nurs. 2010, 29, 254–257. [Google Scholar] [CrossRef]
- Moyer, C.A.; Rounds, J.; Hannum, J.W. A Meta-Analysis of Massage Therapy Research. Psychol. Bull. 2004, 130, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, P.A.; Williams, H.G.; Granner, M.L.; Hussey, J.R. A randomised study of the effects of massage therapy compared to guided relaxation on well-being and stress perception among older adults. Complement. Ther. Med. 2007, 15, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Cho, Y.S.; Lee, M.; Yun, S.; Jeong, Y.J.; Won, Y.-H.; Hong, J.; Kim, S. Effects of nonpharmacological interventions on sleep improvement and delirium prevention in critically ill patients: A systematic review and meta-analysis. Aust. Crit. Care 2023, 36, 640–649. [Google Scholar] [CrossRef]
- Engen, D.J.; Wahner-Roedler, D.L.; Vincent, A.; Chon, T.Y.; Cha, S.S.; Luedtke, C.A.; Loehrer, L.L.; Dion, L.J.; Rodgers, N.J.; Bauer, B.A. Feasibility and effect of chair massage offered to nurses during work hours on stress-related symptoms: A pilot study. Complement. Ther. Clin. Pract. 2012, 18, 212–215. [Google Scholar] [CrossRef]
- Youn, B.Y.; Cho, H.; Joo, S.; Kim, H.J.; Kim, J.Y. Utilization of massage chairs for promoting overall health and wellness: A rapid scoping review. Explore 2024, 20, 285–297. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.R.; Jung, Y.H.; Park, Y.H.; Seo, S.W. Effects of electrical automatic massage on cognition and sleep quality in alzheimer’s disease spectrum patients: A randomized controlled trial. Yonsei Med. J. 2021, 62, 717–725. [Google Scholar] [CrossRef]
- Masakul, P.; Rungsihirunrat, K. The Effectiveness of 3-Month Exercise Program on Body Composition in Overweight Adult Army Male Officers at Support Unit of Armed Forces Development Command, Bangkok, Thailand: A Quasi-Experimental Study. Int. J. Multidiscip. Res. Publ. 2020, 3, 31–36. [Google Scholar]
- Higgins, S.C.; Adams, J.; Hughes, R. Measuring hand grip strength in rheumatoid arthritis. Rheumatol. Int. 2018, 38, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. Statistics textbooks in the. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kunikata, H.; Watanabe, K.; Miyoshi, M.; Tanioka, T. The effects measurement of hand massage by the autonomic activity and psychological indicators. J. Med. Investig. 2012, 59, 206–212. [Google Scholar] [CrossRef]
- Peng, S.; Ying, B.; Chen, Y.; Sun, X. Effects of massage on the anxiety of patients receiving percutaneous coronary intervention. Psychiatr. Danub. 2015, 27, 44–49. [Google Scholar]
- Li, G.; Liu, D.; Yang, D.; He, L. The Impact of Different Muscle Relaxation Techniques on the Upper Trapezius and Its Relationship with the Middle Trapezius. J. Physiol. Investig. 2024, 67, 225–232. [Google Scholar] [CrossRef]
- Chu, H.; Park, S.-J.; Jeong, Y.; Kim, S.; Yeom, S.-R.; Lee, S.; Youn, B.-Y. Effect of a massage chair (BFM-M8040) on neck and shoulder pain in office workers: A randomized controlled clinical trial. Heliyon 2023, 9, e20287. [Google Scholar] [CrossRef]
- Gökbulut, N.; Ibici Akça, E.; Karakayali Ay, Ç. The impact of foot massage given to postmenopausal women on anxiety, fatigue, and sleep: A randomized-controlled trial. Menopause 2022, 29, 1254–1262. [Google Scholar] [CrossRef]
- Paramita, D.A.M.D.P.; Widnyana, M. Effectiveness of Physiotherapy Interventions on Achilles Tendinopathy. Kinesiol. Physiother. Compr. 2022, 1, 7–10. [Google Scholar] [CrossRef]
- Stefansson, S.H.; Brandsson, S.; Langberg, H.; Arnason, A. Using Pressure Massage for Achilles Tendinopathy: A Single-Blind, Randomized Controlled Trial Comparing a Novel Treatment Versus an Eccentric Exercise Protocol. Orthop. J. Sports Med. 2019, 7, 2325967119834284. [Google Scholar] [CrossRef]
- Fu, M.; Sun, C.; Liu, T.; Li, S. Effect of Massotherapy on the Fatigue Recovery Using the Smart Massage Chair: A Randomized Controlled Trial. J. Mech. Med. Biol. 2022, 22, 2240046. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, H.; Jeon, C.; Cho, S. The effects on mental fatigue and the cognitive function of mechanical massage and binaural beats (brain massage) provided by massage chairs. Complement. Ther. Clin. Pract. 2018, 32, 32–38. [Google Scholar] [CrossRef]
- Khairudin, M.N.; Vallikkannu, N.; Gan, F.; Hamdan, M.; Tan, P.C. Electric massage chairs reduce labor pain in nulliparous patients: A randomized crossover trial. Am. J. Obstet. Gynecol. MFM 2024, 6, 101324. [Google Scholar] [CrossRef]
- Kim, J.W.; Lim, A.R.; Lee, J.Y.; Lee, J.Y.; Lee, S.; Choi, Y.J.; Kim, Y.H.; Park, K.H. The clinical effect of an electric massage chair on chemotherapy-induced nausea and vomiting in cancer patients: Randomized phase II cross-over trial. BMC Complement. Med. Ther. 2024, 24, 163. [Google Scholar] [CrossRef] [PubMed]
- Cygańska, A.; Truszczyńska-Baszak, A.; Tomaszewski, P. Impact of exercises and chair massage on musculoskeletal pain of young musicians. Int. J. Environ. Res. Public Health 2020, 17, 5128. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Fu, M.; Liu, T.; Li, S.; Liu, G.; Wang, J.; Ji, C.; Zhang, T. Clinical studies on the electric automatic massage therapy for recovery of acute sports fatigue. Technol. Health Care 2023, 31, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Carley, D.W.; Farabi, S.S. Physiology of sleep. Diabetes Spectrum. 2016, 29, 5–9. [Google Scholar] [CrossRef]
- Baek, J.Y.; Lee, E.; Gil, B.; Jung, H.W.; Jang, I.Y. Clinical effects of using a massage chair on stress measures in adults: A pilot randomized controlled trial. Complement. Ther. Med. 2022, 66, 102825. [Google Scholar] [CrossRef]
Massage Muscle Groups | CON (min) | (ES) (min) | (FR) (min) | (WM) (min) |
---|---|---|---|---|
I. Cervical Spine and Shoulders | - | 22 | 13 | 14 |
II. Back and Hands | - | 18 | 13 | 21 |
III. Spinal Area | - | 8 | 11 | 10 |
IV. Gluteal Muscles and Biceps Femoris | - | 6 | 7 | 11 |
V. Gastrocnemius (calf) | - | 17 | 16 | 18 |
VI. Heels and Feet | - | 20 | 18 | 17 |
Parameters | Values |
---|---|
N | 12 |
Sex | 6 M/6 F |
Age (years) | 21.8 ± 2.2 |
Body Height (cm) | 171.1 ± 9.7 |
Body Weight (kg) | 68.1 ± 9.3 |
BMI (kg/m2) | 23.17 ± 1.2 |
Fat (%) | 19.5 ± 6.6 |
Muscle Mass (kg) | 53.2 ± 13.5 |
CON | ES | FR | WM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variables | Pre (95% CI) | Post (95% CI) | p Value (Cohen’s d) | Pre (95% CI) | Post (95% CI) | p Value (Cohen’s d) | Pre (95% CI) | Post (95% CI) | p Value (Cohen’s d) | Pre (95% CI) | Post (95% CI) | p Value (Cohen’s d) |
(Δ-Change%) | (Δ-Change%) | (Δ-Change%) | (Δ-Change%) | |||||||||
N | 12 | 12 | - | 12 | 12 | - | 12 | 12 | - | 12 | 12 | - |
Systolic Pressure (mmHg) | 128.6 ± 22.4 (116 to 141) | 119.4 ± 10.4 (114 to 125) | 0.118 (0.526) (−7.19% ± 24.7) | 116.9 ± 9.3 (112 to 122) | 116.3 ± 11.5 (110 to 123) | 0.840 (0.057) (−0.50% ± 14.8) | 123.4 ± 13.6 (116 to 131) | 118.0 ± 13.7 (110 to 126) | 0.076 (0.395) (−4.32% ± 19.3) | 123.0 ± 14.0 (115 to 131) | 118.1 ± 12.0 (111 to 125) | 0.116 (0.375) (−3.99% ± 18.4) |
Diastolic Pressure (mmHg) | 72.7 ± 9.9 (67.1 to 78.3) | 66.9 ± 8.5 (62.1 to 71.7) | 0.076 (0.628) (−8% ± 13.0) | 70.3 ± 7.2 (65.7 to 74.9) | 64.8 ± 6.7 (61 to 68.6) | 0.004 (0.790) (−7.81% ± 9.9) | 71.8 ± 12.7 (64.6 to 79) | 64.9 ± 9.3 (59.6 to 70.2) | 0.051 (0.619) (−9.62% ± 15.8) | 71.3 ± 10.2 (65.5 to 77.1) | 63.1 ± 9.6 (57.7 to 68.5) | 0.003 (0.827) (−11.45% ± 14.0) |
Heart Rate (beats/min) | 74.0 ± 10.0 (68.3 to 79.7) | 75.4 ± 16.9 (65.8 to 85) | 0.729 (0.100) (1.81% ± 19.7) | 85.7 ± 22.1 (73.2 to 98.2) | 67.2 ± 5.8 (63.9 to 70.5) | 0.007 (1.145) (−21.59% ± 22.8) | 75.3 ± 12.6 (68.1 to 82.5) | 64.2 ± 8.3 (59.5 to 68.9) | 0.000 (1.040) (−14.69% ± 15.1) | 74.1 ± 9.3 (68.8 to 79.4) | 63.4 ± 8.7 (58.5 to 68.3) | 0.001 *** (1.118) (−14.49 ± 12.8) |
Handgrip Strength (kg) | 34.3 ± 8.8 (28.4 to 38.4) | 30.1 ± 7.4 (25.9 to 34.3) | 0.001 (0.516) (−12.31% ± 11.5) | 34.2 ± 8.7 (21.7 to 46.7) | 30.1 ± 7.5 (25.9 to 34.3) | 0.008 * (0.504) (−11.85% ± 11.5) | 33.4 ± 7.2 (29.3 to 37.5) | 29.3 ± 8.7 (24.4 to 34.2) | 0.019 (0.513) (−12.42% ± 11.4) | 33.4 ± 7.5 (29.2 to 37.6) | 28.3 ± 7.1 (24.3 to 32.3) | 0.002 ** (0.698) (−15.32% ± 9.9) |
Sleepiness Scale | Baseline | After Massage Chair (Δ-Change%) | After Nap (Δ-Change%) | p Value |
---|---|---|---|---|
N | 12 | 12 | 12 | - |
(CON) | 2.91 ± 2.0 | 5.66 ± 2.5 * | 7.00 ± 2.0 * | <0.001 |
(2.75% ± 0.5) | (4.09% ± 0.0) | |||
(ES) | 3.08 ± 1.8 | 5.83 ± 1.8 * | 7.58 ± 2.3 * | <0.001 |
(2.75% ± 0.0) | (4.50% ± 0.5) | |||
(FR) | 3.25 ± 1.7 | 5.91 ± 2.1 * | 7.66 ± 2.2 * | <0.001 |
(2.66% ± 0.4) | (4.41% ± 0.5) | |||
(WM) | 4.08 ± 2.1 | 6.75 ± 1.5 * | 7.75 ± 2.2 * | <0.001 |
(2.67% ± 0.6) | (3.67% ± 0.1) |
Variables | CON (95% CI) | ES (95% CI) | FR (95% CI) | WM (95% CI) | p Value (Effect Size: Partial η2) |
---|---|---|---|---|---|
N | 12 | 12 | 12 | 12 | - |
TST (min) | 20.60 ± 12.5 | 26.76 ± 11.8 * | 25.74 ± 13.8 | 25.06 ± 13.6 | 0.239 |
(13.5 to 27.7) | (20.1 to 33.4) | (17.9 to 33.5) | (17.4 to 32.8) | (0.121) | |
Sleep Efficiency (%) | 37.75 ± 21.2 | 43.44 ± 18.7 * | 25.74 ± 13.8 | 25.06 ± 13.6 | <0.001 |
(25.8 to 49.8) | (32.8 to 54) | (17.9 to 33.5) | (17.4 to 32.8) | (0.449) | |
Sustained Sleep Efficiency (%) | 41.88 ± 18.5 | 49.74 ± 17.9 | 39.45 ± 25.0 | 42.03 ± 21.0 | 0.413 |
(31.4 to 52.4) | (39.6 to 59.8) | (25.4 to 53.6) | (30.1 to 53.9) | (0.079) | |
Sleep Latency (min) | 8.43 ± 13.2 | 8.36 ± 10.3 | 3.79 ± 5.0 | 7.47 ± 12.7 | 0.556 |
(0.96 to 15.9) | (2.53 to 14.2) | (0.96 to 6.62) | (0.28 to 14.7) | (0.049) | |
Sleep Latency N1 (min) | 8.75 ± 13.1 | 9.53 ± 10.3 | 7.28 ± 9.0 | 8.10 ± 12.9 | 0.864 |
(1.34 to 16.2) | (3.7 to 15.4) | (2.19 to 12.4) | (0.8 to 15.4) | (0.010) | |
Sleep Latency N2 (min) | 17.73 ± 15.4 | 11.25 ± 11.3 | 7.93 ± 13.4 | 16.31 ± 14.5 | 0.306 |
(9.02 to 26.4) | (4.86 to 17.6) | (0.35 to 15.5) | (8.11 to 24.5) | (0.123) | |
Wakes (index) | 8.91 ± 3.36 | 9.75 ± 3.4 | 8.91 ± 4.1 | 8.75 ± 4.4 | 0.861 |
(7.01 to 10.8) | (7.83 to 11.7) | (6.59 to 11.2) | (6.26 to 11.2) | (0.018) | |
Wake > 3 min (index) | 2.09 ± 0.8 | 2.09 ± 1.1 | 2.45 ± 1.6 | 2.72 ± 1.5 | 0.587 |
(1.64 to 2.54) | (1.47 to 2.71) | (1.55 to 3.36) | (1.87 to 3.57) | (0.054) | |
WASO (Wake After Sleep Onset) (min·s) | 30.25 ± 11.1 | 26.79 ± 8.1 | 27.04 ± 10.5 | 29.4 ± 12.7 | 0.803 |
(24 to 36.5) | (22.2 to 31.4) | (21.1 to 33) | (22.2 to 36.6) | (0.032) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntoumas, I.; Antoniou, N.; Giannaki, C.D.; Papanikolaou, F.; Pappas, A.; Dardiotis, E.; Karatzaferi, C.; Sakkas, G.K. New Generation Automatic Massage Chairs for Enhancing Daytime Naps: A Crossover Placebo-Controlled Trial. Healthcare 2025, 13, 2291. https://doi.org/10.3390/healthcare13182291
Ntoumas I, Antoniou N, Giannaki CD, Papanikolaou F, Pappas A, Dardiotis E, Karatzaferi C, Sakkas GK. New Generation Automatic Massage Chairs for Enhancing Daytime Naps: A Crossover Placebo-Controlled Trial. Healthcare. 2025; 13(18):2291. https://doi.org/10.3390/healthcare13182291
Chicago/Turabian StyleNtoumas, Ilias, Nikolas Antoniou, Christoforos D. Giannaki, Fotini Papanikolaou, Aggelos Pappas, Efthimios Dardiotis, Christina Karatzaferi, and Giorgos K. Sakkas. 2025. "New Generation Automatic Massage Chairs for Enhancing Daytime Naps: A Crossover Placebo-Controlled Trial" Healthcare 13, no. 18: 2291. https://doi.org/10.3390/healthcare13182291
APA StyleNtoumas, I., Antoniou, N., Giannaki, C. D., Papanikolaou, F., Pappas, A., Dardiotis, E., Karatzaferi, C., & Sakkas, G. K. (2025). New Generation Automatic Massage Chairs for Enhancing Daytime Naps: A Crossover Placebo-Controlled Trial. Healthcare, 13(18), 2291. https://doi.org/10.3390/healthcare13182291