Association of Neonatal Morbidities and Postnatal Growth Faltering in Preterm Neonates
Abstract
:1. Introduction
2. Materials and Methods
- respiratory distress syndrome, defined as respiratory insufficiency soon after birth, caused by pulmonary immaturity and requiring surfactant treatment [32],
- bronchopulmonary dysplasia, defined as oxygen, invasive, or non-invasive ventilatory support required at 36 weeks gestational age [33],
- necrotizing enterocolitis (Stage ≥II according to Bell criteria [34]),
- NEC treated with surgery,
- late-onset sepsis, defined as positive blood culture and clinical signs of sepsis >72 h after birth and through NICU hospitalization [35],
- severe retinopathy of prematurity (Stage ≥3 or laser/antivascular endothelial growth factor treatment [36]),
- severe brain injury defined as grade 3/4 intraventricular hemorrhage according to Papile criteria [37] or periventricular leukomalacia,
- length of respiratory support,
- length of mechanical ventilation
- length of hospital stay
- diabetes mellitus defined as abnormal fasting glucose or abnormal glucose tolerance test,
- hypertension (both chronic and pregnancy-induced, blood pressure equal to or greater than 140 mmHg or 90 mmHg diastolic),
- preeclampsia defined as hypertension with proteinuria 300 mg/24 h,
- cholestasis diagnosed based on the presence of pruritus and elevated values of bile acids and aminotransferases,
- hypothyroidism, chronic or diagnosed during pregnancy based on thyroid hormones levels and need for L-thyroxine supplementation,
- hyperthyroidism, chronic or diagnosed during pregnancy based on thyroid hormones levels and need for methimazole or propylthiouracil treatment,
- nicotine exposure, defined as any cigarettes used during pregnancy, based on the maternal questionnaire,
- previous pregnancies (previous miscarriages and preterm deliveries).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlQurashi, M.A. Survival Rate of Very Low Birth Weight Infants over a Quarter Century (1994–2019): A Single-Institution Experience. J. Neonatal-Perinat. Med. 2021, 14, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Jeon, G.W.; Lee, J.H.; Oh, M.; Chang, Y.S. Serial Long-Term Growth and Neurodevelopment of Very-Low-Birth-Weight Infants: 2022 Update on the Korean Neonatal Network. J. Korean Med. Sci. 2022, 37, e263. [Google Scholar] [CrossRef] [PubMed]
- Tsou, K.I.; Tsao, P.N. The Morbidity and Survival of Very-Low-Birth-Weight Infants in Taiwan. Acta Paediatr. Taiwan. 2003, 44, 349–355. [Google Scholar]
- Victora, J.D.; Silveira, M.F.; Tonial, C.T.; Victora, C.G.; Barros, F.C.; Horta, B.L.; Santos, I.S.; Bassani, D.G.; Garcia, P.C.; Scheeren, M.; et al. Prevalence, Mortality and Risk Factors Associated with Very Low Birth Weight Preterm Infants: An Analysis of 33 Years. J. Pediatr. 2020, 96, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Boyle, E.M.; Poulsen, G.; Field, D.J.; Kurinczuk, J.J.; Wolke, D.; Alfirevic, Z.; Quigley, M.A. Effects of Gestational Age at Birth on Health Outcomes at 3 and 5 Years of Age: Population Based Cohort Study. BMJ 2012, 344, e896. [Google Scholar] [CrossRef]
- Fenton, T.R.; Cormack, B.; Goldberg, D.; Nasser, R.; Alshaikh, B.; Eliasziw, M.; Hay, W.W.; Hoyos, A.; Anderson, D.; Bloomfield, F.; et al. “Extrauterine Growth Restriction” and “Postnatal Growth Failure” Are Misnomers for Preterm Infants. J. Perinatol. 2020, 40, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.K.; Kennedy, K.; Castañeda-Gutiérrez, E.; Forsyth, S.; Godfrey, K.M.; Koletzko, B.; Latulippe, M.E.; Ozanne, S.E.; Rueda, R.; Schoemaker, M.H.; et al. Postnatal Growth in Preterm Infants and Later Health Outcomes: A Systematic Review. Acta Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kim, E.-K.; Song, I.G.; Heo, J.S.; Shin, S.H.; Kim, H.-S. Head Growth During Neonatal Intensive Care Unit Stay Is Related to the Neurodevelopmental Outcomes of Preterm Small for Gestational Age Infants. Pediatr. Neonatol. 2021, 62, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Raghuram, K.; Yang, J.; Church, P.T.; Cieslak, Z.; Synnes, A.; Mukerji, A.; Shah, P.S.; Canadian Neonatal Network; Canadian Neonatal Follow-Up Network Investigators. Head Growth Trajectory and Neurodevelopmental Outcomes in Preterm Neonates. Pediatrics 2017, 140, e20170216. [Google Scholar] [CrossRef]
- Fenton, T.R.; Merlino Barr, S.; Elmrayed, S.; Alshaikh, B. Expected and Desirable Preterm and Small Infant Growth Patterns. Adv. Nutr. 2024, 15, 100220. [Google Scholar] [CrossRef]
- Shah, P.S.; Wong, K.Y.; Merko, S.; Bishara, R.; Dunn, M.; Asztalos, E.; Darling, P.B. Postnatal Growth Failure in Preterm Infants: Ascertainment and Relation to Long-Term Outcome. J. Perinat. Med. 2006, 34, 484–489. [Google Scholar] [CrossRef]
- El Rafei, R.; Maier, R.F.; Jarreau, P.H.; Norman, M.; Barros, H.; Van Reempts, P.; Van Heijst, A.; Pedersen, P.; Cuttini, M.; Johnson, S.; et al. Postnatal Growth Restriction and Neurodevelopment at 5 Years of Age: A European Extremely Preterm Birth Cohort Study. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 492–498. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A Systematic Review and Meta-Analysis to Revise the Fenton Growth Chart for Preterm Infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, D.L.; Becker, P.J.; Brigham, K.; Carlson, S.; Fleck, L.; Gollins, L.; Sandrock, M.; Fullmer, M.; Van Poots, H.A. Identifying Malnutrition in Preterm and Neonatal Populations: Recommended Indicators. J. Acad. Nutr. Diet. 2018, 118, 1571–1582. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef] [PubMed]
- AAP Committee on Nutrition. Nutritional needs of the preterm infant. In Pediatric Nutrition, 8th ed.; Kleinman, R.E., Greer, F.R., Eds.; American Academy of Pediatrics: Itasca, IL, USA, 2020. [Google Scholar]
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellù, R. Weight Growth Velocity and Postnatal Growth Failure in Infants 501 to 1500 Grams: 2000–2013. Pediatrics 2015, 136, e84–e92. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Nasser, R.; Creighton, D.; Tang, S.; Sauve, R.; Bilan, D.; Fenton, C.J.; Eliasziw, M. Weight, Length, and Head Circumference at 36 Weeks Are Not Predictive of Later Cognitive Impairment in Very Preterm Infants. J. Perinatol. 2021, 41, 606–614. [Google Scholar] [CrossRef]
- Zozaya, C.; Diaz, C.; Saenz de Pipaon, M. How Should We Define Postnatal Growth Restriction in Preterm Infants? Neonatology 2018, 114, 177–180. [Google Scholar] [CrossRef]
- Peila, C.; Spada, E.; Giuliani, F.; Maiocco, G.; Raia, M.; Cresi, F.; Bertino, E.; Coscia, A. Extrauterine Growth Restriction: Definitions and Predictability of Outcomes in a Cohort of Very Low Birth Weight Infants or Preterm Neonates. Nutrients 2020, 12, 1224. [Google Scholar] [CrossRef] [PubMed]
- De Rose, D.U.; Cota, F.; Gallini, F.; Bottoni, A.; Fabrizio, G.C.; Ricci, D.; Romeo, D.M.; Mercuri, E.; Vento, G.; Maggio, L. Extra-uterine growth restriction in preterm infants: Neurodevelopmental outcomes according to different definitions. Eur. J. Paediatr. Neurol. 2021, 33, 135–145. [Google Scholar] [CrossRef]
- Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; Van Den Akker, C.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.M.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the Espghan Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
- Bartholomew, J.; Martin, C.R.; Allred, E.; Chen, M.L.; Ehrenkranz, R.A.; Dammann, O.; Leviton, A. Risk Factors and Correlates of Neonatal Growth Velocity in Extremely Low Gestational Age Newborns: The Elgan Study. Neonatology 2013, 104, 298–304. [Google Scholar] [CrossRef]
- Lima, P.A.; Carvalho, M.; Costa, A.C.; Moreira, M.E. Variables Associated with Extra Uterine Growth Restriction in Very Low Birth Weight Infants. J. Pediatr. 2014, 90, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.A.; Abrahamowicz, M.; Usher, R.H. Factors Associated with Growth of Extremely Premature Infants During Initial Hospitalization. Pediatrics 1997, 100, 640–646. [Google Scholar] [PubMed]
- Embleton, N.E.; Pang, N.; Cooke, R.J. Postnatal Malnutrition and Growth Retardation: An Inevitable Consequence of Current Recommendations in Preterm Infants? Pediatrics 2001, 107, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Vaidya, R.; Rastogi, D.; Bhutada, A.; Rastogi, S. From Parenteral to Enteral Nutrition: A Nutrition-Based Approach for Evaluating Postnatal Growth Failure in Preterm Infants. J. Parenter. Enteral Nutr. 2014, 38, 489–497. [Google Scholar] [CrossRef]
- Stoltz Sjöström, E.; Öhlund, I.; Ahlsson, F.; Engström, E.; Fellman, V.; Hellström, A.; Källén, K.; Norman, M.; Olhager, E.; Serenius, F.; et al. Nutrient Intakes Independently Affect Growth in Extremely Preterm Infants: Results from a Population-Based Study. Acta Paediatr. 2013, 102, 1067–1074. [Google Scholar] [CrossRef]
- Marks, K.A.; Reichman, B.; Lusky, A.; Zmora, E.; Israel Neonatal, N. Fetal Growth and Postnatal Growth Failure in Very-Low-Birthweight Infants. Acta Paediatr. 2006, 95, 236–242. [Google Scholar] [CrossRef]
- Regev, R.H.; Arnon, S.; Litmanovitz, I.; Bauer-Rusek, S.; Boyko, V.; Lerner-Geva, L.; Reichman, B.; Israel Neonatal Network. Association between Neonatal Morbidities and Head Growth from Birth until Discharge in Very-Low-Birthweight Infants Born Preterm: A Population-Based Study. Dev. Med. Child. Neurol. 2016, 58, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Rover, M.M.; Viera, C.S.; Silveira, R.C.; Guimaraes, A.T.; Grassiolli, S. Risk Factors Associated with Growth Failure in the Follow-up of Very Low Birth Weight Newborns. J. Pediatr. 2016, 92, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Pas, A.T.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023, 120, 3–23. [Google Scholar] [CrossRef]
- Jensen, E.A.; Dysart, K.; Gantz, M.G.; McDonald, S.; Bamat, N.A.; Keszler, M.; Kirpalani, H.; Laughon, M.M.; Poindexter, B.B.; Duncan, A.F.; et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am. J. Respir. Crit. Care Med. 2019, 200, 751–759. [Google Scholar] [CrossRef]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal Necrotizing Enterocolitis. Therapeutic Decisions Based Upon Clinical Staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef]
- Coggins, S.A.; Glaser, K. Updates in Late-Onset Sepsis: Risk Assessment, Therapy, and Outcomes. Neoreviews 2022, 23, 738–755. [Google Scholar] [CrossRef]
- Fierson, W.M.; Chiang, M.F.; Good, W.; Phelps, D.; Reynolds, J.; Robbins, S.L.; Karr, D.J.; Bradford, G.E.; Nischal, K.; Roarty, J.; et al. Screening Examination of Premature Infants for Retinopathy of Prematurity. Pediatrics 2018, 142, e20183061. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and Evolution of Subependymal and Intraventricular Hemorrhage: A Study of Infants with Birth Weights Less Than 1,500 Gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Dassios, T.; Williams, E.E.; Hickey, A.; Bunce, C.; Greenough, A. Bronchopulmonary Dysplasia and Postnatal Growth Following Extremely Preterm Birth. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Kim, E.K.; Kim, S.H.; Kim, H.Y.; Kim, H.S. Head Growth and Neurodevelopment of Preterm Infants with Surgical Necrotizing Enterocolitis and Spontaneous Intestinal Perforation. Children 2021, 8, 833. [Google Scholar] [CrossRef]
- Meyers, J.M.; Bann, C.M.; Stoll, B.J.; D’Angio, C.T.; Bell, E.F.; Duncan, A.F.; Guillet, R. Neurodevelopmental Outcomes in Postnatal Growth-Restricted Preterm Infants with Postnatal Head-Sparing. J. Perinatol. 2016, 36, 1116–1121. [Google Scholar] [CrossRef]
- Cohen, E.; Baerts, W.; van Bel, F. Brain-Sparing in Intrauterine Growth Restriction: Considerations for the Neonatologist. Neonatology 2015, 108, 269–276. [Google Scholar] [CrossRef]
- Beukers, F.; Aarnoudse-Moens, C.S.; van Weissenbruch, M.M.; Ganzevoort, W.; van Goudoever, J.B.; van Wassenaer-Leemhuis, A.G. Fetal Growth Restriction with Brain Sparing: Neurocognitive and Behavioral Outcomes at 12 Years of Age. J. Pediatr. 2017, 188, 103–109.e2. [Google Scholar] [CrossRef]
- Kramer, M.S.; McLean, F.H.; Olivier, M.; Willis, D.M.; Usher, R.H. Body Proportionality and Head and Length ’Sparing’ in Growth-Retarded Neonates: A Critical Reappraisal. Pediatrics 1989, 84, 717–723. [Google Scholar] [CrossRef]
- Wells, N. Anthropometric trends from 1997 to 2012 in infants born at ≤28 weeks’ gestation or less. J. Perinatol. 2017, 37, 521–526. [Google Scholar] [CrossRef]
- Fenton, T.R.; Samycia, L.; Elmrayed, S.; Nasser, R.; Alshaikh, B. Growth Patterns by Birth Size of Preterm Children Born at 24-29 Gestational Weeks for the First 3 Years. Paediatr. Perinat. Epidemiol. 2024, 38, 560–569. [Google Scholar] [CrossRef]
- Elmrayed, S.; Pinto, J.; Tough, S.C.; McDonald, S.W.; Scime, N.V.; Wollny, K.; Lee, Y.; Kramer, M.S.; Ospina, M.B.; Lorenzetti, D.L.; et al. Small for Gestational Age Preterm Infants and Later Adiposity and Height: A Systematic Review and Meta-Analysis. Paediatr. Perinat. Epidemiol. 2023, 37, 652–668. [Google Scholar] [CrossRef]
- Beukers, F.; Rotteveel, J.; van Weissenbruch, M.M.; Ganzevoort, W.; van Goudoever, J.B.; van Wassenaer-Leemhuis, A.G. Growth Throughout Childhood of Children Born Growth Restricted. Arch. Dis. Child. 2017, 102, 735–741. [Google Scholar] [CrossRef]
- Bando, N.; Fenton, T.R.; Yang, J.; Ly, L.; Luu, T.M.; Unger, S.; O’Connor, D.L.; Shah, P.S. Association of Postnatal Growth Changes and Neurodevelopmental Outcomes in Preterm Neonates of <29 Weeks’ Gestation. J. Pediatr. 2023, 256, 63–69.e62. [Google Scholar]
- Cai, S.; Thompson, D.K.; Anderson, P.J.; Yang, J.Y. Short- and Long-Term Neurodevelopmental Outcomes of Very Preterm Infants with Neonatal Sepsis: A Systematic Review and Meta-Analysis. Children 2019, 6, 131. [Google Scholar] [CrossRef]
- Kline, J.E.; Illapani, V.S.P.; He, L.; Altaye, M.; Parikh, N.A. Retinopathy of Prematurity and Bronchopulmonary Dysplasia Are Independent Antecedents of Cortical Maturational Abnormalities in Very Preterm Infants. Sci. Rep. 2019, 9, 19679. [Google Scholar] [CrossRef]
- Huysman, W.A.; de Ridder, M.; De Bruin, N.C.; Van Helmond, G.; Terpstra, N.; Van Goudoever, J.B.; Sauer, P.J.J. Growth and Body Composition in Preterm Infants with Bronchopulmonary Dysplasia. Arch. Dis. Child. Fetal Neonatal Ed. 2003, 88, F46–F51. [Google Scholar] [CrossRef]
- Clark, R.H.; Thomas, P.; Peabody, J. Extrauterine Growth Restriction Remains a Serious Problem in Prematurely Born Neonates. Pediatrics 2003, 111, 986–990. [Google Scholar] [CrossRef]
- Kakatsaki, I.; Papanikolaou, S.; Roumeliotaki, T.; Anagnostatou, N.H.; Lygerou, I.; Hatzidaki, E. The Prevalence of Small for Gestational Age and Extrauterine Growth Restriction among Extremely and Very Preterm Neonates, Using Different Growth Curves, and Its Association with Clinical and Nutritional Factors. Nutrients 2023, 15, 3290. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Cho, H.; Shin, S.H.; Kim, S.H.; Song, I.G.; Kim, E.-K.; Kim, H.-S. Extrauterine Growth Restriction in Extremely Preterm Infants Based on the Intergrowth-21st Project Preterm Postnatal Follow-up Study Growth Charts and the Fenton Growth Charts. Eur. J. Pediatr. 2021, 180, 817–824. [Google Scholar] [CrossRef]
- Starc, M.; Giangreco, M.; Centomo, G.; Travan, L.; Bua, J. Extrauterine Growth Restriction in Very Low Birth Weight Infants According to Different Growth Charts: A Retrospective 10 Years Observational Study. PLoS ONE 2023, 18, e0283367. [Google Scholar] [CrossRef]
- Zozaya, C.; Avila-Alvarez, A.; Arruza, L.; Rodrigo, F.G.-M.; Fernandez-Perez, C.; Castro, A.; Cuesta, M.T.; Vacas, B.; Couce, M.L.; Torres, M.V.; et al. The Effect of Morbidity and Sex on Postnatal Growth of Very Preterm Infants: A Multicenter Cohort Study. Neonatology 2019, 115, 348–354. [Google Scholar] [CrossRef]
- Hansen-Pupp, I.; Löfqvist, C.; Polberger, S.; Niklasson, A.; Fellman, V.; Hellström, A.; Ley, D. Influence of Insulin-Like Growth Factor I and Nutrition During Phases of Postnatal Growth in Very Preterm Infants. Pediatr. Res. 2011, 69, 448–453. [Google Scholar] [CrossRef]
- Löfqvist, C.; Hellgren, G.; Niklasson, A.; Engström, E.; Ley, D.; Hansen-Pupp, I.; WINROP Consortium. Low Postnatal Serum Igf-I Levels Are Associated with Bronchopulmonary Dysplasia (Bpd). Acta Paediatr. 2012, 101, 1211–1216. [Google Scholar] [CrossRef]
- Almutairi, M.; Chechalk, K.; Deane, E.; Fox, R.; Janes, A.; Maguire-Henry, T.; McCabe, D.; O’Connor, C.; Quirk, J.; Swan, E.; et al. Biomarkers in Retinopathy of Prematurity: A Systematic Review and Meta-Analysis. Front. Pediatr. 2024, 12, 1371776. [Google Scholar] [CrossRef]
- Binenbaum, G.; Ying, G.S.; Quinn, G.E.; Dreiseitl, S.; Karp, K.; Roberts, R.S.; Kirpalani, H.; Premature Infants in Need of Transfusion Study Group. A Clinical Prediction Model to Stratify Retinopathy of Prematurity Risk Using Postnatal Weight Gain. Pediatrics 2011, 127, e607–e614. [Google Scholar] [CrossRef]
- Lin, L.; Binenbaum, G. Postnatal Weight Gain and Retinopathy of Prematurity. Semin. Perinatol. 2019, 43, 352–359. [Google Scholar] [CrossRef]
- Wu, C.; Löfqvist, C.; Smith, L.E.; VanderVeen, D.K.; Hellström, A.; WINROP Consortium, F.T. Importance of Early Postnatal Weight Gain for Normal Retinal Angiogenesis in Very Preterm Infants: A Multicenter Study Analyzing Weight Velocity Deviations for the Prediction of Retinopathy of Prematurity. Arch. Ophthalmol. 2012, 130, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Ingolfsland, E.C.; Haapala, J.L.; Buckley, L.A.; Demarath, E.W.; Guiang, S.F.; Ramel, S.E. Late Growth and Changes in Body Composition Influence Odds of Developing Retinopathy of Prematurity among Preterm Infants. Nutrients 2019, 12, 78. [Google Scholar] [CrossRef]
- Flannery, D.D.; Jensen, E.A.; Tomlinson, L.A.; Yu, Y.; Ying, G.S.; Binenbaum, G. Poor Postnatal Weight Growth Is a Late Finding after Sepsis in Very Preterm Infants. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 298–304. [Google Scholar] [CrossRef]
- Hellström, A.; Ley, D.; Hansen-Pupp, I.; Hallberg, B.; Löfqvist, C.; Van Marter, L.; Van Weissenbruch, M.; Ramenghi, L.A.; Beardsall, K.; Dunger, D.; et al. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatr. 2016, 105, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Möllers, L.S.; Yousuf, E.I.; Hamatschek, C.; Morrison, K.M.; Hermanussen, M.; Fusch, C.; Rochow, N. Metabolic-endocrine disruption due to preterm birth impacts growth, body composition, and neonatal outcome. Pediatr. Res. 2022, 91, 1350–1360. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A. Extrauterine Growth Restriction: Is It Preventable? J. Pediatr. 2014, 90, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.; van Druten, J.; Briars, G.; Eaton, S.; Clarke, P.; Tsang, T.; Yardley, I. Neonates Living with Enterostomy Following Necrotising Enterocolitis Are at High Risk of Becoming Severely Underweight. Eur. J. Pediatr. 2019, 178, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Duggan, C.P.; Jaksic, T. Pediatric Intestinal Failure. N. Engl. J. Med. 2017, 377, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Matei, A.; Montalva, L.; Goodbaum, A.; Lauriti, G.; Zani, A. Neurodevelopmental Impairment in Necrotising Enterocolitis Survivors: Systematic Review and Meta-Analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 432–439. [Google Scholar] [CrossRef]
- Franz, A.R.; Pohlandt, F.; Bode, H.; Mihatsch, W.A.; Sander, S.; Kron, M.; Steinmacher, J. Intrauterine, Early Neonatal, and Postdischarge Growth and Neurodevelopmental Outcome at 5.4 Years in Extremely Preterm Infants after Intensive Neonatal Nutritional Support. Pediatrics 2009, 123, e101–e109. [Google Scholar] [CrossRef]
- Sammallahti, S.; Pyhälä, R.; Lahti, M.; Lahti, J.; Pesonen, A.-K.; Heinonen, K.; Hovi, P.; Eriksson, J.G.; Strang-Karlsson, S.; Andersson, S.; et al. Infant Growth after Preterm Birth and Neurocognitive Abilities in Young Adulthood. J. Pediatr. 2014, 165, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Song, I.G.; Kim, E.-K.; Cho, H.; Shin, S.H.; Sohn, J.A.; Kim, H.-S. Differential Effect of Growth on Development between Aga and Sga Preterm Infants. Int. J. Environ. Res. Public. Health 2020, 17, 3022. [Google Scholar] [CrossRef] [PubMed]
- Lowe, J.; Bann, C.M.; Dempsey, A.G.; Fuller, J.; Taylor, H.G.; Gustafson, K.E.; Watson, V.E.; Vohr, B.R.; Das, A.; Shankaran, S.; et al. Do Bayley-Iii Composite Scores at 18-22 Months Corrected Age Predict Full-Scale Iq at 6–7 Years in Children Born Extremely Preterm? J. Pediatr. 2023, 263, 113700. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.J.; Burnett, A. Assessing Developmental Delay in Early Childhood—Concerns with the Bayley-Iii Scales. Clin. Neuropsychol. 2017, 31, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.B.; Rifas-Shiman, S.L.; Sullivan, T.; Collins, C.T.; McPhee, A.J.; Ryan, P.; Kleinman, K.P.; Gillman, M.W.; Gibson, R.A.; Makrides, M. Infant growth before and after term: Effects on neurodevelopment in preterm infants. Pediatrics 2011, 128, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Salas, A.A.; Bhatia, A.; Carlo, W.A. Postnatal Growth of Preterm Infants 24 to 26 Weeks of Gestation and Cognitive Outcomes at 2 Years of Age. Pediatr. Res. 2021, 89, 1804–1809. [Google Scholar] [CrossRef] [PubMed]
- Meyers, J.M.; Tan, S.; Bell, E.F.; Duncan, A.F.; Guillet, R.; Stoll, B.J.; D’angio, C.T.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental Outcomes among Extremely Premature Infants with Linear Growth Restriction. J. Perinatol. 2019, 39, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Rochow, N.; Raja, P.; Liu, K.; Fenton, T.; Landau-Crangle, E.; Göttler, S.; Jahn, A.; Lee, S.; Seigel, S.; Campbell, D.; et al. Physiological adjustment to postnatal growth trajectories in healthy preterm infants. Pediatr. Res. 2016, 79, 870–879. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Included Infants (n = 146) |
---|---|
Male sex (%) | 75 (51.4) |
Multiple births (%) | 47 (32.2) |
Birth gestational age, mean (SD), wk | 29 (2.6) |
Birth weight, mean (SD), g | 1030 (291) |
Birth weight z-score, mean (SD) | −0.6 (1.11) |
Weight z-score change birth to discharge (SD) | −1.15 (0.73) |
Birth length, mean (SD), cm | 37.2 (4.6) |
Birth length z-score, mean (SD) | −0.09 (1.63) |
Length z-score change birth to discharge (SD) | −1.40 (1.10) |
HC, mean (SD), cm | 25.4 (2.5) |
HC z-score, mean (SD) | −0.70 (1.45) |
HC z-score change birth to discharge (SD) | −1.16 (1.02) |
Small for gestational age (%) | 47 (32.2) |
Antenatal steroids (%) | 120 (82.2) |
Respiratory distress syndrome (%) | 118 (80.8) |
Bronchopulmonary dysplasia (%) | 87 (59.6) |
Necrotizing enterocolitis stage ≥II (%) | 17 (11.6) |
NEC treated with surgery (%) | 6 (4.1) |
Late-onset sepsis (%) | 30 (20.5) |
Severe brain injury (%) | 48 (32.8) |
Severe retinopathy of prematurity (%) | 11 (7.5) |
Length of hospital stay, median (min/max), days | 59 (34/232) |
Length of respiratory support, median (min/max), days | 38 (22/219) |
Length of mechanical ventilation, median (min/max), days | 1 (0/64) |
Characteristics | Severe PGF | Complex PGF | ||||
---|---|---|---|---|---|---|
PGF (n = 16) | Non-PGF (n = 130) | p-Value | PGF (n = 35) | Non-PGF (n = 111) | p-Value | |
Male sex (%) | 10 (62.5%) | 65 (50%) | p = 0.345 1 | 18 (51.4%) | 57 (51.4%) | p = 0.994 1 |
Multiple births (%) | 6 (37.5%) | 41 (31.5%) | p = 0.630 1 | 10 (28.6%) | 37 (33.3%) | p = 0.599 1 |
Birth gestational age, mean (SD) | 28.9 (2.7) | 29.0 (2.6) | p = 0.842 2 | 28.0 (2.4) | 29.3 (2.6) | p = 0.006 2 |
Birth weight, mean (SD), g | 929.8 (309.3) | 1043.9 (287.3) | p = 0.159 2 | 996.3 (247.9) | 1042.5 (303.3) | p = 0.356 2 |
Birth weight z-score, mean (SD) | −0.6 (1.5) | −0.8 (1.1) | p = 0.525 2 | −0.2 (1.0) | −0.7 (1.1) | p = 0.006 2 |
Weight z-score change birth to discharge (SD) | −2.5 (0.4) | −1.0 (0.6) | p < 0.001 2 | −1.7 (0.5) | 1.0 (0.7) | p < 0.001 2 |
Birth length, mean (SD), cm | 35.3 (4.6) | 37.4 (4.6) | p = 0.057 2 | 37.6 (4.3) | 37.0 (4.7) | p = 0.820 2 |
Birth length z-score, mean (SD) | −0.7 (2.1) | 0.0 (1.6) | p = 0.094 2 | 0.6 (1.4) | −0.3 (1.6) | p = 0.002 2 |
Length z-score change birth to discharge (SD) | −2.0 (1.3) | −1.3 (1.1) | p = 0.037 2 | −2.2 (0.8) | −1.2 (1.1) | p < 0.001 2 |
HC, mean (SD), cm | 24.9 (2.5) | 25.5 (2.5) | p = 0.053 2 | 25.1 (2.3) | 25.5 (2.6) | p = 0.665 2 |
HC z-score, mean (SD) | −1.5 (1.2) | −1.3 (0.8) | p = 0.359 2 | −0.9 (0.8) | −1.4 (0.9) | p = 0.008 2 |
HC z-score change birth to discharge (SD) | −2.0 (1.6) | −1.1 (0.9) | p = 0.025 2 | −2.1 (0.9) | −0.9 (0.9) | p < 0.001 2 |
Small for gestational age | 9 (56.3%) | 38 (29.2%) | p = 0.029 1 | 6 (17.1%) | 41 (36.9%) | p = 0.029 1 |
Antenatal steroids | 10 (62.5%) | 110 (84.6%) | p = 0.029 1 | 28 (80.0%) | 92 (68.5%) | p = 0.697 1 |
Neonatal Morbidities | Severe PGF | Complex PGF | ||||
---|---|---|---|---|---|---|
PGF (n = 16) | Non-PGF (n = 130) | p-Value | PGF (n = 35) | Non-PGF (n = 111) | p-Value | |
Respiratory distress syndrome (%) | 15 (93.8) | 103 (79.2) | p = 0.164 1 | 34 (97.1) | 84 (75.7) | p = 0.005 1 |
Bronchopulmonary dysplasia (%) | 15 (93.8) | 72 (55.4) | p = 0.003 1 | 30 (85.7) | 57 (51.4) | p < 0.001 1 |
Necrotizing enterocolitis stage ≥ II (%) | 4 (25) | 13 (10) | p = 0.095 4 | 6 (17.1) | 11 (9.9) | p = 0.241 4 |
NEC treated with surgery (%) | 4 (25) | 2 (1.5) | p = 0.001 4 | 3 (8.6) | 3 (2.7) | p = 0.149 4 |
Late-onset sepsis (%) | 7 (43.8) | 23 (17.7) | p = 0.035 3 | 10 (28.6) | 20 (18) | p = 0.268 3 |
Severe brain injury (%) | 6 (37.5) | 42 (32.3) | p = 0.677 1 | 18 (51.4) | 30 (27) | p = 0.007 1 |
Severe retinopathy of prematurity (%) | 4 (25) | 7 (5.4) | p = 0.020 4 | 6 (17.1) | 5 (4.5) | p = 0.023 4 |
Length of hospital stay, median (min/max), days | 92 (61/210) | 53 (29/232) | p < 0.001 5 | 73.5 (38/232) | 50.5 (29/210) | p < 0.001 5 |
Length of respiratory support, median (min/max), days | 46.5 (28/114) | 37 (22/219) | p = 0.021 5 | 46.5 (28/219) | 33 (22/120) | p < 0.001 5 |
Length of mechanical ventilation, median (min/max), days | 7.5 (0/57) | 1 (0/64) | p = 0.034 5 | 4 (0/57) | 1 (0/64) | p = 0.013 5 |
Characteristics | Severe PGF | Complex PGF | ||||
---|---|---|---|---|---|---|
PGF (n = 16) | Non-PGF (n = 130) | p-Value | PGF (n = 35) | Non-PGF (n = 111) | p-Value | |
Maternal diabetes mellitus | 3 (18.8%) | 17 (13.1%) | p = 0.253 4 | 5 (14.3%) | 15 (13.5%) | p = 0.974 3 |
Preeclampsia | 1 (6.3%) | 16 (12.3%) | p = 0.540 4 | 6 (17.1%) | 11 (9.9%) | p = 0.138 4 |
Hypertension | 3 (18.8%) | 34 (26.2%) | p = 0.580 4 | 13 (37.1%) | 24 (21.6%) | p = 0.044 3 |
Nicotine exposure | 0 (0%) | 5 (3.8%) | p = 0.623 4 | 1 (2.9%) | 4 (3.6%) | p = 0.692 4 |
Cholestasis | 1 (6.3%) | 11 (8.5%) | p = 0.245 4 | 0 (0%) | 3 (2.7%) | p = 0.467 4 |
Hypothyroidism | 3 (18.8%) | 35 (26.9%) | p = 0.549 4 | 8 (22.9%) | 30 (27%) | p = 0.788 3 |
Hyperthyroidism | 0 (0%) | 1 (0.7%) | p = 0.911 4 | 0 (0%) | 1 (0.9%) | p = 0.778 4 |
Previous miscarriages | 4 (25%) | 31 (23.8%) | p = 0.378 4 | 8 (22.9%) | 27 (24.3%) | p = 0.896 3 |
Previous preterm deliveries | 1 (6.3%) | 10 (7.7%) | p = 0.656 4 | 4 (11.4%) | 7 (6.3%) | p = 0.206 4 |
Severe PGF | Complex PGF | |||
---|---|---|---|---|
n = 16 | n = 35 | |||
SGA (n = 47) | 9 (19.1%) | p = 0.045 4 | 6 (13.7%) | p = 0.048 3 |
AGA (n = 99) | 7 (7.1%) | 29 (29.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogulska, J.; Fenton, T.R.; Szczapa, T.; Wróblewska-Seniuk, K. Association of Neonatal Morbidities and Postnatal Growth Faltering in Preterm Neonates. Healthcare 2025, 13, 235. https://doi.org/10.3390/healthcare13030235
Rogulska J, Fenton TR, Szczapa T, Wróblewska-Seniuk K. Association of Neonatal Morbidities and Postnatal Growth Faltering in Preterm Neonates. Healthcare. 2025; 13(3):235. https://doi.org/10.3390/healthcare13030235
Chicago/Turabian StyleRogulska, Justyna, Tanis R. Fenton, Tomasz Szczapa, and Katarzyna Wróblewska-Seniuk. 2025. "Association of Neonatal Morbidities and Postnatal Growth Faltering in Preterm Neonates" Healthcare 13, no. 3: 235. https://doi.org/10.3390/healthcare13030235
APA StyleRogulska, J., Fenton, T. R., Szczapa, T., & Wróblewska-Seniuk, K. (2025). Association of Neonatal Morbidities and Postnatal Growth Faltering in Preterm Neonates. Healthcare, 13(3), 235. https://doi.org/10.3390/healthcare13030235