Caffeine as an Active Ingredient in Cosmetic Preparations Against Hair Loss: A Systematic Review of Available Clinical Evidence
Abstract
:1. Introduction
2. Aim
3. Materials and Methods
3.1. Search Strategy
3.2. Evidence Acquisition
3.3. Inclusion and Exclusion Criteria
3.4. Data Extraction
4. Results
5. Discussion
6. Conclusions
7. Future Perspective
- Are conducted in a double-blind, randomized manner, where the caffeine preparation (verum) is compared with a matched placebo, preferably an identical hair product devoid only of caffeine;
- Are conducted in sufficiently large groups of participants, representative of all patients with a given type of hair loss with regard to symptoms, severity, age, and gender balance;
- Test well-defined test products with all ingredients and concentrations mentioned, especially those of caffeine. Comparisons of different caffeine concentrations within one trial would be an important step forward;
- Ensure that control groups are matched to the verum groups in all the above-mentioned criteria to avoid selection bias;
- Last sufficiently long to detect changes in the observed physiological and pathological processes, with the known seasonal variation in hair growth and loss taken into account;
- Involve objective measures of the effect, like the number of shed hairs, rates of anagen and telogen hairs, number of hairs per area unit, hair thickness, and velocity of growth, measured with the use of reproducible, validated, and standardized methods;
- Involve patient-reported outcome measures, e.g., the influence of the treatment on the quality of life or willingness to continue the treatment;
- Systematically monitor the participants’ adherence to the treatment protocol;
- Systematically monitor all adverse events that emerge in the course of the study.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGA | Androgenic alopecia |
EMA | European Medicines Agency |
F | Female |
FDA | Food and Drug Administration |
GRADE | Grading of Recommendations Assessment, Development, and Evaluation |
M | Male |
OTC | Over-the-counter medicines |
TE | Telogen effluvium |
WHO | World Health Organization |
References
- Kiratiwongwan, R.; Boonchai, W.; Kanokrungsee, S. Allergic Contact Dermatitis to Topical Preparations Containing Minoxidil: A Systematic Review and Individual Participant Data Meta-Analysis. Dermatitis 2024. published ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Dakkak, M.; Forde, K.M.; Lanney, H. Hair Loss: Diagnosis and Treatment. Am. Fam. Physician 2024, 110, 243–250. [Google Scholar]
- Kwon, T.R.; Oh, C.T.; Park, H.M.; Han, H.J.; Ji, H.J.; Kim, B.J. Potential synergistic effects of human placental extract and minoxidil on hair growth-promoting activity in C57BL/6J mice. Clin. Exp. Dermatol. 2015, 40, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Pekmezi, E.; Dündar, C.; Türkoğlu, M. A proprietary herbal extract against hair loss in androgenetic alopecia and telogen effluvium: A placebo-controlled, single-blind, clinical-instrumental study. Acta Derm. Venerol. 2018, 27, 51–57. [Google Scholar] [CrossRef]
- Kranz, D.; Nadarevic, L.; Erdfelder, E. Bald and Bad? Exp. Psychol. 2019, 66, 331–345. [Google Scholar] [CrossRef]
- Gonul, M.; Cemil, B.C.; Ayvaz, H.H.; Cankurtaran, E.; Ergin, C.; Gurel, M.S. Comparison of quality of life in patients with androgenetic alopecia and alopecia areata. An. Bras. Dermatol. 2018, 93, 651–658. [Google Scholar] [CrossRef]
- Pozzar, R.A.; Hammer, M.J.; Cooper, B.A.; Kober, K.M.; Chen, L.-M.; Paul, S.M.; Conley, Y.P.; Levine, J.D.; Miaskowski, C. Symptom Clusters in Patients with Gynecologic Cancer Receiving Chemotherapy. Oncol. Nurs. Forum. 2021, 48, 441–452. [Google Scholar] [CrossRef]
- Bączyk, G.; Pleszewa, A.; Formanowicz, D.; Kozłowska, K.A. Quality of Life for Polish Women with Ovarian Cancer during First-Line Chemotherapy. Healthcare 2023, 11, 2596. [Google Scholar] [CrossRef]
- Premji, S.K.; Ruddy, K.J.; Vierkant, R.A.; Larson, N.; Loprinzi, C.; Dulmage, B.; Lustberg, M.; Couch, F.J.; Olson, J.E.; Cathcart-Rake, E. Perceptions of Delayed Alopecia Among Breast Cancer Survivors. Clin. Breast Cancer 2024, 25, e170–e177. [Google Scholar] [CrossRef]
- Aldhouse, N.V.J.; Kitchen, H.; Knight, S.; Macey, J.; Nunes, F.P.; Dutronc, Y.; Mesinkovska, N.; Ko, J.M.; King, B.A.; Wyrwich, K.W. You lose your hair, what’s the big deal?’ I was so embarrassed, I was so self-conscious, I was so depressed: A qualitative interview study to understand the psychosocial burden of alopecia areata. J. Patient. Rep. Outcomes 2020, 4, 76. [Google Scholar] [CrossRef] [PubMed]
- Aukerman, E.L.; Jafferany, M. The psychological consequences of androgenetic alopecia: A systematic review. J. Cosmet. Dermatol. 2023, 22, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.L.; Garibyan, L.; Kimball, A.B.; Drake, L.A. Systemic causes of hair loss. Ann. Med. 2016, 48, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Braun, N.; Heinrich, U. What Can Complex Dietary Supplements Do for Hair Loss and How Can It Be Validly Measured—A Review. Appl. Sci. 2020, 10, 4996. [Google Scholar] [CrossRef]
- Rajput, R.J. Influence of Nutrition, Food Supplements and Lifestyle in Hair Disorders. Indian. Dermatol. Online J. 2022, 13, 721–724. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, W.; Wang, C.; Yang, W. Mechanism and prevention of hair loss after metabolic and bariatric surgery. On behalf of Chinese Obesity Metabolic Surgery Collaborative. Precis. Nutr. 2022, 1, e00010. [Google Scholar]
- Szendzielorz, E.; Bednarek, M. Excessive hair loss as a complication after infection with SARS-CoV-2 virus. Aesth. Cosmetol. Med. 2021, 10, 109–113. [Google Scholar] [CrossRef]
- Khumalo, S.; Mafulu, Y.; Williams, V.; Musarapasi, N.; Haumba, S.; Dube, N. Secondary syphilis presenting with alopecia and leukoderma in a stable HIV-positive patient in a resource-limited setting: A case report. AIDS Res. Ther. 2024, 21, 19. [Google Scholar] [CrossRef]
- Sunada, N.; Honda, H.; Nakano, Y.; Yamamoto, K.; Tokumasu, K.; Sakurada, Y.; Matsuda, Y.; Hasegawa, T.; Otsuka, Y.; Obika, M.; et al. Hormonal trends in patients suffering from long COVID symptoms. Endocr. J. 2022, 69, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Nakhla, M.; Nair, A.; Balani, P.; Ujjawal, A.; Kumar, P.A.; Dasari, M.; Yukselen, Z.; Bansal, K.; Ganatra, S.; Dani, S.S. Risk of Suicide, Hair Loss, and Aspiration with GLP1-Receptor Agonists and Other Diabetic Agents: A Real-World Pharmacovigilance Study. Cardiovasc. Drugs Ther. 2024, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Yu, D.A.; Cho, S.; Youn, S.W.; Kwon, O. Hair loss after drug reaction with eosinophilia and systemic symptoms (DRESS): A multicentric retrospective case series. J. Dermatol. 2023, 50, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Pitton Rissardo, J.; Fornari Caprara, A.L.; Casares, M.; Skinner, H.J.; Hamid, U. Antiseizure Medication-Induced Alopecia: A Literature Review. Medicines 2023, 10, 35. [Google Scholar] [CrossRef]
- Javdan, B.; Pattison, L.M.; Rangu, S.A.; Tejeda, E.; McLellan, B.N. The validity of over-the-counter skin, hair, and nail recommendations for adult patients with cancer: A systematic review. Support Care Cancer. 2024, 32, 577. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, J.D.; Ramos-García, V.; Infante-Ventura, D.; Suarez-Herrera, J.C.; Rueda-Domínguez, A.; Serrano-Aguilar, P.; Trujillo-Martín, M.d.M. Ethical, legal, organizational and social issues related to the use of scalp cooling for the prevention of chemotherapy-induced alopecia: A systematic review. Health Expect. 2023, 26, 567–578. [Google Scholar] [CrossRef]
- Hill, R.C.; Zeldin, S.D.; Lipner, S.R. Drug-Induced Hair Loss: Analysis of the Food and Drug Administration’s Adverse Events Reporting System Database. Skin Appendage Disord. 2024, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.; Mirmirani, P.; Messenger, A.G.; Birch, M.P.; Youngquist, R.S.; Tamura, M.; Filloon, T.; Luo, F.; Dawson, T.L., Jr. What women want–quantifying the perception of hair amount: An analysis of hair diameter and density changes with age in Caucasian women. Br. J. Dermatol. 2012, 167, 324–332. [Google Scholar] [CrossRef]
- Mounsey, A.L.; Reed, S.W. Diagnosing and treating hair loss. Am. Fam. Physician 2009, 80, 356–362. [Google Scholar] [PubMed]
- York, K.; Meah, N.; Bhoyrul, B.; Sinclair, R. A review of the treatment of male pattern hair loss. Expert Opin. Pharmacother. 2020, 21, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.; Go, T.; Choi, W. Intelligent Healthcare Platform for Diagnosis of Scalp and Hair Disorders. Appl. Sci. 2024, 14, 1734. [Google Scholar] [CrossRef]
- Kalicińska, J.; Wiśniowska, B.; Polak, S.; Spiewak, R. Artificial intelligence that predicts sensitizing potential of cosmetic ingredients with accuracy comparable to animal and in vitro tests—How does the infotechnomics compare to other “omics” in the cosmetics safety assessment? Int. J. Mol. Sci. 2023, 24, 6801. [Google Scholar] [CrossRef] [PubMed]
- Almohanna, H.M.; Ahmed, A.A.; Tsatalis, J.P.; Tosti, A. The role of vitamins and minerals in hair loss: A review. Dermatol. Ther. 2019, 9, 51–70. [Google Scholar] [CrossRef] [PubMed]
- El-Arabey, A.A.; Abdalla, M. Formononetin: Novel Deal for Androgenetic Alopecia. Arch. Med. Res. 2020, 51, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Soares, R.; Andre, M.C.; Peres-Correia, M. Adverse Effects with Finasteride 5 mg/day for Patterned Hair Loss in Premenopausal Women. Int. J. Trichol. 2018, 10, 48–50. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Hall, D.C.; Talukder, M.; Bamimore, M.A. There Is a Positive Dose-Dependent Association between Low-Dose Oral Minoxidil and Its Efficacy for Androgenetic Alopecia: Findings from a Systematic Review with Meta-Regression Analyses. Skin Appendage Disord. 2022, 8, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Polonini, H.C.; de Sousa, P.L.; Silva, C.C.; Marianni, B. Compatibility of Caffeine Clobetasol Propionate Dutasteride Nicotinamide and Progesterone in TrichoFoam™, a Natural Vehicle for Hair Foams. Int. J. Pharm. Compd. 2024, 28, 161–168. [Google Scholar] [PubMed]
- Devjani, S.; Ezemma, O.; Kelley, K.J.; Stratton, E.; Senna, M. Androgenetic Alopecia: Therapy Update. Drugs 2023, 83, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Busch, L.; Klein, A.L.; Schwartz, J.R.; Pearson, K.; Richter, H.; Schanzer, S.; Lohan, S.B.; Schumacher, F.; Kleuser, B.; Meinke, M.C. Follicular Delivery of Caffeine from a Shampoo for Hair Retention. Cosmetics 2023, 10, 104. [Google Scholar] [CrossRef]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359, 5024. [Google Scholar] [CrossRef]
- Visconti, M.J.; Haidari, W.; Feldman, S.R. Therapeutic use of caffeine in dermatology: A literature review. J. Dermatol. Dermatol. Surg. 2020, 24, 18–24. [Google Scholar] [CrossRef]
- Singh, P.; Bhat, S.S.; Singh, N.; Venkanna, B.U.; Mohamed, R.; Rao, R.P. Cell-Based Model Systems for Validation of Various Efficacy-Based Claims for Cosmetic Ingredients. Cosmetics 2022, 9, 107. [Google Scholar] [CrossRef]
- Volker, J.M.; Koch, N.; Becker, M.; Klenk, A. Caffeine and Its Pharmacological Benefits in the Management of Androgenetic Alopecia: A Review. Skin Pharmacol. Physiol. 2020, 33, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Dhurat, R.; Chitallia, J.; May, T.W.; Ammani, M.; Madhukara, J.J.; Anandan, S.; Vaidya, P.; Klenk, A. An Open-Label Randomized Multicenter Study Assessing the Noninferiority of a Caffeine-Based Topical Liquid 0.2% versus Minoxidil 5% Solution in Male Androgenetic Alopecia. Skin Pharmacol. Physiol. 2017, 30, 298–305. [Google Scholar] [CrossRef]
- Sisto, T.; Bussoletti, C.; Celleno, L. Efficacy of a Cosmetic Caffeine Shampoo in Androgenetic Alopecia management. II Note. J. Appl. Cosmetol. 2013, 31, 57–66. [Google Scholar]
- Bussoletti, C.; Mastropietro, F.; Tolaini, M.V.; Celleno, L. Use of a Caffeine Shampoo for the Treatment of Male Androgenetic Alopecia. J. Appl. Cosmetol. 2010, 28, 753–762. [Google Scholar]
- Sisto, T.; Bussoletti, C.; Celleno, L. Role of a Caffeine Shampoo in Cosmetic Management of Telogen Effluvium. J. Appl. Cosmetol. 2013, 31, 139–145. [Google Scholar]
- Welzel, J.; Wolff, H.H.; Gehring, W. Reduction of telogen rate and increase of hair density in androgenetic alopecia by a cosmetic product: Results of a randomized, prospective, vehicle-controlled double-blind study in men. J. Cosmet. Dermatol. 2022, 21, 1057–1064. [Google Scholar] [CrossRef]
- Chen, D.; Yu, F.; Wang, C.; Chen, H.; Tan, J.; Shi, Q.; He, X.; Liu, X.; Wang, F.; Zhao, H. Anti-hair loss effect of a shampoo containing caffeine and adenosine. J. Cosmet. Dermatol. 2024, 23, 2927–2933. [Google Scholar] [CrossRef]
- Merja, A.; Patel, N.; Patel, M.; Patnaik, S.; Ahmed, A.; Maulekhi, S. Safety and efficacy of REGENDIL™ infused hair growth promoting product in adult human subject having hair fall complaints (alopecia). J. Cosmet. Dermatol. 2023, 23, 938–948. [Google Scholar] [CrossRef]
- Rapaport, J.; Sadgrove, N.J.; Arruda, S.; Swearingen, A.; Abidi, Z.; Sadick, N. Real World, Open-Label Study of the Efficacy and Safety of a Nowel Serum in Androgenetic Alopecia. J. Drugs Dermatol. 2023, 22, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Samadi, A.; Rokhsat, E.; Saffarian, Z.; Goudarzi, M.M.; Kardeh, S.; Nasrollahi, S.A.; Firooz, A. Assessment of the efficacy and tolerability of a topical formulation containing caffeine and Procapil 3% for improvement of male pattern hair loss. J. Cosmet. Dermatol. 2024, 23, 1492–1494. [Google Scholar] [CrossRef] [PubMed]
- Krefft-Trzciniecka, K.; Cisoń, H.; Pakiet, A.; Nowicka, D.; Szepietowski, J.C. Enhancing Quality of Life and Sexual Functioning in Female Androgenetic Alopecia: Therapeutic Potential of Hair Follicle-Derived Stem Cells. Healthcare 2024, 12, 608. [Google Scholar] [CrossRef]
- Zeng, L.; Helsingen, L.M.; Bretthauer, M.; Agoritsas, T.; Vandvik, P.O.; Mustafa, R.A.; Busse, J.; Siemieniuk, R.A.; Lytvyn, L.; Li, S.-A.; et al. A novel framework for incorporating patient values and preferences in making guideline recommendations: Guideline panel surveys. J. Clin. Epidemiol. 2023, 161, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Coombs, L.A.; Tan, K.; Ray, E.; Black, M.M.; Kent, E.E.; Reuland, D. Developing a Values Assessment Tool (VAsT) for women with metastatic breast cancer (GP117). J. Pain Symptom Manag. 2024, 67, 818–819. [Google Scholar] [CrossRef]
- Pyzik, M.; Plichta, D.; Spiewak, R. Analiza występowania składników deklarowanych jako aktywne w preparatach przeciw wypadaniu włosów oraz przegląd systematyczny badań nad ich skutecznością. [An occurrence analysis of ingredients declared as active in anti-hair loss products and systematic review of studies on their effectiveness]. Estetol. Med. Kosmetol. 2020, 10, 006.pl. (In Polish) [Google Scholar] [CrossRef]
- Haslam, I.S.; Hardman, J.A.; Paus, R. Topically Applied Nicotinamide Inhibits Human Hair Follicle Growth Ex Vivo. J. Invest. Dermatol. 2018, 138, 1420–1422. [Google Scholar] [CrossRef]
- Oblong, J.E.; Peplow, A.W.; Hartman, S.M.; Davis, M.G. Topical niacinamide does not stimulate hair growth based on the existing body of evidence. Int. J. Cosmet. Sci. 2020, 42, 217–219. [Google Scholar] [CrossRef]
- Szendzielorz, E.; Spiewak, R. An analysis of the presence of ingredients that were declared by the producers as "active" in trichological shampoos for hair loss. Estetol. Med. Kosmetol. 2024, 14, 001.en. [Google Scholar] [CrossRef]
- Szendzielorz, E.; Spiewak, R. Caffeine as an Active Molecule in Cosmetic Products for Hair Loss: Its Mechanisms of Action in the Context of Hair Physiology and Pathology. Molecules 2025, 30, 167. [Google Scholar] [CrossRef] [PubMed]
- Szendzielorz, E.; Spiewak, R. Placental extracts, proteins, and hydrolyzed proteins as active ingredients in cosmetic preparations for hair loss: A systematic review of available clinical evidence. Appl. Sci. 2024, 14, 10301. [Google Scholar] [CrossRef]
- Steinberg, J.R.; Turner, B.E.; Weeks, B.T.; Magnani, C.J.; Wong, B.O.; Rodriguez, F.; Yee, L.M.; Cullen, M.R. Analysis of Female Enrollment and Participant Sex by Burden of Disease in US Clinical Trials Between 2000 and 2020. JAMA Netw. Open 2021, 4, e2113749. [Google Scholar] [CrossRef]
- Merone, L.; Tsey, K.; Russell, D.; Nagle, C. Sex Inequalities in Medical Research: A Systematic Scoping Review of the Literature. Women’s Health Rep. 2022, 3, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Tasci, E.; Zhuge, Y.; Camphausen, K.; Krauze, A.V. Bias and Class Imbalance in Oncologic Data-Towards Inclusive and Transferrable AI in Large Scale Oncology Data Sets. Cancers 2022, 14, 2897. [Google Scholar] [CrossRef]
- Marcu, L.G. Gender and Sex-Related Differences in Normal Tissue Effects Induced by Platinum Compounds. Pharmaceuticals 2022, 15, 255. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, B.C.; Oertelt-Prigione, S.; Adjei, A.A.; Borchmann, S.; Haanen, J.B.; Letsch, A.; Mir, O.; Quaas, A.; Verhoeven, R.H.A.; Wagner, A.D. Investigation of sex and gender differences in oncology gains momentum: ESMO announces the launch of a Gender Medicine Task Force. Ann Oncol. 2022, 33, 126–128. [Google Scholar] [CrossRef]
- Hrobjartsson, A.; Thomsen, A.S.; Emanuelsson, F.; Tendal, B.; Rasmussen, J.V.; Hilden, J.; Boutron, I.; Ravaud, P.; Brorson, S. Observer bias in randomized clinical trials with time-to-event outcomes: Systematic review of trials with both blinded and non-blinded outcome assessors. Int. J. Epidemiol. 2014, 43, 937–948. [Google Scholar] [CrossRef] [PubMed]
- Hsiang, E.Y.; Semenov, Y.R.; Aguh, C.; Kwatra, S.G. Seasonality of hair loss: A time series analysis of Google Trends data 2004-2016. Br. J. Dermatol. 2018, 178, 978–979. [Google Scholar] [CrossRef] [PubMed]
- Courtois, M.; Loussouarn, G.; Hourseau, S.; Grollier, J.F. Periodicity in the growth and shedding of hair. Br. J. Dermatol. 1996, 134, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Kunz, M.; Seifert, B.; Trueb, R.M. Seasonality of hair shedding in healthy women complaining of hair loss. Dermatology 2009, 219, 105–110. [Google Scholar] [CrossRef]
- Buontempo, M.G.; Ingrassia, J.P.; Shapiro, J.; Lo Sicco, K. Seasonal trends in hair loss: A big data analysis of Google search patterns and their association with seasonal factors. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e1458–e1460. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.; Page, L. Appraising the evidence: What is selection bias? Evid. Based Ment. Health 2007, 10, 67–68. [Google Scholar] [CrossRef]
- Bierman, S.F.; Weil, A.; Dahmer, S. Placebo and the law of identification. Front. Psychiatry 2024, 15, 1474558. [Google Scholar] [CrossRef] [PubMed]
- van Koningsbruggen-Rietschel, S.; Downey, D.G. Tackling bias in clinical trials. J. Cyst. Fibros. 2019, 18, 445–446. [Google Scholar] [CrossRef] [PubMed]
- Bagaric, B.; Jokic-Begic, N.; Sangster Jokic, C. The Nocebo Effect: A Review of Contemporary Experimental Research. Int. J. Behav. Med. 2022, 29, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Raducan-Florea, I.V.; Leasu, F.G.; Dinu, E.A.; Rogozea, L.M. The Nocebo Effect: A Bias in Clinical Practice-An Ethical Approach. Am. J. Ther. 2024, 31, e541–e549. [Google Scholar] [CrossRef] [PubMed]
- Nestor, M.S.; Ablon, G.; Gade, A.; Han, H.; Fischer, D.L. Treatment options for androgenetic alopecia: Efficacy, side effects, compliance, financial considerations, and ethics. J. Cosmet. Dermatol. 2021, 20, 3759–3781. [Google Scholar] [CrossRef] [PubMed]
- Shadi, Z. Compliance to Topical Minoxidil and Reasons for Discontinuation among Patients with Androgenetic Alopecia. Dermatol. Ther. 2023, 13, 1157–1169. [Google Scholar] [CrossRef]
- Mir, T.H. Adherence Versus Compliance. HCA Healthc. J. Med. 2023, 4, 219–220. [Google Scholar] [CrossRef]
- Anghel, L.A.; Farcas, A.M.; Oprean, R.N. An overview of the common methods used to measure treatment adherence. Med. Pharm. Rep. 2019, 92, 117–122. [Google Scholar] [CrossRef]
- Lavertu, A.; Vora, B.; Giacomini, K.M.; Altman, R.; Rensi, S. A New Era in Pharmacovigilance: Toward Real-World Data and Digital Monitoring. Clin. Pharmacol. Ther. 2021, 109, 1197–1202. [Google Scholar] [CrossRef]
- Mason, M.; Cho, Y.; Rayo, J.; Gong, Y.; Harris, M.; Jiang, Y. Technologies for Medication Adherence Monitoring and Technology Assessment Criteria: Narrative Review. JMIR Mhealth Uhealth 2022, 10, e35157. [Google Scholar] [CrossRef]
- Lo, A.; Lovell, K.K.; Greenzaid, J.D.; Oscherwitz, M.E.; Feldman, S.R. Adherence to treatment in dermatology: Literature review. JEADV Clin. Pract. 2024, 3, 401–418. [Google Scholar] [CrossRef]
- Finkelstein, L.B.; Bright, E.E.; Gu, H.C.J.; Arch, J.J. Optimizing the Use of Personal Values to Promote Medication Adherence: A Randomized Controlled Trial Comparing Affective and Behavioral Responses to Theory-Driven Domain Congruent Versus Incongruent Values Approaches. Ann. Behav. Med. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Weinfurt, K.P.; Reeve, B.B. Patient-Reported Outcome Measures in Clinical Research. JAMA 2022, 328, 472–473. [Google Scholar] [CrossRef]
- Crossnohere, N.L.; Brundage, M.; Calvert, M.J.; King, M.; Reeve, B.B.; Thorner, E.; Wu, A.W.; Snyder, C. International guidance on the selection of patient-reported outcome measures in clinical trials: A review. Qual. Life Res. 2021, 30, 21–40. [Google Scholar] [CrossRef]
- Snyder, A.M.; Chen, S.C.; Chren, M.M.; Ferris, L.K.; Edwards, L.D.; Swerlick, R.A.; Flint, N.D.; Cizik, A.M.; Hess, R.; Kean, J.; et al. Patient-Reported Outcome Measures and Their Clinical Applications in Dermatology. Am. J. Clin. Dermatol. 2023, 24, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Aiyegbusi, O.L.; Cruz Rivera, S.; Roydhouse, J.; Kamudoni, P.; Alder, Y.; Anderson, N.; Baldwin, R.M.; Bhatnagar, V.; Black, J.; Bottomley, A.; et al. Recommendations to address respondent burden associated with patient-reported outcome assessment. Nat. Med. 2024, 30, 650–659. [Google Scholar] [CrossRef]
- Dhurat, R.; Saraogi, P. Hair evaluation methods: Merits and demerits. Int. J. Trichology 2009, 1, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Pierard, G.E.; Pierard-Franchimont, C.; Marks, R.; Elsner, P.; Group, E. EEMCO guidance for the assessment of hair shedding and alopecia. Skin Pharmacol. Physiol. 2004, 17, 98–110. [Google Scholar] [CrossRef]
- Trueb, R.M. Examining Hair Loss in Women. In Female Alopecia; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Li, X.; Wang, X.; Wang, C.; Zhang, J.; Zhou, C. Hair Shedding Evaluation for Alopecia: A Refined Wash Test. Clin. Cosmet. Investig. Dermatol. 2022, 15, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.W.; Kloepper, J.; Langan, E.A.; Kim, Y.; Yeo, J.; Kim, M.J.; Hsi, T.C.; Rose, C.; Yoon, G.S.; Lee, S.J.; et al. A Guide to Studying Human Hair Follicle Cycling In Vivo. J. Invest. Dermatol. 2016, 136, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Kolivras, A.; Thompson, C. Primary scalp alopecia: New histopathological tools, new concepts and a practical guide to diagnosis. J. Cutan. Pathol. 2017, 44, 53–69. [Google Scholar] [CrossRef]
- Adly, M.A.; Assaf, H.A.; Hussein, M.R. Expression pattern of p75 neurotrophin receptor protein in human scalp skin and hair follicles: Hair cycle-dependent expression. J. Am. Acad. Dermatol. 2009, 60, 99–109. [Google Scholar] [CrossRef]
- Adly, M.A.; Assaf, H.A.; Nada, E.A.; Soliman, M.; Hussein, M. Human scalp skin and hair follicles express neurotrophin-3 and its high-affinity receptor tyrosine kinase C, and show hair cycle-dependent alterations in expression. Br. J. Dermatol. 2005, 153, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Kudlova, N.; Slavik, H.; Duskova, P.; Furst, T.; Srovnal, J.; Bartek, J.; Mistrik, M.; Hajduch, M. An efficient, non-invasive approach for in-vivo sampling of hair follicles: Design and applications in monitoring DNA damage and aging. Aging 2021, 13, 25004–25024. [Google Scholar] [CrossRef]
- Lim, H.W.; Kim, H.J.; Jeon, C.Y.; Lee, Y.; Kim, M.; Kim, J.; Kim, S.R.; Lee, S.; Lim, D.C.; Park, H.D.; et al. Hair Growth Promoting Effects of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor in Human Follicle Dermal Papilla Cells. Int. J. Mol. Sci. 2024, 25, 7485. [Google Scholar] [CrossRef] [PubMed]
- Soma, T.; Tajima, M.; Kishimoto, J. Hair cycle-specific expression of versican in human hair follicles. J. Dermatol. Sci. 2005, 39, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W. The Molecular Mechanism of Natural Products Activating Wnt/beta-Catenin Signaling Pathway for Improving Hair Loss. Life 2022, 12, 1856. [Google Scholar] [CrossRef]
- Shin, J.Y.; Kim, J.; Choi, Y.H.; Kang, N.G.; Lee, S. Dexpanthenol Promotes Cell Growth by Preventing Cell Senescence and Apoptosis in Cultured Human Hair Follicle Cells. Curr. Issues Mol. Biol. 2021, 43, 1361–1373. [Google Scholar] [CrossRef]
- Ryu, Y.C.; Lee, D.H.; Shim, J.; Park, J.; Kim, Y.R.; Choi, S.; Bak, S.S.; Sung, Y.K.; Lee, S.H.; Choi, K.Y. KY19382, a novel activator of Wnt/beta-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br. J. Pharmacol. 2021, 178, 2533–2546. [Google Scholar] [CrossRef] [PubMed]
- Platt, C.I.; Cheret, J.; Paus, R. Towards developing an organotypic model for the preclinical study and manipulation of human hair matrix-dermal papilla interactions. Arch. Dermatol. Res. 2022, 314, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.B.; Park, H.J.; Lee, B.H. Hair-Growth-Promoting Effects of the Fish Collagen Peptide in Human Dermal Papilla Cells and C57BL/6 Mice Modulating Wnt/beta-Catenin and BMP Signaling Pathways. Int. J. Mol. Sci. 2022, 23, 1904. [Google Scholar] [CrossRef]
- Yilmaz, D.N.; Aydogan, O.O.; Kori, M.; Aydin, B.; Rahman, M.R.; Moni, M.A.; Turanli, B. Prospects of integrated multi-omics-driven biomarkers for efficient hair loss therapy from systems biology perspective. Gene Rep. 2022, 28, 101657. [Google Scholar] [CrossRef]
- Chamberlain, A.J.; Dawber, R.P. Methods of evaluating hair growth. Australas J. Dermatol. 2003, 44, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, C.S.; Khan, S.J.; Chaudhry, B.; Aijaz, S.F.; Hassan, U. Classification Framework for Healthy Hairs and Alopecia Areata: A Machine Learning (ML) Approach. Comput. Math Methods Med. 2021, 2021, 1102083. [Google Scholar] [CrossRef]
- Kim, M.; Kang, S.; Lee, B.D. Evaluation of Automated Measurement of Hair Density Using Deep Neural Networks. Sensors 2022, 22, 650. [Google Scholar] [CrossRef]
- Gao, M.; Wang, Y.; Xu, H.; Xu, C.; Yang, X.; Nie, J.; Zhang, Z.; Li, Z.; Hou, W.; Jiang, Y. Deep Learning-based Trichoscopic Image Analysis and Quantitative Model for Predicting Basic and Specific Classification in Male Androgenetic Alopecia. Acta Derm. Venereol. 2022, 102, adv00635. [Google Scholar] [CrossRef] [PubMed]
- Gudobba, C.; Mane, T.; Bayramova, A.; Rodriguez, N.; Castelo-Soccio, L.; Ogunleye, T.A.; Taylor, S.C.; Cotsarelis, G.; Bernardis, E. Automating Hair Loss Labels for Universally Scoring Alopecia from Images: Rethinking Alopecia Scores. JAMA Dermatol. 2023, 159, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Protity, A.T. Hair and Scalp Disease Detection using Machine Learning and Image Processing. Eur. J. Information Technol. Computer Sci. 2023, 3, 7–13. [Google Scholar] [CrossRef]
- Banerjee, P.; Das, K.; Goldust, M.; Wambier, C.G. Emerging Technologies in Hair and Nail Diagnosis and Treatment. Derm. Rev. 2024, 5, e251. [Google Scholar] [CrossRef]
- Jain, D.; Masurkar, P.; Kakde, S.; Khot, M.S.; Waghmare, A.; Gohil, U.; Pawar, R.; Patel, D.; Patil, P. Performance Analysis for Trichoscopy and Trichogram Using Deep Learning and Image Processing—A Survey. In ICT: Innovation and Computing. ICTCS 2023; Joshi, A., Mahmud, M., Ragel, R.G., Karthik, S., Eds.; Lecture Notes in Networks and Systems; Springer: Singapore, 2024; Volume 879, pp. 417–428. [Google Scholar]
- Giraldez-Costas, V.; Del Coso, J.; Manas, A.; Salinero, J.J. The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients 2023, 15, 1178. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Hormesis defined. Ageing Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Furst, A. Hormetic effects in pharmacology: Pharmacological inversions as prototypes for hormesis. Health Phys. 1987, 52, 527–530. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis and adult adipose-derived stem cells. Pharmacol. Res. 2021, 172, 105803. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Hormesis and bone marrow stem cells: Enhancing cell proliferation, differentiation and resilience to inflammatory stress. Chem. Biol. Interact. 2022, 351, 109730. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Boyd-Kimball, D.; Reed, T.T. Cellular Stress Response (Hormesis) in Response to Bioactive Nutraceuticals with Relevance to Alzheimer Disease. Antioxid Redox Signal 2023, 38, 643–669. [Google Scholar] [CrossRef]
- Golpour, M.; Rabbani, H.; Farzin, D.; Azizi, F. Comparing the Effectiveness of Local Solution of Minoxidil and Caffeine 2.5% with Local Solution of Minoxidil 2.5% in Treatment of Androgenetic Alopecia (in Persian). J. Mazand. Univ. Med. Sci. 2013, 23, 30–36. [Google Scholar]
- Karaca, N.; Akpolat, N.D. A Comparative Study between Topical 5% Minoxidil and Topical “Redensyl, Capixyl, and Procapil” Combination in Men with Androgenetic Alopecia. J. Cosmetol. Trichol. 2019, 5, 140. [Google Scholar] [CrossRef]
PICO Criteria | Description |
---|---|
Patients | People suffering from baldness, hair loss, effluvium, alopecia, hair thinning |
Intervention | Caffeine in topical anti-hair loss preparation |
Comparator/Control | Placebo, other topical anti-hair loss preparations, no control |
Outcomes | Trichogram results, trichoscopy results, number of hairs shed, evaluator assessment, patient assessment |
Hair Problem | Main Features | Diagnostic Methods | Number of Participants | Refs. |
---|---|---|---|---|
Androgenetic alopecia | Miniaturization of hair follicles in androgen-dependent areas | Dermatoscopy, Trichoscopy | 538 | [42,43,44,46,49,50] |
Telogen effluvium | Occurs about 3 months after triggering incident (e.g., infection, drug use, hormonal disorders, metabolic diseases, nutritional deficiencies, stress) | Pull test, trichogram, laboratory tests for underlying conditions | 62 | [45,48] |
“Hair thinning” | Noticeable reduction in hair density | Dermatoscopy, Trichoscopy | 84 | [47] |
Study Design | Participants | Intervention | Control | Outcome | GRADE | Ref. |
---|---|---|---|---|---|---|
Prospective RCT, open-label | 210 M with AGA | 2 mL of a 0.2% caffeine solution (leave-on) | 1 mL of a 5% minoxidil solution | Effects of 0.2% caffeine comparable to 5% minoxidil | Medium | [42] |
Prospective RCT, double-blind | 66 M with AGA | 7 mL of shampoo with caffeine (rinse-off) | 7 mL of the same shampoo less caffeine | Objective and subjective improvement greater after caffeine than placebo | Low | [43] |
Prospective, uncontrolled, open-label | 30 M with AGA | 7 mL of shampoo with caffeine (rinse-off) | None | Objective and subjective improvement | Very low | [44] |
Prospective, uncontrolled, open-label | 30 F with TE | Shampoo with caffeine (rinse off) | None | Objective and subjective improvement | Very low | [45] |
Study Design | Participants | Intervention | Control | Outcome | GRADE | Ref. |
---|---|---|---|---|---|---|
Prospective, RCT, double-blind | 62 M with AGA | Foam with 10 “active” ingredients including caffeine | Foam without 10 “active” ingredients | Foam with caffeine et al. better than vehicle foam | Medium | [46] |
Prospective, RCT, single-blind | 84 healthy F and M with self-perceived “thinning hair” | Shampoo with 0.4% caffeine and 0.2% adenosine | Same shampoo without caffeine and adenosine | Improvement after shampoo with caffeine and adenosine, but not after control shampoo | Medium | [47] |
Prospective, uncontrolled, open-label | 32 F and M with hair loss | Serum with a complex mixture of 30 ingredients, including caffeine | None | Improvement of hair condition and growth | Very low | [48] |
Prospective, uncontrolled, open-label | 150 M and F with AGA | Serum in a roller with a complex mixture including caffeine | None | Improvement of hair parameters in crown and vertex, but not frontal area | Very low | [49] |
Prospective, uncontrolled, open-label | 20 M with AGA | Topical formulation containing caffeine, 3% Procapil™ and zinc PCA | None | Improvement in hair growth, decrease in hair loss | Very low | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szendzielorz, E.; Spiewak, R. Caffeine as an Active Ingredient in Cosmetic Preparations Against Hair Loss: A Systematic Review of Available Clinical Evidence. Healthcare 2025, 13, 395. https://doi.org/10.3390/healthcare13040395
Szendzielorz E, Spiewak R. Caffeine as an Active Ingredient in Cosmetic Preparations Against Hair Loss: A Systematic Review of Available Clinical Evidence. Healthcare. 2025; 13(4):395. https://doi.org/10.3390/healthcare13040395
Chicago/Turabian StyleSzendzielorz, Ewelina, and Radoslaw Spiewak. 2025. "Caffeine as an Active Ingredient in Cosmetic Preparations Against Hair Loss: A Systematic Review of Available Clinical Evidence" Healthcare 13, no. 4: 395. https://doi.org/10.3390/healthcare13040395
APA StyleSzendzielorz, E., & Spiewak, R. (2025). Caffeine as an Active Ingredient in Cosmetic Preparations Against Hair Loss: A Systematic Review of Available Clinical Evidence. Healthcare, 13(4), 395. https://doi.org/10.3390/healthcare13040395