Estimation of Cardiovascular Risk Using SCORE2, REGICOR and Vascular Age Scales in Spanish Healthcare Workers: A Retrospective Longitudinal Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Sample Characteristics
2.2. Inclusion Criteria:
2.3. Data Collection Procedures
- Height and Weight: Measurements were obtained using a SECA 700 scale and a SECA 220 stadiometer, with participants wearing only light undergarments.
- Circumference Measurements: Waist circumference was assessed using a SECA measuring tape positioned at the midpoint between the lowest rib and the iliac crest, while hip circumference was measured at the widest part of the buttocks, ensuring participants maintained a relaxed standing posture.
- Blood Pressure Monitoring: Blood pressure readings were collected using an OMRON-M3 sphygmomanometer following a 10 min seated rest period. Participants were instructed to abstain from eating, drinking, or smoking for at least one hour prior to measurement. Three readings were taken at one-minute intervals, with the final value calculated as the average of these measurements.
- Triglyceride, total cholesterol, and glucose quantification via enzymatic methods.
- High-density lipoprotein (HDL) cholesterol determination using precipitation techniques.
- Low-density lipoprotein (LDL) cholesterol estimation via the Friedewald equation, applicable when triglyceride concentrations remained below 400 mg/dL [21].
2.4. CVR Scales
2.5. Operational Definitions
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woodruff, R.C.; Tong, X.; Khan, S.S.; Shah, N.S.; Jackson, S.L.; Loustalot, F.; Vaughan, A.S. Trends in Cardiovascular Disease Mortality Rates and Excess Deaths, 2010–2022. Am. J. Prev. Med. 2024, 66, 582–589. [Google Scholar] [CrossRef] [PubMed]
- López-Bueno, R.; Núñez-Cortés, R.; Calatayud, J.; Salazar-Méndez, J.; Petermann-Rocha, F.; López-Gil, J.F.; Cruz, B.d.P. Global prevalence of cardiovascular risk factors based on the Life’s Essential 8 score: An overview of systematic reviews and meta-analysis. Cardiovasc. Res. 2024, 120, 13–33. [Google Scholar] [CrossRef] [PubMed]
- Olié, V.; Grave, C.; Helft, G.; Nguyen-Thanh, V.; Andler, R.; Quatremere, G.; Pasquereau, A.; Lahaie, E.; Lailler, G.; Verdot, C.; et al. Epidemiology of cardiovascular risk factors: Behavioural risk factors. Arch. Cardiovasc. Dis. 2024, 117, 770–784. [Google Scholar] [CrossRef]
- Arita, V.A.; Beigrezaei, S.; Franco, O.H. Risk factors for cardiovascular disease: The known unknown. Eur. J. Prev. Cardiol. 2024, 31, e106–e107. [Google Scholar] [CrossRef]
- Ou, D.; Hu, C.; Huang, S. Modifiable Risk Factors and Cardiovascular Outcomes. N. Engl. J. Med. 2023, 389, 2400–2402. [Google Scholar] [CrossRef]
- Bowles, N.P.; He, Y.; Huang, Y.-H.; Stecker, E.C.; Seixas, A.; Thosar, S.S. Cardiovascular disease risk: It is complicated, but race and ethnicity are key, a Bayesian network analysis. Front. Public Health 2024, 12, 1364730. [Google Scholar] [CrossRef]
- Raman, P.; Sagadevan, Y.; Dhanapalan, S.; Fernandez, B.J.; Tan, S.Y.; Appalasamy, J.R.; Ramadas, A. Lifestyle-Related Risk Factors and Primary Prevention Strategies for Cardiovascular Diseases in a Middle-Income Country: A Scoping Review and Implication for Future Research. J. Prev. 2024, 45, 579–609. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Levy, D.; Vasan, R.S.; Wang, T.J. The Framingham Heart Study and the epidemiology of cardiovascular disease: A historical perspective. Lancet 2014, 383, 999–1008. [Google Scholar] [CrossRef]
- Sasikumar, M.; Oommen, A.M.; Mohan, V.R.; Gupta, P.; Rebekah, G.; Abraham, V.J.; George, K. Recalibration of the Framingham risk score for predicting 10-year risk of cardiovascular events: A non-concurrent rural cohort study from Tamil Nadu. Indian Heart J. 2023, 75, 47–52. [Google Scholar] [CrossRef]
- Khan, S.S.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Grams, M.E.; Surapaneni, A.; Blaha, M.J.; Carson, A.P.; Chang, A.R.; Ciemins, E.; et al. Development and Validation of the American Heart Association’s PREVENT Equations. Circulation 2024, 149, 430–449, Erratum in: Circulation 2024, 149, e956. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M. The Pooled Cohort Equations and the Test of Time. J. Am. Coll. Cardiol. 2023, 82, 1509–1511. [Google Scholar] [CrossRef] [PubMed]
- Jabczyk, M.; Nowak, J.; Mielcarska, S.; Hudzik, B.; Wołkowska-Pokrywa, K.; Świętochowska, E.; Zubelewicz-Szkodzińska, B. Evaluation of Cardiometabolic Risk in Patients with Non-Functioning Adrenal Adenomas Using the Systematic Coronary Risk Evaluation 2 (SCORE2) and the Systematic Coronary Risk Evaluation 2-Older Persons (SCORE2-OP) Algorithms. Med. Sci. Monit. 2024, 30, e945899. [Google Scholar] [CrossRef] [PubMed]
- Hippisley-Cox, J.; Coupland, C.; Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study. BMJ 2017, 357, j2099. [Google Scholar] [CrossRef]
- Ramírez-Manent, J.I.; Tomás-Gil, P.; Coll Villalonga, J.L.L.; Marti-Lliteras, P.; López-González, A.A.; Paublini, H. Association between atherogenic dyslipidemia and lipid triad with cardiovascular risk scales in 418.343 Spanish workers. Acad. J. Health Sci. 2024, 39, 9–15. [Google Scholar] [CrossRef]
- Groenewegen, K.; Ruijter, H.D.; Pasterkamp, G.; Polak, J.; Bots, M.; Peters, S.A. Vascular age to determine cardiovascular disease risk: A systematic review of its concepts, definitions, and clinical applications. Eur. J. Prev. Cardiol. 2016, 23, 264–274. [Google Scholar] [CrossRef]
- Climie, R.E.; Bruno, R.M.; Hametner, B.; Mayer, C.C.; Terentes-Printzios, D. Vascular Age Is Not Only Atherosclerosis, it Is Also Arteriosclerosis. J. Am. Coll. Cardiol. 2020, 76, 229–230. [Google Scholar] [CrossRef]
- Martínez-Díaz, A.M.; Palazón-Bru, A.; la Rosa, D.M.F.-D.; Ramírez-Prado, D.; Llópez-Espinós, P.; Beneyto-Ripoll, C.; Gil-Guillén, V.F. A cardiovascular risk score for hypertensive patients previously admitted to hospital. Eur. J. Cardiovasc. Nurs. 2019, 18, 492–500. [Google Scholar] [CrossRef]
- Huang, Q.-F.; Yang, W.-Y.; Asayama, K.; Zhang, Z.-Y.; Thijs, L.; Li, Y.; O’brien, E.; Staessen, J.A. Ambulatory Blood Pressure Monitoring to Diagnose and Manage Hypertension. Hypertension 2021, 77, 254–264. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Ballantyne, C.M. Residual Cardiovascular Risk at Low LDL: Remnants, Lipoprotein(a), and Inflammation. Clin. Chem. 2021, 67, 143–153. [Google Scholar] [CrossRef]
- Tasdighi, E.; Adhikari, R.; Almaadawy, O.; Leucker, T.M.; Blaha, M.J. LP(a): Structure, Genetics, Associated Cardiovascular Risk, and Emerging Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2024, 64, 135–157. [Google Scholar] [CrossRef]
- Pottegård, A.; Gerdes, L.U.; Wetche, J.L.; Thompson, W. Does LDL-C determination method affect statin prescribing for primary prevention? A register-based study in Southern Denmark. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Manzanero, R.Z.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Martínez-Jover, A.; Ramírez-Manent, J.I. Determination of car-diometabolic risk scales in 7.962 hotel receptionists. Acad. J. Health Sci. 2024, 39, 113–122. [Google Scholar] [CrossRef]
- Manzanero, R.Z.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Martínez-Jover, A.; Ramírez-Manent, J.I. Estimation of cardi-ometabolic risk in 25.030 Spanish kitchen workers. Acad. J. Health Sci. 2023, 38, 101–110. [Google Scholar] [CrossRef]
- Kucharska-Newton, A.M.; Stoner, L.; Meyer, M.L. Determinants of Vascular Age: An Epidemiological Perspective. Clin. Chem. 2019, 65, 108–118. [Google Scholar] [CrossRef]
- Cuende, J.I. Vascular Age, RR, ALLY, RALLY and Vascular Speed, Based on SCORE: Relations Between New Concepts of Car-diovascular Prevention. Rev. Esp. Cardiol. 2018, 71, 399–400. [Google Scholar] [CrossRef]
- Montero Muñoz, N.; López-González, A.A.; Tomás-Gil, P.; Martínez Jover, A.; Paublini, H.; Ramírez Manent, J.I. Relationship between sociodemographic variables and tobacco consumption with vascular age values using the Framinghan model in 336,450 spanish workers. Acad. J. Health Sci. 2023, 38, 61–66. [Google Scholar] [CrossRef]
- Mestre-Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Tomás-Gil, P.; Paublini, H.; López-González, A.A. Influence of socio-demographic variables and healthy habits on the values of overweight and obesity scales in 386,924 Spanish workers. Acad. J. Health Sci. 2024, 39, 27–35. [Google Scholar] [CrossRef]
- Rajendran, A.; Minhas, A.S.; Kazzi, B.; Varma, B.; Choi, E.; Thakkar, A.; Michos, E.D. Sex-specific differences in cardiovascular risk factors and implications for cardiovascular disease prevention in women. Atherosclerosis 2023, 384, 117269. [Google Scholar] [CrossRef]
- Mancini, G.B.J.; Ryomoto, A.; Yeoh, E.; Brunham, L.R.; Hegele, R.A. Recommendations for statin management in primary prevention: Disparities among international risk scores. Eur. Heart J. 2024, 45, 117–128. [Google Scholar] [CrossRef]
- The Global Cardiovascular Risk Consortium. Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. New Engl. J. Med. 2023, 389, 1273–1285. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association. Circulation 2020, 142, 506–532. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Fernández, C.; Romero-Saldaña, M.; Álvarez-López, C.; Molina-Luque, R.; Molina-Recio, G.; Vaquero-Abellán, M. Gender differences and health inequality: Evolution of cardiovascular risk in workers. Arch. Environ. Occup. Health 2021, 76, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Ghaed, S.G.; Gallo, L.C. Subjective social status, objective socioeconomic status, and cardiovascular risk in women. Health Psychol. 2007, 26, 668–674. [Google Scholar] [CrossRef]
- Shi, H.; Ge, M.-L.; Dong, B.; Xue, Q.-L. The Framingham risk score is associated with incident frailty, or is it? BMC Geriatr. 2021, 21, 1–9. [Google Scholar] [CrossRef]
- Ciumărnean, L.; Milaciu, M.V.; Negrean, V.; Orășan, O.H.; Vesa, S.C.; Sălăgean, O.; Iluţ, S.; Vlaicu, S.I. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. Int. J. Environ. Res. Public Health 2021, 19, 207. [Google Scholar] [CrossRef]
- Alves-Cabratosa, L.; Elosua-Bayés, M.; Martí-Lluch, R.; Blanch, J.; Tornabell-Noguera, È.; Garcia-Gil, M.; Ponjoan, A.; Grau, M.; Ribas-Aulinas, F.; Zacarías-Pons, L.; et al. Cardiovascular Risk Age Reflects Arterial Status: Middle-Aged People Showed Equivalent Arterial Stiffness to Older People in the Same Risk Category. J. Atheroscler. Thromb. 2024, 31, 626–640. [Google Scholar] [CrossRef]
- SCORE2-OP Working Group and ESC Cardiovascular Risk Collaboration. SCORE2-OP risk prediction algorithms: Estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur. Heart J. 2021, 42, 2455–2467. [Google Scholar] [CrossRef]
- Paudel, S.; Ahmadi, M.; Phongsavan, P.; Hamer, M.; Stamatakis, E. Do associations of physical activity and sedentary behaviour with cardiovascular disease and mortality differ across socioeconomic groups? A prospective analysis of device-measured and self-reported UK Biobank data. Br. J. Sports Med. 2023, 57, 921–929. [Google Scholar] [CrossRef]
- He, J.; Zhu, Z.; Bundy, J.D.; Dorans, K.S.; Chen, J.; Hamm, L.L. Trends in Cardiovascular Risk Factors in US Adults by Race and Ethnicity and Socioeconomic Status, 1999–2018. JAMA 2021, 326, 1286–1298. [Google Scholar] [CrossRef]
- Cundiff, J.M.; Bennett, A.; Carson, A.P.; Judd, S.E.; Howard, V.J. Socioeconomic status and psychological stress: Examining intersection with race, sex and US geographic region in the REasons for Geographic and Racial Differences in Stroke study. Stress. Health 2022, 38, 340–349. [Google Scholar] [CrossRef]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption and other variables on the values of different cardiovascular risk factors in 418,343 Spanish workers. Acad. J. Health Sci. 2024, 39, 89–95. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Smith, G.D.; Mehta, N.; Clarke, T.-K.; Lohoff, F.W. Evaluating the relationship between alcohol consumption, tobacco use, and cardiovascular disease: A multivariable Mendelian randomization study. PLoS Med. 2020, 17, e1003410. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Nakano, Y.; Adachi, S.; Murohara, T. Effects of Tobacco Smoking on Cardiovascular Disease. Circ. J. 2019, 83, 1980–1985. [Google Scholar] [CrossRef] [PubMed]
- Delgado, G.E.; Krämer, B.K.; März, W.; Hellstern, P.; Kleber, M.E.; Leipe, J. Immune Status and Mortality in Smokers, Ex-smokers, and Never-Smokers: The Ludwigshafen Risk and Cardiovascular Health Study. Nicotine Tob. Res. 2021, 23, 1191–1198. [Google Scholar] [CrossRef]
- Lavie, C.J.; Ozemek, C.; Carbone, S.; Katzmarzyk, P.T.; Blair, S.N. Sedentary Behavior, Exercise, and Cardiovascular Health. Circ. Res. 2019, 124, 799–815. [Google Scholar] [CrossRef]
- Torres García, J.C.; Tárraga López, P.J.; Ramírez Gallegos, I.; Tárraga Marcos, A.; López González, A.A.; Ramírez-Manent, J.I. Relationship between physical activity and cardiovascular risk: A systematic review. Acad. J. Health Sci. 2024, 39, 26–40. [Google Scholar] [CrossRef]
- Laffond, A.; Rivera-Picón, C.; Rodríguez-Muñoz, P.M.; Juárez-Vela, R.; de Viñaspre-Hernández, R.R.; Navas-Echazarreta, N.; Sánchez-González, J.L. Mediterranean Diet for Primary and Secondary Prevention of Cardiovascular Disease and Mortality: An Updated Systematic Review. Nutrients 2023, 15, 3356. [Google Scholar] [CrossRef]
- Díez-Espino, J.; Buil-Cosiales, P.; Babio, N.; Toledo, E.; Corella, D.; Ros, E.; Fitó, M.; Gómez-Gracia, E.; Estruch, R.; Fiol, M.; et al. Impact of Life’s Simple 7 on the incidence of major cardiovascular events in high-risk Spanish adults in the PREDIMED study cohort. Rev. Espanola Cardiol. 2020, 73, 205–211. [Google Scholar] [CrossRef]
- Gómez-Sánchez, L.; Gómez-Sánchez, M.; García-Ortiz, L.; Agudo-Conde, C.; Lugones-Sánchez, C.; Gonzalez-Sánchez, S.; Rodríguez-Sánchez, E.; Gómez-Marcos, M.A. The Relationship between the Mediterranean Diet and Vascular Stiffness, Metabolic Syndrome, and Its Components in People over 65 Years of Age. Nutrients 2024, 16, 3464. [Google Scholar] [CrossRef]
Scales | Factors | Estimation |
---|---|---|
Framingham Risk Score [9] | age, sex, total cholesterol, HDL cholesterol, blood pressure, diabetes, and smoking | 10-year risk of MI or death |
American Heart Association’s Preventive Risk Equations (PREVENT) [10] | age, sex, total cholesterol, HDL cholesterol, systolic blood pressure, diabetes, smoking, BMI, Glomerular filtration rate, lipid-lowering medication, antihypertensive medication. | 10- and 30-year absolute risk of CVD, each of the atherosclerotic CVDs |
Pooled Cohort Equations (PCE) [11] | age, sex, race, total cholesterol, HDL cholesterol, systolic blood pressure, diabetes, smoking, antihypertensive medication. | 10-year risk for a first atherosclerotic cardiovascular disease |
Systematic Coronary Risk Evaluation2 (SCORE2) [12] | age, sex, smoking status, total cholesterol, and systolic blood pressure. | 10-year risk of fatal cardiovascular events |
QRISK3 [13] | age, sex, race, total cholesterol, HDL cholesterol, systolic blood pressure, diabetes, smoking, antihypertensive medication. chronic kidney disease, heart attack, atrial fibrillation, migraines, Rheumatoid arthritis, systemic lupus, severe mental illness, steroids, BMI | 10-year risk of heart attack or stroke |
REGICOR [14] | age, sex, blood pressure, cholesterol, and smoking habits | 10-year risk of fatal cardiovascular events |
Vascular Age and Cardiac Age | smoking, hypertension, and hypercholesterolemia | Aging of the heart or arteries |
Men n = 14,305 | Women n = 30,634 | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | |
Age (years) | 41.1 (10.6) | 40.4 (10.5) | <0.001 |
Height (cm) | 176.0 (7.5) | 162.6 (6.0) | <0.001 |
Weight (kg) | 81.2 (14.5) | 63.7 (13.3) | <0.001 |
Waist circumference (cm) | 89.7 (12.6) | 76.7 (11.8) | <0.001 |
Hip circumference (cm) | 101.7 (8.8) | 99.3 (10.7) | <0.001 |
Systolic blood pressure (mmHg) | 128.2 (13.1) | 116.1 (13.8) | <0.001 |
Diastolic blood pressure (mmHg) | 79.9 (10.6) | 74.8 (10.1) | <0.001 |
Total cholesterol (mg/dL) | 191.8 (37.2) | 187.8 (34.6) | <0.001 |
HDL-c (mg/dL) | 48.9 (11.2) | 59.3 (12.8) | <0.001 |
LDL-c (mg/dL) | 120.8 (34.1) | 112.1 (30.5) | <0.001 |
Triglycerides (mg/dL) | 111.0 (73.2) | 81.7 (47.0) | <0.001 |
Glucose (mg/dL) | 93.6 (18.2) | 88.9 (12.4) | <0.001 |
AST (UI/L) | 24.1 (17.2) | 18.2 (8.0) | <0.001 |
ALT (UI/L) | 29.0 (36.7) | 17.3 (13.7) | <0.001 |
GGT (UI/L) | 30.2 (28.8) | 18.1 (18.1) | <0.001 |
N (%) | N (%) | p-Value | |
<30 years | 2400 (16.8) | 5984 (19.5) | <0.001 |
30–39 years | 4200 (29.4) | 8304 (27.1) | |
40–49 years | 4512 (31.5) | 10128 (33.0) | |
50–59 years | 2449 (17.1) | 5150 (16.8) | |
60–69 years | 744 (5.2) | 1120 (3.6) | |
Physicians | 5064 (35.4) | 5024 (16.4) | <0.001 |
Nurses | 4008 (28.0) | 12752 (41.6) | |
Health Technicians | 1728 (12.1) | 4128 (13.5) | |
Nurse assistants—Jailers | 3505 (24.5) | 8782 (28.5) | |
Smokers | 2304 (16.1) | 4592 (15.0) | <0.001 |
Yes physical activity | 6793 (47.5) | 11942 (38.9) | <0.001 |
Yes Mediterranean diet | 6534 (45.8) | 11413 (37.9) | <0.001 |
Diabetes | 360 (2.5) | 464 (1.5) | <0.001 |
ALLY VA | SCORE2 | REGICOR | |||||||
---|---|---|---|---|---|---|---|---|---|
Men | n | Mean (SD) | p-Value | n | Mean (SD) | p-Value | n | Mean (SD) | p-Value |
30–39 years | 4200 | 1.6 (6.4) | <0.001 | 0 | 2712 | 2.0 (0.9) * | <0.001 | ||
40–49 years | 4512 | 3.3 (7.4) | 4512 | 3.0 (1.0) | <0.001 | 4512 | 2.4 (1.1) | ||
50–59 years | 2449 | 5.3 (9.2) | 2449 | 5.4 (1.9) | 2449 | 4.2 (2.9) | |||
60–69 years | 744 | 6.9 (11.2) | 744 | 8.1 (1.4) | 744 | 4.9 (2.2) | |||
Physicians | 3960 | 2.6 (8.1) | <0.001 | 2832 | 4.0 (1.8) | <0.001 | 3456 | 2.9 (1.9) | <0.001 |
Nurses | 3264 | 2.9 (7.1) | 1416 | 3.4 (1.4) | 2568 | 2.3 (1.0) | |||
Health Technicians | 1488 | 3.7 (8.5) | 912 | 4.3 (2.2) | 1440 | 3.1 (1.8) | |||
Nursing assistants or orderlies | 3193 | 5.3 (9.6) | 2545 | 4.9 (2.3) | 2953 | 3.2 (2.6) | |||
Non-smokers | 10,009 | 1.8 (7.0) | <0.001 | 6673 | 4.0 (1.9) | <0.001 | 8809 | 2.7 (1.6) | <0.001 |
Smokers | 1896 | 13.0 (8.7) | 1032 | 6.3 (2.5) | 1608 | 4.0 (3.2) | |||
No physical activity | 6576 | 4.7 (8.5) | <0.001 | 4320 | 4.6 (2.2) | <0.001 | 5856 | 3.1 (2.0) | <0.001 |
Yes physical activity | 5329 | 2.1 (8.0) | 3385 | 3.9 (2.0) | 4561 | 2.6 (2.0) | |||
Non Mediterranean diet | 6765 | 4.5 (8.3) | <0.001 | 4439 | 4.5 (2.2) | <0.001 | 6057 | 3.0 (2.0) | <0.001 |
Yes Mediterranean diet | 5140 | 2.4 (8.1) | 3266 | 4.0 (2.1) | 4360 | 2.7 (2.1) | |||
Women | n | Mean (SD) | p-Value | Mean (SD) | p-Value | Mean (SD) | p-Value | ||
30–39 years | 8304 | −5.8 (6.0) | <0.001 | 0 | 4960 | 0.9 (0.4) | <0.001 | ||
40–49 years | 10,128 | −4.4 (10.1) | 10128 | 1.4 (0.7) | <0.001 | 10128 | 1.5 (1.1) | ||
50–59 years | 5150 | 4.9 (14.4) | 5150 | 3.1 (1.2) | 5150 | 3.2 (1.8) | |||
60–69 years | 1120 | 6.3 (15.5) | 1120 | 5.3 (1.6) | 1120 | 4.1 (2.4) | |||
Physicians | 3264 | −4.7 (9.8) | <0.001 | 1920 | 2.0 (1.4) | <0.001 | 2400 | 1.7 (1.5) | <0.001 |
Nurses | 9680 | −5.2 (8.7) | 5568 | 1.8 (1.1) | 8160 | 1.4 (1.2) | |||
Health Technicians | 3520 | −1.4 (11.8) | 2464 | 2.2 (1.6) | 3232 | 1.9 (1.7) | |||
Nursing assistants or orderlies | 8238 | 1.3 (13.1) | 6446 | 2.8 (1.6) | 7566 | 2.5 (1.8) | |||
Non-smokers | 20,590 | −4.2 (10.3) | <0.001 | 13566 | 1.9 (1.2) | <0.001 | 17710 | 1.8 (1.5) | <0.001 |
Smokers | 4112 | 6.7 (11.8) | 2832 | 3.9 (1.7) | 3648 | 2.6 (2.0) | |||
No physical activity | 15,352 | −1.5 (12.0) | <0.001 | 10168 | 2.2 (1.5) | <0.001 | 13352 | 2.0 (1.7) | <0.001 |
Yes physical activity | 9350 | −3.9 (10.1) | 6230 | 1.1 (1.0) | 8006 | 1.7 (1.5) | |||
Non Mediterranean diet | 15,841 | −1.1 (11.8) | <0.001 | 10499 | 2.1 (1.5) | <0.001 | 13749 | 2.0 (1.7) | <0.001 |
Yes Mediterranean diet | 8861 | −4.4 (10.2) | 5899 | 1.3 (1.1) | 7609 | 1.8 (1.5) |
ALLY VA Mod-High | SCORE2 Mod-High | REGICOR Mod-High | |||||||
---|---|---|---|---|---|---|---|---|---|
Men | n | % | p-Value | n | % | p-Value | n | % | p-Value |
30–39 years | 4200 | 11.4 | <0.001 | 0 | 2712 | 1.8 | <0.001 | ||
40–49 years | 4512 | 20.2 | 4512 | 1.9 | <0.001 | 4512 | 4.3 | ||
50–59 years | 2449 | 22.9 | 2449 | 5.2 | 2449 | 31.4 | |||
60–69 years | 744 | 32.4 | 744 | 22.3 | 744 | 58.1 | |||
Physicians | 3960 | 13.4 | <0.001 | 2832 | 3.1 | <0.001 | 3456 | 14.7 | <0.001 |
Nurses | 3264 | 13.0 | 1416 | 2.8 | 2568 | 2.8 | |||
Health Technicians | 1488 | 16.7 | 912 | 10.2 | 1440 | 18.8 | |||
Nursing assistants or orderlies | 3193 | 25.6 | 2545 | 12.9 | 2953 | 20.1 | |||
Non-smokers | 10,009 | 10.3 | <0.001 | 6673 | 3.1 | <0.001 | 8809 | 12.5 | <0.001 |
Smokers | 1896 | 50.1 | 1032 | 12.6 | 1608 | 20.9 | |||
No physical activity | 6576 | 20.7 | <0.001 | 4320 | 3.0 | <0.001 | 5856 | 58.6 | <0.001 |
Yes physical activity | 5329 | 12.3 | 3385 | 14.5 | 4561 | 11.1 | |||
Non Mediterranean diet | 6765 | 19.8 | <0.001 | 4439 | 2.8 | <0.001 | 6057 | 55.8 | <0.001 |
Yes Mediterranean diet | 5140 | 13.5 | 3266 | 15.1 | 4360 | 14.6 | |||
Women | n | % | p-Value | n | % | p-Value | n | % | p-Value |
30–39 years | 8304 | 2.1 | <0.001 | 0 | 4960 | 0 | <0.001 | ||
40–49 years | 10128 | 8.8 | 10,128 | 1.0 | <0.001 | 10,128 | 1.6 | ||
50-59 years | 5150 | 32.6 | 5150 | 3.0 | 5150 | 22.6 | |||
60–69 years | 1120 | 38.6 | 1120 | 14.2 | 1120 | 35.7 | |||
Physicians | 3264 | 5.7 | <0.001 | 1920 | 2.8 | <0.001 | 2400 | 7.3 | <0.001 |
Nurses | 9680 | 4.4 | 5568 | 2.4 | 8160 | 3.1 | |||
Health Technicians | 3520 | 12.4 | 2464 | 5.8 | 3232 | 7.9 | |||
Nursing assistants or orderlies | 8238 | 20.9 | 6446 | 7.4 | 7566 | 13.7 | |||
Non-smokers | 20,590 | 7.2 | <0.001 | 13,566 | 1.9 | <0.001 | 17,710 | 7.0 | <0.001 |
Smokers | 4112 | 28.6 | 2832 | 5.7 | 3648 | 13.2 | |||
No physical activity | 15,352 | 12.4 | <0.001 | 10,168 | 2.2 | <0.001 | 13,352 | 9.1 | <0.001 |
Yes physical activity | 9350 | 7.2 | 6230 | 7.3 | 8006 | 6.4 | |||
Non Mediterranean diet | 15,841 | 11.5 | <0.001 | 10,499 | 2.1 | <0.001 | 13,749 | 8.8 | <0.001 |
Yes Mediterranean diet | 8861 | 7.9 | 5899 | 7.7 | 7609 | 6.9 |
VA Mod-High | SCORE2 Mod-High | REGICOR Mod-High | |
---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | |
Men | 2.36 (2.20–2.53) | 2.95 (2.50–3.41) | 2.17 (1.97–2.38) |
30–39 years | 1.21 (1.17–1.25) | 1 | 2.71 (2.42–3.00) |
40–49 years | 4.50 (3.98–5.03) | 3.16 (2.70–3.63) | 6.93 (6.01–7.86) |
50–59 years | 8.90 (7.92–9.88) | 8.86 (8.00–9.73) | 9.10 (8.01–10.20) |
60–69 years | 13.90 (12.01–15.81) | 14.12 (12.01–16.23) | 13.46 (11.16–14.77) |
Nurses | 1.28 (1.17–1.39) | 1.12 (1.08–1.16) | 1.12 (1.08–1.17) |
Health Technicians | 1.72 (1.57–1.88) | 1.41 (1.28–1.54) | 1.43 (1.27–1.59) |
Nursing assistants or orderlies | 1.94 (1.77–2.12) | 1.89 (1.70–2.09) | 1.98 (1.73–2.23) |
Smokers | 7.77 (7.21–8.33) | 4.49 (3.89–5.10) | 2.12 (1.91–2.33) |
No physical activity | 1.60 (1.49–1.71) | 1.79 (1.60–1.98) | 1.81 (1.60–2.03) |
Non Mediterranean diet | 1.40 (1.33–1.48) | 1.56 (1.41–1.71) | 1.49 (1.32–1.66) |
ALLY VA Mod-High | SCORE2 Mod-High | REGICOR Mod-High | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Men | n | %Pre-Post | Difference % | p-Value | %Pre-Post | Difference % | p-Value | %Pre-Post | Difference % | p-Value |
30–39 years | 4200 | 10.6–11.4 | 6.9 | 1–6–1.8 | 9.3 | |||||
40–49 years | 4512 | 17.8–20.2 | 11.8 | 1.7–1.9 | 10.2 | 3.7–4.3 | 12.6 | |||
50–59 years | 2449 | 19.2–22.9 | 15.9 | 4.5–5.2 | 13.4 | 25.8–31.4 | 17.9 | |||
60–69 years | 744 | 25.5–32.4 | 21.3 | 18.1–22.3 | 18.9 | 44.5–58.1 | 23.4 | |||
Physicians | 5064 | 12.5–13.4 | 6.6 | <0.001 | 2.9–3.1 | 7.6 | <0.001 | 13.7–14.7 | 6.9 | <0.001 |
Nurses | 4008 | 11.8–13.0 | 8.9 | 2.5–2.8 | 8.9 | 2.5–2.8 | 9.2 | |||
Health Technicians | 1728 | 14.3–16.7 | 14.6 | 8.7–10.2 | 14.5 | 16.0–18.8 | 14.6 | |||
Nursing assistants or orderlies | 3505 | 21.1–25.6 | 17.6 | 10.5–12.9 | 18.5 | 16.1–20.1 | 19.8 | |||
Non-smokers | 12,001 | 9.7–10.3 | 5.7 | <0.001 | 2.9–3.1 | 4.6 | <0.001 | 11.8–12.5 | 5.6 | <0.001 |
Smokers | 2304 | 40.1–50.1 | 19.9 | 10.0–12.6 | 20.9 | 16.0–20.9 | 23.6 | |||
No physical activity | 7512 | 16.8–20.7 | 18.8 | <0.001 | 2.5–3.0 | 17.9 | <0.001 | 47.2–58.6 | 19.5 | <0.001 |
Yes physical activity | 6793 | 11.4–12.3 | 7.2 | 13.7–14.5 | 5.4 | 10.4–11.1 | 6.4 | |||
Non Mediterranean diet | 7771 | 16.5–19.8 | 16.8 | <0.001 | 2.3–2.8 | 16.2 | <0.001 | 45.7–55.8 | 18.1 | <0.001 |
Yes Mediterranean diet | 6534 | 12.2–13.5 | 9.2 | 14.115.1 | 6.5 | 13.5–14.6 | 7.7 | |||
Women | n | % | p-Value | % | p-Value | % | p-Value | |||
30–39 years | 8304 | 2.0–2.1 | 5.1 | 0–0 | 3.3 | |||||
40–49 years | 10,128 | 8.0–8.8 | 8.6 | 0.9–1.0 | 9.5 | 1.5–1.6 | 4.8 | |||
50–59 years | 5150 | 29.2–32.6 | 10.4 | 2.7–3.0 | 10.5 | 20.8–22.6 | 7.9 | |||
60–69 years | 1120 | 33.3–38.6 | 13.6 | 11.9–14.2 | 16.3 | 31.1–35.7 | 12.8 | |||
Physicians | 5024 | 5.4–5.7 | 5.2 | <0.001 | 2.7–2.8 | 2.5 | <0.001 | 7.0–7.3 | 3.5 | <0.001 |
Nurses | 12,752 | 4.1–4.4 | 6.1 | 2.3–2.4 | 2.9 | 2.9–3.1 | 4.9 | |||
Health Technicians | 4128 | 11.1–12.4 | 10.0 | 5.3–5.8 | 8.9 | 7.0–7.9 | 8.3 | |||
Nursing assistants or orderlies | 8782 | 17.8–20.9 | 14.6 | 6.5–7.4 | 11.8 | 12.1–13.7 | 11.7 | |||
Non-smokers | 26,094 | 7.0–7.2 | 3.2 | <0.001 | 1.8–1.9 | 2.9 | <0.001 | 6.6–7.0 | 4.6 | <0.001 |
Smokers | 4592 | 25.3–28.6 | 11.6 | 13.1–5.7 | 16.8 | 11.4–13.2 | 13.5 | |||
No physical activity | 18,744 | 11.1–12.4 | 10.6 | <0.001 | 2.0–2.2 | 13.5 | <0.001 | 8.0–9.1 | 11.8 | <0.001 |
Yes physical activity | 11,942 | 6.9–7.2 | 4.4 | 6.9–7.3 | 4.8 | 6.0–6.4 | 5.5 | |||
Non Mediterranean diet | 19,213 | 10.4–11.5 | 10.0 | <0.001 | 1.8–2.1 | 12.6 | <0.001 | 7.8–8.8 | 10.9 | <0.001 |
Yes Mediterranean diet | 11,413 | 7.5–7.9 | 4.9 | 7.3–7.7 | 5.3 | 6.4–6.9 | 6.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcos, P.J.T.; López, P.J.T.; López-González, Á.A.; Rifá, E.M.-A.; Oliveira, H.P.; Sánchez, C.M.; Ramírez-Manent, J.I. Estimation of Cardiovascular Risk Using SCORE2, REGICOR and Vascular Age Scales in Spanish Healthcare Workers: A Retrospective Longitudinal Study. Healthcare 2025, 13, 375. https://doi.org/10.3390/healthcare13040375
Marcos PJT, López PJT, López-González ÁA, Rifá EM-A, Oliveira HP, Sánchez CM, Ramírez-Manent JI. Estimation of Cardiovascular Risk Using SCORE2, REGICOR and Vascular Age Scales in Spanish Healthcare Workers: A Retrospective Longitudinal Study. Healthcare. 2025; 13(4):375. https://doi.org/10.3390/healthcare13040375
Chicago/Turabian StyleMarcos, Pedro Javier Tárraga, Pedro Juan Tárraga López, Ángel Arturo López-González, Emilio Martínez-Almoyna Rifá, Hernán Paublini Oliveira, Cristina Martorell Sánchez, and José Ignacio Ramírez-Manent. 2025. "Estimation of Cardiovascular Risk Using SCORE2, REGICOR and Vascular Age Scales in Spanish Healthcare Workers: A Retrospective Longitudinal Study" Healthcare 13, no. 4: 375. https://doi.org/10.3390/healthcare13040375
APA StyleMarcos, P. J. T., López, P. J. T., López-González, Á. A., Rifá, E. M.-A., Oliveira, H. P., Sánchez, C. M., & Ramírez-Manent, J. I. (2025). Estimation of Cardiovascular Risk Using SCORE2, REGICOR and Vascular Age Scales in Spanish Healthcare Workers: A Retrospective Longitudinal Study. Healthcare, 13(4), 375. https://doi.org/10.3390/healthcare13040375