Footwear Choice and Locomotor Health Throughout the Life Course: A Critical Review
Abstract
:1. Introduction
2. Methods
3. Foot Health and Footwear
3.1. Long-Term Effects of Footwear: Comparing Habitually Barefoot and Habitually Shod Populations
3.2. Long-Term Effects of Footwear: Foot Development in Children
3.3. Short-Term Effects of Footwear: Studies on Barefoot, Minimally Shod, and Conventionally Shod Walking in Habitually Shod Populations
4. Effects of Specific Footwear Features on the Structure and Function of the Foot
4.1. Raised Heel
4.2. Cushioning
4.3. Arch Support
4.4. Last Shape and Shoe Size
4.5. Bending and Torsional Stiffness
4.6. Rigid Heel Counter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kimura, T. How did humans acquire erect bipedal walking? Anthropol. Sci. 2019, 127, 1–12. [Google Scholar] [CrossRef]
- McNutt, E.J.; Zipfel, B.; DeSilva, J.M. The evolution of the human foot. Evol. Anthropol. Issues News Rev. 2018, 27, 197–217. [Google Scholar] [CrossRef] [PubMed]
- DeSilva, J.; McNutt, E.; Benoit, J.; Zipfel, B. One small step: A review of Plio-Pleistocene hominin foot evolution. Am. J. Phys. Anthropol. 2019, 168, 63–140. [Google Scholar] [CrossRef] [PubMed]
- Holowka, N.B.; Lieberman, D.E. Rethinking the evolution of the human foot: Insights from experimental research. J. Exp. Biol. 2018, 221, jeb174425. [Google Scholar] [CrossRef]
- Trinkaus, E. Anatomical evidence for the antiquity of human footwear use. J. Archaeol. Sci. 2005, 32, 1515–1526. [Google Scholar] [CrossRef]
- Moore, G.E. Principia Ethica; Cambridge University Press: Cambridge, UK, 1903. [Google Scholar]
- Bus, S.A.; Van Deursen, R.W.; Armstrong, D.G.; Lewis, J.E.A.; Caravaggi, C.F.; Cavanagh, P.R. Footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in patients with diabetes: A systematic review. Diabetes/Metab. Res. Rev. 2015, 32, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Launay, J.-C.; Savourey, G. Cold adaptations. Ind. Health 2009, 47, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Holowka, N.B.; Wynands, B.; Drechsel, T.J.; Yegian, A.K.; Tobolsky, V.A.; Okutoyi, P.; Mang’eni Ojiambo, R.; Haile, D.W.; Sigei, T.K.; Zippenfennig, C.; et al. Foot callus thickness does not trade off protection for tactile sensitivity during walking. Nature 2019, 571, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Engle, E.T.; Morton, D.J. Notes on foot disorders among natives of the Belgian Congo. J. Bone Jt. Surg. 1931, 13, 311–318. [Google Scholar]
- Willems, C.; Stassijns, G.; Cornelis, W.; D’Août, K. Biomechanical implications of walking with indigenous footwear. Am. J. Phys. Anthropol. 2017, 162, 782–793. [Google Scholar] [CrossRef]
- Esculier, J.-F.; Dubois, B.; Dionne, C.E.; Leblond, J.; Roy, J.-S. A consensus definition and rating scale for minimalist shoes. J. Foot Ankle Res. 2015, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Demiris, G.; Oliver, D.P.; Washington, K.T. Chapter 3—Defining and Analyzing the Problem. In Behavioral Intervention Research in Hospice and Palliative Care; Demiris, G., Oliver, D.P., Washington, K.T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 27–39. [Google Scholar]
- Sukhera, J. Narrative Reviews: Flexible, Rigorous, and Practical. J. Grad. Med. Educ. 2022, 14, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Hollander, K.; de Villiers, J.E.; Sehner, S.; Wegscheider, K.; Braumann, K.-M.; Venter, R.; Zech, A. Growing-up (habitually) barefoot influences the development of foot and arch morphology in children and adolescents. Sci. Rep. 2017, 7, 8079. [Google Scholar] [CrossRef]
- Periyasamy, R.; Anand, S.; Ammini, A. The effect of aging on the hardness of foot sole skin: A preliminary study. Foot 2012, 22, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Menz, H. Biomechanics of the Ageing Foot and Ankle: A Mini-Review. Gerontology 2015, 61, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.; Menz, H.B.; Newcombe, L. Age-related differences in foot structure and function. Gait Posture 2007, 26, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Zech, A.; Venter, R.; De Villiers, J.E.; Sehner, S.; Wegscheider, K.; Hollander, K. Motor skills of children and adolescents are influenced by growing up barefoot or shod. Front. Pediatr. 2018, 6, 115. [Google Scholar] [CrossRef]
- Shu, Y.; Mei, Q.; Fernandez, J.; Li, Z.; Feng, N.; Gu, Y. Foot morphological difference between habitually shod and unshod runners. PLoS ONE 2015, 10, e0131385. [Google Scholar] [CrossRef]
- Ashizawa, K.; Kumakura, C.; Kusumoto, A.; Narasaki, S. Relative foot size and shape to general body size in Javanese, Filipinas and Japanese with special reference to habitual footwear types. Ann. Hum. Biol. 1997, 24, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Kouchi, M. Foot dimensions and foot shape: Differences due to growth, generation and ethnic origin. Anthropol. Sci. 1998, 106, 161–188. [Google Scholar] [CrossRef] [PubMed]
- Igbigbi, P.S.; Msamati, B.C. The footprint ratio as a predictor of pes planus: A study of indigenous Malawians. J. Foot Ankle Surg. 2002, 41, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Hawes, M.R.; Sovak, D.; Miyashita, M.; Kang, S.-J.; Yoshihuku, Y.; Tanaka, S. Ethnic differences in forefoot shape and the determination of shoe comfort. Ergonomics 1994, 37, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Wells, L.H. The foot of the South African native. Am. J. Phys. Anthropol. 1931, 15, 185–289. [Google Scholar] [CrossRef]
- Mauch, M.; Mickle, K.J.; Munro, B.J.; Dowling, A.M.; Grau, S.; Steele, J.R. Do the feet of German and Australian children differ in structure? Implications for children’s shoe design. Ergonomics 2008, 51, 527–539. [Google Scholar] [CrossRef]
- Hollander, K.; Heidt, C.; Van der Zwaard, B.C.; Braumann, K.-M.; Zech, A. Long-term effects of habitual barefoot running and walking: A systematic review. Med. Sci. Sports Exerc. 2017, 49, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Price, C.; Morrison, S.C.; Hashmi, F.; Phethean, J.; Nester, C. Biomechanics of the infant foot during the transition to independent walking: A narrative review. Gait Posture 2018, 59, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Fritz, B.; Mauch, M. 3–Foot development in childhood and adolescence. In Handbook of Footwear Design and Manufacture; Luximon, A., Ed.; Woodhead Publishing: Philadelphia, PA, USA, 2013; pp. 49–71. [Google Scholar]
- Hoffmann, P. Conclusions drawn from a comparative study of the feet of barefooted and shoe-wearing peoples. J. Bone Jt. Surg. 1905, 2, 105–136. [Google Scholar]
- James, C.S. Footprints and feet of natives of the Solomon Islands. Lancet 1939, 234, 1390–1394. [Google Scholar] [CrossRef]
- Shulman, S.B. Survey in China and India of feet that have never worn shoes. J. Natl. Assoc. Chirop. 1949, 49, 26–30. [Google Scholar]
- Sim-Fook, L.; Hodgson, A. A comparison of foot forms among the non-shoe and shoe-wearing Chinese population. J. Bone Jt. Surg. 1958, 40, 1058–1062. [Google Scholar] [CrossRef]
- Kadambande, S.; Khurana, A.; Debnath, U.; Bansal, M.; Hariharan, K. Comparative anthropometric analysis of shod and unshod feet. Foot 2006, 16, 188–191. [Google Scholar] [CrossRef]
- Ichikawa, S.; Kumai, T.; Okunuki, T.; Maemichi, T.; Matsumoto, M.; Yabiku, H.; Liu, Z.; Yamaguchi, R.; Iwayama, A.; Ayukawa, G.; et al. Comparison of foot posture and foot muscle morphology between lifesaver athletes and healthy adults. Res. Sports Med. 2021, 31, 506–516. [Google Scholar] [CrossRef]
- Stolwijk, N.M.; Duysens, J.; Louwerens, J.W.K.; van de Ven, Y.H.M.; Keijsers, N.L.W. Flat feet, happy feet? Comparison of the dynamic plantar pressure distribution and static medial foot geometry between Malawian and Dutch adults. PLoS ONE 2013, 8, e57209. [Google Scholar] [CrossRef]
- D’Août, K.; Pataky, T.C.; De Clercq, D.; Aerts, P. The effects of habitual footwear use: Foot shape and function in native barefoot walkers. Footwear Sci. 2009, 1, 81–94. [Google Scholar] [CrossRef]
- Wegener, C.; Hunt, A.E.; Vanwanseele, B.; Burns, J.; Smith, R.M. Effect of children’s shoes on gait: A systematic review and meta-analysis. J. Foot Ankle Res. 2011, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Squibb, M.; Sheerin, K.; Francis, P. Measurement of the developing foot in shod and barefoot paediatric populations: A narrative review. Children 2022, 9, 750. [Google Scholar] [CrossRef] [PubMed]
- Rao, U.B.; Joseph, B. The influence of footwear on the prevalence of flat foot. A survey of 2300 children. J. Bone Jt. Surg. Br. Vol. 1992, 74, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Vangara, S.V.; Gopichand, P.V.; Bedi, M.; Puri, N. Effect of barefoot walking on foot arch structure in tribal children. Asian J. Med. Sci. 2016, 7, 108–116. [Google Scholar] [CrossRef]
- Thomas, B.; Singh, Y.; Mullerpatan, R. Comparison of foot structure between urban and rural Indian school children. Physiother.-J. Indian Assoc. Physiother. 2019, 13, 38–42. [Google Scholar] [CrossRef]
- Sachithanandam, V.; Joseph, B. The influence of footwear on the prevalence of flat foot. A survey of 1846 skeletally mature persons. J. Bone Jt. Surg. Br. Vol. 1995, 77, 254–257. [Google Scholar] [CrossRef]
- Aibast, H.; Okutoyi, P.; Sigei, T.; Adero, W.; Chemjor, D.; Ongaro, N.; Fuku, N.; Konstabel, K.; Clark, C.; Lieberman, D.E.; et al. Foot structure and function in habitually barefoot and shod adolescents in Kenya. Curr. Sports Med. Rep. 2017, 16, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Didia, B.; Omu, E.; Obuoforibo, A. The use of footprint contact index II for classification of flat feet in a Nigerian population. Foot Ankle 1987, 7, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Echarri, J.J.; Forriol, F. The development in footprint morphology in 1851 Congolese children from urban and rural areas, and the relationship between this and wearing shoes. J. Pediatr. Orthop. B 2003, 12, 141–146. [Google Scholar] [PubMed]
- Emslie, M. Prevention of foot deformities in children. Lancet 1939, 234, 1260–1263. [Google Scholar] [CrossRef]
- Staheli, L.T. Shoes for children: A review. Pediatrics 1991, 88, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kasuga, K.; Hanai, T.; Demura, T.; Komura, K. The effect of the kindergarten barefoot policy on preschool children’s toes. J. Physiol. Anthropol. 2017, 36, 4. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kasuga, K.; Hanai, T.; Demura, T. Cross-sectional study shows kindergarten barefoot policy positively affects soles’ contact area. Adv. Phys. Educ. 2018, 8, 295–307. [Google Scholar] [CrossRef]
- Cucuzzella, M. Pediatric Footwear. In Athletic Footwear and Orthoses in Sports Medicine; Werd, M.B., Knight, E.L., Langer, P.R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 433–440. [Google Scholar]
- Wolf, S.; Simon, J.; Patikas, D.; Schuster, W.; Armbrust, P.; Döderlein, L. Foot motion in children shoes—A comparison of barefoot walking with shod walking in conventional and flexible shoes. Gait Posture 2008, 27, 51–59. [Google Scholar] [CrossRef]
- Tam, N.; Astephen Wilson, J.L.; Noakes, T.D.; Tucker, R. Barefoot running: An evaluation of current hypothesis, future research and clinical applications. Br. J. Sports Med. 2014, 48, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.E.; Venkadesan, M.; Werbel, W.A.; Daoud, A.I.; D’Andrea, S.; Davis, I.S.; Mang’Eni, R.O.; Pitsiladis, Y. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature 2010, 463, 531–535. [Google Scholar] [CrossRef]
- Sinclair, J.K. Effects of barefoot and barefoot inspired footwear on knee and ankle loading during running. Clin. Biomech. 2014, 29, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.K. Barefoot and shod running: Their effects on foot muscle kinetics. Foot Ankle Online J. 2015, 8, 2. [Google Scholar]
- Tam, N.; Astephen Wilson, J.L.; Coetzee, D.R.; van Pletsen, L.; Tucker, R. Loading rate increases during barefoot running in habitually shod runners: Individual responses to an unfamiliar condition. Gait Posture 2016, 46, 47–52. [Google Scholar] [CrossRef]
- Stoneham, R.; Barry, G.; Saxby, L.; Waters, L.; Wilkinson, M. Differences in stride length and lower limb moments of recreational runners during over-ground running while barefoot, in minimalist and in maximalist running shoes. Footwear Sci. 2021, 13, 133–141. [Google Scholar] [CrossRef]
- Yu, B.; Kramer, P.A. Walking speed alters barefoot gait coordination and variability. J. Mot. Behav. 2022, 54, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Franklin, S.; Grey, M.J.; Heneghan, N.; Bowen, L.; Li, F.-X. Barefoot vs common footwear: A systematic review of the kinematic, kinetic and muscle activity differences during walking. Gait Posture 2015, 42, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Hollander, K.; Petersen, E.; Zech, A.; Hamacher, D. Effects of barefoot vs. shod walking during indoor and outdoor conditions in younger and older adults. Gait Posture 2022, 95, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Kung, S.M.; Fink, P.W.; Hume, P.; Shultz, S.P. Kinematic and kinetic differences between barefoot and shod walking in children. Footwear Sci. 2015, 7, 95–105. [Google Scholar] [CrossRef]
- Franklin, S.; Li, F.-X.; Grey, M.J. Modifications in lower leg muscle activation when walking barefoot or in minimalist shoes across different age-groups. Gait Posture 2018, 60, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Péter, A.; Arndt, A.; Hegyi, A.; Finni, T.; Andersson, E.; Alkjær, T.; Tarassova, O.; Rönquist, G.; Cronin, N. Effect of footwear on intramuscular EMG activity of plantar flexor muscles in walking. J. Electromyogr. Kinesiol. 2020, 55, 102474. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed.; Waterloo Press: Waterloo, ON, Canada, 1991. [Google Scholar]
- Chen, I.H.; Kuo, K.N.; Andriacchi, T.P. The influence of walking speed on mechanical joint power during gait. Gait Posture 1997, 6, 171–176. [Google Scholar] [CrossRef]
- Huber, G.; Jaitner, T.; Schmidt, M. Acute effects of minimalist shoes on biomechanical gait parameters in comparison to walking barefoot and in cushioned shoes: A randomised crossover study. Footwear Sci. 2022, 14, 123–130. [Google Scholar] [CrossRef]
- Kodithuwakku Arachchige, S.N.K.; Chander, H.; Knight, A.C.; Chen, C.-C.; Pan, Z.; Turner, A.J. Impact of foot arch type and minimalist footwear on static postural stability. Footwear Sci. 2020, 12, 173–183. [Google Scholar] [CrossRef]
- Cudejko, T.; Gardiner, J.; Akpan, A.; D’Août, K. Minimal footwear improves stability and physical function in middle-aged and older people compared to conventional shoes. Clin. Biomech. 2020, 71, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Cudejko, T.; Gardiner, J.; Akpan, A.; D’Août, K. Minimal shoes improve stability and mobility in persons with a history of falls. Sci. Rep. 2020, 10, 21755. [Google Scholar] [CrossRef]
- Sole, C.C.; Milosavljevic, S.; Sole, G.; Sullivan, S.J. Dynamic postural stability is more variable barefoot than in footwear in healthy individuals. Footwear Sci. 2018, 10, 129–137. [Google Scholar] [CrossRef]
- Haowlader, S.; Magistro, D.; Apps, C.; Bencsik, M.; Bisele, M. The effects of minimal shoes in combination with textured and supportive insoles on spatiotemporal walking gait parameters in healthy young adults. Footwear Sci. 2024, 1–9. [Google Scholar] [CrossRef]
- Curtis, R.; Willems, C.; Paoletti, P.; D’Août, K. Daily activity in minimal footwear increases foot strength. Sci. Rep. 2021, 11, 18648. [Google Scholar] [CrossRef]
- Miller, E.E.; Whitcome, K.K.; Lieberman, D.E.; Norton, H.L.; Dyer, R.E. The effect of minimal shoes on arch structure and intrinsic foot muscle strength. J. Sport. Health Sci. 2014, 3, 74–85. [Google Scholar] [CrossRef]
- Quinlan, S.; Sinclair, P.; Hunt, A.; Yan, A.F. The long-term effects of wearing moderate minimalist shoes on a child’s foot strength, muscle structure and balance: A randomised controlled trial. Gait Posture 2022, 92, 371–377. [Google Scholar] [CrossRef]
- Petersen, E.; Zech, A.; Hamacher, D. Walking barefoot vs. with minimalist footwear–influence on gait in younger and older adults. BMC Geriatr. 2020, 20, 88. [Google Scholar] [CrossRef]
- Davis, I.S.; Hollander, K.; Lieberman, D.E.; Ridge, S.T.; Sacco, I.C.; Wearing, S.C. Stepping back to minimal footwear: Applications across the lifespan. Exerc. Sport Sci. Rev. 2021, 49, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Sacco, I.C.N.; Trombini-Souza, F.; Butugan, M.K.; Pássaro, A.C.; Arnone, A.C.; Fuller, R. Joint loading decreased by inexpensive and minimalist footwear in elderly women with knee osteoarthritis during stair descent. Arthritis Care Res. 2012, 64, 368–374. [Google Scholar] [CrossRef]
- Trombini-Souza, F.; Matias, A.B.; Yokota, M.; Butugan, M.K.; Goldenstein-Schainberg, C.; Fuller, R.; Sacco, I.C. Long-term use of minimal footwear on pain, self-reported function, analgesic intake, and joint loading in elderly women with knee osteoarthritis: A randomized controlled trial. Clin. Biomech. 2015, 30, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Radzimski, A.O.; Mündermann, A.; Sole, G. Effect of footwear on the external knee adduction moment—A systematic review. Knee 2012, 19, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Palmowski, Y.; Popović, S.; Kosack, D.; Damm, P. Analysis of hip joint loading during walking with different shoe types using instrumented total hip prostheses. Sci. Rep. 2021, 11, 10073. [Google Scholar] [CrossRef] [PubMed]
- Ridge, S.T.; Johnson, A.W.; Mitchell, U.H.; Hunter, I.; Robinson, E.; Rich, B.S.; Brown, S.D.; Ridge, S. Foot Bone Marrow Edema after 10-week Transition to Minimalist Running Shoes. Med. Sci. Sports Exerc. 2013, 45, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Cronin, N.J. The effects of high heeled shoes on female gait: A review. J. Electromyogr. Kinesiol. 2014, 24, 258–263. [Google Scholar] [CrossRef]
- Barnish, M.S.; Barnish, J. High-heeled shoes and musculoskeletal injuries: A narrative systematic review. BMJ Open 2016, 6, e010053. [Google Scholar] [CrossRef] [PubMed]
- Wiedemeijer, M.M.; Otten, E. Effects of high heeled shoes on gait. A review. Gait Posture 2018, 61, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.-H.; Ko, M.; Park, Y.-S.; Lee, S.-M. Effect of revised high-heeled shoes on foot pressure and static balance during standing. J. Phys. Ther. Sci. 2015, 27, 1129–1131. [Google Scholar] [CrossRef] [PubMed]
- Brauner, T.; Hooper, S.; Horstmann, T.; Wearing, S. Effects of footwear and heel elevation on tensile load in the Achilles tendon during treadmill walking. Footwear Sci. 2018, 10, 39–46. [Google Scholar] [CrossRef]
- Wulf, M.; Wearing, S.C.; Hooper, S.L.; Bartold, S.; Reed, L.; Brauner, T. The effect of an in-shoe orthotic heel lift on loading of the Achilles tendon during shod walking. J. Orthop. Sports Phys. Ther. 2016, 46, 79–86. [Google Scholar] [CrossRef]
- Rabusin, C.L.; Menz, H.B.; McClelland, J.A.; Tan, J.M.; Whittaker, G.A.; Evans, A.M.; Munteanu, S.E. Effects of heel lifts on lower limb biomechanics and muscle function: A systematic review. Gait Posture 2019, 69, 224–234. [Google Scholar] [CrossRef]
- Csapo, R.; Maganaris, C.N.; Seynnes, O.R.; Narici, M.V. On muscle, tendon and high heels. J. Exp. Biol. 2010, 213, 2582–2588. [Google Scholar] [CrossRef] [PubMed]
- Romero-Todesco, E.S. Ancient Footwear. The English Illustrated Magazine, July 1910; 330–334. [Google Scholar]
- Smith, E.O.; Helms, W.S. Natural selection and high heels. Foot Ankle Int. 1999, 20, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Barnish, M.; Morgan, H.M.; Barnish, J. The 2016 HIGh Heels: Health effects and psychosexual BenefITS (HIGH HABITS) study: Systematic review of reviews and additional primary studies. BMC Public Health 2018, 18, 37. [Google Scholar] [CrossRef]
- Stefanyshyn, D.J.; Nigg, B.M.; Fisher, V.; O’Flynn, B.; Liu, W. The influence of high heeled shoes on kinematics, kinetics, and muscle EMG of normal female gait. J. Appl. Biomech. 2000, 16, 309–319. [Google Scholar] [CrossRef]
- Ebbeling, C.J.; Hamill, J.; Crussemeyer, J.A. Lower extremity mechanics and energy cost of walking in high-heeled shoes. J. Orthop. Sports Phys. Ther. 1994, 19, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Steiner, E.; Boyer, K.A. Speed impacts joint power and work while walking in high heeled shoes. Footwear Sci. 2021, 13, 19–27. [Google Scholar] [CrossRef]
- Ho, K.-Y.; Blanchette, M.G.; Powers, C.M. The influence of heel height on patellofemoral joint kinetics during walking. Gait Posture 2012, 36, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Frey, C. Foot health and shoewear for women. Clin. Orthop. Rel. Res. 2000, 372, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Basha, F.Y.S.; Devi, R.G.; Priya, A.J. A survey on comparative effects of wearing high heels among long-term and short-term users. Drug Invent. Today 2018, 10, 32–44. [Google Scholar]
- Dufour, A.B.; Casey, V.A.; Golightly, Y.M.; Hannan, M.T. Characteristics associated with hallux valgus in a population-based foot study of older adults. Arthritis Care Res. 2014, 66, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Morris, M.E. Footwear characteristics and foot problems in older people. Gerontology 2005, 51, 346–351. [Google Scholar] [CrossRef]
- Puszczałowska-Lizis, E.; Dąbrowiecki, D.; Jandziś, S.; Żak, M. Foot deformities in women are associated with wearing high-heeled shoes. Med. Sci. Monit. 2019, 25, 7746–7754. [Google Scholar] [CrossRef]
- Rahimi, A.; Sayah, A.; Hosseini, S.M.; Baghban, A.A. Studying the plantar pressure patterns in women adapted to high-heel shoes during barefoot walking. J. Clin. Physiother. Res. 2017, 2, 70–74. [Google Scholar]
- Moore, J.X.; Lambert, B.; Jenkins, G.P.; McGwin, G. Epidemiology of high-heel shoe injuries in U.S. women: 2002 to 2012. J. Foot Ankle Surg. 2015, 54, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Kwan, R.L.-C.; Zheng, Y.-P.; Cheing, G.L.-Y. The effect of aging on the biomechanical properties of plantar soft tissues. Clin. Biomech. 2010, 25, 601–605. [Google Scholar] [CrossRef]
- Jahss, M.H.; Michelson, J.D.; Desai, P.; Kaye, R.; Kummer, F.; Buschman, W.; Watkins, F.; Reich, S. Investigations into the fat pads of the sole of the foot: Anatomy and histology. Foot Ankle 1992, 13, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Rome, K. Mechanical properties of the heel pad: Current theory and review of the literature. Foot 1998, 8, 179–185. [Google Scholar] [CrossRef]
- Wearing, S.C.; Smeathers, J.E.; Yates, B.; Urry, S.R.; Dubois, P. Bulk compressive properties of the heel fat pad during walking: A pilot investigation in plantar heel pain. Clin. Biomech. 2009, 24, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Roshnan Kumar, B.; NB, M.K.; TY, P.; Annamalai, A.; Sandeep, K. Relationship Between Subcalcaneal Fat Pad Thickness and Plantar Heel Pain: A Case Control Study. Eur. J. Mol. Clin. Med. 2022, 9, 126–136. [Google Scholar]
- Kinoshita, H.; Francis, P.R.; Murase, T.; Kawai, S.; Ogawa, T. The mechanical properties of the heel pad in elderly adults. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 404–409. [Google Scholar] [CrossRef]
- Aerts, P.; Ker, R.; De Clercq, D.; Ilsley, D.; Alexander, R.M. The mechanical properties of the human heel pad: A paradox resolved. J. Biomech. 1995, 28, 1299–1308. [Google Scholar] [CrossRef]
- Hsu, T.-C.; Wang, C.-L.; Tsai, W.-C.; Kuo, J.-K.; Tang, F.-T. Comparison of the mechanical properties of the heel pad between young and elderly adults. Arch. Phys. Med. Rehabil. 1998, 79, 1101–1104. [Google Scholar] [CrossRef]
- Uzel, M.; Cetinus, E.; Ekerbicer, H.C.; Karaoguz, A. Heel pad thickness and athletic activity in healthy young adults: A sonographic study. J. Clin. Ultrasound 2006, 34, 231–236. [Google Scholar] [CrossRef]
- Ugbolue, U.C.; Yates, E.L.; Wearing, S.C.; Gu, Y.; Lam, W.-K.; Valentin, S.; Baker, J.S.; Dutheil, F.; Sculthorpe, N.F. Sex differences in heel pad stiffness during in vivo loading and unloading. J. Anat. 2020, 237, 520–528. [Google Scholar] [CrossRef]
- Jørgensen, U.; Ekstrand, J. Significance of heel pad confinement for the shock absorption at heel strike. Int. J. Sports Med. 1988, 9, 468–473. [Google Scholar] [CrossRef]
- Özdemır, H.; Söyüncü, Y.; Özgörgen, M.; Dabak, K. Effects of changes in heel fat pad thickness and elasticity on heel pain. J. Am. Podiatr. Med. Assoc. 2004, 94, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.-C.; Lee, Y.-S.; Shau, Y.-W. Biomechanics of the heel pad for type 2 diabetic patients. Clin. Biomech. 2002, 17, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-G.; Teng, Z.-L.; Zhang, Z.-M.; Wang, K.; Huang, R.; Chen, W.-M.; Wang, C.; Chen, L.; Zhang, C.; Huang, J.-Z.; et al. Comparison of material properties of heel pad between adults with and without type 2 diabetes history: An in-vivo investigation during gait. Front. Endocrinol. 2022, 13, 894383. [Google Scholar] [CrossRef] [PubMed]
- Taş, S.; Bek, N.; Ruhi Onur, M.; Korkusuz, F. Effects of body mass index on mechanical properties of the plantar fascia and heel pad in asymptomatic participants. Foot Ankle Int. 2017, 38, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Tietze, A. Concerning the architectural structure of the connective tissue in the human sole. Foot Ankle 1982, 2, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, S.; Ude, A. Heel pad thickness in Nigerians. Skelet. Radiol. 1978, 3, 108–112. [Google Scholar] [CrossRef]
- Fields, M.; Greenberg, B.; Burkett, L. Roentgenographic measurement of skin and heel-pad thickness in the diagnosis of acromegaly. Am. J. Med. Sci. 1967, 254, 528–533. [Google Scholar] [CrossRef]
- Puckette, S., Jr.; Quitman Seymour, E. Fallibility of the heel-pad thickness in the diagnosis of acromegaly. Radiology 1967, 88, 982–983. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, C.; Forestiero, A.; Carniel, E.; Natali, A. Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions. Med. Eng. Phys. 2012, 35, 441–447. [Google Scholar] [CrossRef]
- Buschmann, W.R.; Jahss, M.H.; Kummer, F.; Desai, P.; Gee, R.O.; Ricci, J.L. Histology and histomorphometric analysis of the normal and atrophic heel fat pad. Foot Ankle Int. 1995, 16, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-N.; Lee, K.; Ledoux, W.R. Histomorphological Evaluation of Diabetic and Non-Diabetic Plantar Soft Tissue. Foot Ankle Int. 2011, 32, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.-L.; Yang, X.-G.; Geng, X.; Gu, Y.-J.; Huang, R.; Chen, W.-M.; Wang, C.; Chen, L.; Zhang, C.; Helili, M.; et al. Effect of loading history on material properties of human heel pad: An in-vivo pilot investigation during gait. BMC Musculoskelet. Disord. 2022, 23, 254. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, U. Achillodynia and loss of heel pad shock absorbency. Am. J. Sports Med. 1985, 13, 128–132. [Google Scholar] [CrossRef]
- Kuhns, J.G. Changes in elastic adipose tissue. J. Bone Jt. Surg. 1949, 31, 541–547. [Google Scholar] [CrossRef]
- Prichasuk, S. The heel pad in plantar heel pain. J. Bone Jt. Surg. Br. Vol. 1994, 76, 140–142. [Google Scholar] [CrossRef]
- Rome, K.; Campbell, R.; Flint, A.; Haslock, I. Reliability of weight-bearing heel pad thickness measurements by ultrasound. Clin. Biomech. 1998, 13, 374–375. [Google Scholar] [CrossRef]
- Matteoli, S.; Fontanella, C.G.; Carniel, E.L.; Wilhjelm, J.E.; Virga, A.; Corbin, N.; Corvi, A.; Natali, A.N. Investigations on the viscoelastic behaviour of a human healthy heel pad: In vivo compression tests and numerical analysis. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Tsai, W.C.; Chen, C.P.; Shau, Y.W.; Wang, C.L.; Chen, M.J.; Chang, K.J. Effects of aging on the plantar soft tissue properties under the metatarsal heads at different impact velocities. Ultrasound Med. Biol. 2005, 31, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Maemichi, T.; Tsutsui, T.; Matsumoto, M.; Iizuka, S.; Torii, S.; Kumai, T. The relationship of heel fat pad thickness with age and physiques in Japanese. Clin. Biomech. (Bristol Avon) 2020, 80, 105110. [Google Scholar] [CrossRef] [PubMed]
- Smith, L. Histopathologic characteristics and ultrastructure of aging skin. Cutis 1989, 43, 414–424. [Google Scholar] [PubMed]
- Lin, C.-Y.; Chuang, H.-J.; Cortes, D.H. Investigation of the optimum heel pad stiffness: A modeling study. Australas. Phys. Eng. Sci. Med. 2017, 40, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Van Gent, R.; Siem, D.; van Middelkoop, M.; Van Os, A.; Bierma-Zeinstra, S.; Koes, B. Incidence and determinants of lower extremity running injuries in long distance runners: A systematic review. Br. J. Sports Med. 2007, 41, 469–480. [Google Scholar] [CrossRef]
- Nigg, B.M.; Bahlsen, H.A.; Luethi, S.M.; Stokes, S. The influence of running velocity and midsole hardness on external impact forces in heel-toe running. J. Biomech. 1987, 20, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Lafortune, M.A.; Hennig, E.M. Cushioning properties of footwear during walking: Accelerometer and force platform measurements. Clin. Biomech. 1992, 7, 181–184. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, D.; Aerts, P.; Kunnen, M. The mechanical characteristics of the human heel pad during foot strike in running: An in vivo cineradiographic study. J. Biomech. 1994, 27, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Fong Yan, A.; Sinclair, P.J.; Hiller, C.; Wegener, C.; Smith, R.M. Impact attenuation during weight bearing activities in barefoot vs. shod conditions: A systematic review. Gait Posture 2013, 38, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Relph, N.; Greaves, H.; Armstrong, R.; Prior, T.D.; Spencer, S.; Griffiths, I.B.; Dey, P.; Langley, B. Running shoes for preventing lower limb running injuries in adults. Cochrane Database Syst. Rev. 2022, 8, CD013368. [Google Scholar] [CrossRef] [PubMed]
- Wallace, I.J.; Koch, E.; Holowka, N.B.; Lieberman, D.E. Heel impact forces during barefoot versus minimally shod walking among Tarahumara subsistence farmers and urban Americans. R. Soc. Open Sci. 2018, 5, 180044. [Google Scholar] [CrossRef]
- Brooke-Wavell, K.; Skelton, D.A.; Barker, K.L.; Clark, E.M.; De Biase, S.; Arnold, S.; Paskins, Z.; Robinson, K.R.; Lewis, R.M.; Tobias, J.H.; et al. Strong, steady and straight: UK consensus statement on physical activity and exercise for osteoporosis. Br. J. Sports Med. 2022, 56, 837–846. [Google Scholar] [CrossRef]
- Robbins, S.E.; Hanna, A.; Jones, L.A. Sensory attenuation induced by modern athletic footwear. J. Test. Eval. 1988, 16, 412–416. [Google Scholar] [CrossRef]
- Mills, K.A.G.; Collins, N.J.; Vicenzino, B. The relationship between immediate comfort and plantar foot sensitivity during running in cushioned versus minimal shoes. Footwear Sci. 2018, 10, 21–27. [Google Scholar] [CrossRef]
- Zipfel, B.; Berger, L. Shod versus unshod: The emergence of forefoot pathology in modern humans? Foot 2007, 17, 205–213. [Google Scholar] [CrossRef]
- Francis, P.; Schofield, G. From barefoot hunter gathering to shod pavement pounding. Where to from here? A narrative review. BMJ Open Sport Exerc. Med. 2020, 6, e000577. [Google Scholar] [CrossRef] [PubMed]
- Majorošová, M.; Mazancová, E. Stimulation surfaces in urban places. Slovak J. Civ. Eng. 2020, 28, 45–51. [Google Scholar] [CrossRef]
- Gould, N.; Moreland, M.; Alvarez, R.; Trevino, S.; Fenwick, J. Development of the child’s arch. Foot Ankle Int. 1989, 9, 241–245. [Google Scholar] [CrossRef]
- Haendlmayer, K.T.; Harris, N.J. (ii) Flatfoot deformity: An overview. Orthop. Trauma 2009, 23, 395–403. [Google Scholar] [CrossRef]
- Michelson, J.D.; Durant, D.; McFarland, E. The injury risk associated with pes planus in athletes. Foot Ankle Int. 2002, 23, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.J. The natural history and pathophysiology of flexible flatfoot. Clin. Podiatr. Med. Surg. 2010, 27, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Otman, S.; Basgöze, O.; Gökce-Kutsal, Y. Energy cost of walking with flat feet. Prosthet. Orthot. Int. 1988, 12, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Martins, O.N.; Schinkel-Ivy, A.; Cotter, B.D.; Drake, J.D.M. Changes in spatio-temporal gait parameters following immediate and sustained use of insoles with a progressive system of increasing arch support. Footwear Sci. 2016, 8, 147–154. [Google Scholar] [CrossRef]
- Healy, A.; Farmer, S.; Pandyan, A.; Chockalingam, N. A systematic review of randomised controlled trials assessing effectiveness of prosthetic and orthotic interventions. PLoS ONE 2018, 13, e0192094. [Google Scholar] [CrossRef]
- Chevalier, T.L.; Chockalingam, N. Effects of foot orthoses: How important is the practitioner? Gait Posture 2012, 35, 383–388. [Google Scholar] [CrossRef]
- Kogler, G.; Solomonidis, S.; Paul, J. In vitro method for quantifying the effectiveness of the longitudinal arch support mechanism of a foot orthosis. Clin. Biomech. 1995, 10, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Cleaveland, C.H. Causes and Cure of Diseases of the Feet; Bradley & Webb: Cincinnati, OH, USA, 1862. [Google Scholar]
- Frey, C.; Thompson, F.; Smith, J.; Sanders, M.; Horstman, H. American Orthopaedic Foot and Ankle Society women’s shoe survey. Foot Ankle 1993, 14, 78–81. [Google Scholar] [CrossRef]
- McRitchie, M.; Branthwaite, H.; Chockalingam, N. Footwear choices for painful feet–an observational study exploring footwear and foot problems in women. J. Foot Ankle Res. 2018, 11, 23. [Google Scholar] [CrossRef] [PubMed]
- Jalali, A.; Azadinia, F.; Jalali, M.; Saeedi, H.; Shahabi, S.; Rajabi Moghadam, A. Evaluating shoe fit in older adults using a 3D scanner: A cross-sectional observational study. Footwear Sci. 2020, 12, 161–171. [Google Scholar] [CrossRef]
- Kinz, W.; Groll-Knapp, E.; Kundi, M. Hallux valgus in pre-school-aged children: The effects of too-short shoes on the hallux angle and the effects of going barefoot on podiatric health. Footwear Sci. 2021, 13, 29–42. [Google Scholar] [CrossRef]
- Buldt, A.K.; Menz, H.B. Incorrectly fitted footwear, foot pain and foot disorders: A systematic search and narrative review of the literature. J. Foot Ankle Res. 2018, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Branthwaite, H.; Chockalingam, N. Everyday footwear: An overview of what we know and what we should know on ill-fitting footwear and associated pain and pathology. Foot 2019, 39, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Barisch-Fritz, B.; Schmeltzpfenning, T.; Plank, C.; Grau, S. Foot deformation during walking: Differences between static and dynamic 3D foot morphology in developing feet. Ergonomics 2014, 57, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Begg, R.; Best, R.; Dell’Oro, L.; Taylor, S. Minimum foot clearance during walking: Strategies for the minimisation of trip-related falls. Gait Posture 2007, 25, 191–198. [Google Scholar] [CrossRef]
- Hoey, C.; Wang, A.; Raymond, R.J.; Ulagenthiran, A.; Okholm Kryger, K. Foot morphological variations between different ethnicities and sex: A systematic review. Footwear Sci. 2023, 15, 55–71. [Google Scholar] [CrossRef]
- Ortega, J.A.; Healey, L.A.; Swinnen, W.; Hoogkamer, W. Energetics and biomechanics of running footwear with increased longitudinal bending stiffness: A narrative review. Sports Med. 2021, 51, 873–894. [Google Scholar] [CrossRef] [PubMed]
- Healey, L.A.; Hoogkamer, W. Longitudinal bending stiffness does not affect running economy in Nike Vaporfly Shoes. J. Sport Health Sci. 2022, 11, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Zwaferink, J.B.J.; Custers, W.; Paardekooper, I.; Berendsen, H.A.; Bus, S.A. Effect of a carbon reinforcement for maximizing shoe outsole bending stiffness on plantar pressure and walking comfort in people with diabetes at high risk of foot ulceration. Gait Posture 2021, 86, 341–345. [Google Scholar] [CrossRef]
- Drapeau, M.S.; Forgues-Marceau, J. Metatarsal torsion in humans and footwear type. Int. J. Osteoarchaeol. 2019, 29, 718–727. [Google Scholar] [CrossRef]
- Barton, C.J.; Bonanno, D.; Menz, H.B. Development and evaluation of a tool for the assessment of footwear characteristics. J. Foot Ankle Res. 2009, 2, 10. [Google Scholar] [CrossRef]
- Van Gheluwe, B.; Kerwin, D.; Roosen, P.; Tielemans, R. The influence of heel fit on rearfoot motion in running shoes. J. Appl. Biomech. 1999, 15, 361–372. [Google Scholar] [CrossRef]
- Goldberg, D.A.; Whitesel, D.L. Heel Counter Stabilization of the Running Shoe. J. Orthop. Sports Phys. Ther. 1983, 5, 82–83. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, U.; Bojsen-Møller, F. Shock absorbency of factors in the shoe/heel interaction—With special focus on role of the heel pad. Foot Ankle 1989, 9, 294–299. [Google Scholar] [CrossRef]
- Gales, D.J.; Winter, S.L.; Challis, J.H. The influence of heel pad confinement on heel pad mechanical properties. Footwear Sci. 2021, 13, 199–207. [Google Scholar] [CrossRef]
- Lam, W.-K.; Cheung, C.C.-W.; Leung, A.K.-L. Shoe collar height and heel counter-stiffness for shoe cushioning and joint stability in landing. J. Sports Sci. 2020, 38, 2374–2381. [Google Scholar] [CrossRef] [PubMed]
- Willems, C.; Curtis, R.; Pataky, T.; D’Août, K. Plantar pressures in three types of indigenous footwear, commercial minimal shoes, and conventional Western shoes, compared to barefoot walking. Footwear Sci. 2021, 13, 1–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Août, K.; Elnaggar, O.; Mason, L.; Rowlatt, A.; Willems, C. Footwear Choice and Locomotor Health Throughout the Life Course: A Critical Review. Healthcare 2025, 13, 527. https://doi.org/10.3390/healthcare13050527
D’Août K, Elnaggar O, Mason L, Rowlatt A, Willems C. Footwear Choice and Locomotor Health Throughout the Life Course: A Critical Review. Healthcare. 2025; 13(5):527. https://doi.org/10.3390/healthcare13050527
Chicago/Turabian StyleD’Août, Kristiaan, Omar Elnaggar, Lyndon Mason, Adam Rowlatt, and Catherine Willems. 2025. "Footwear Choice and Locomotor Health Throughout the Life Course: A Critical Review" Healthcare 13, no. 5: 527. https://doi.org/10.3390/healthcare13050527
APA StyleD’Août, K., Elnaggar, O., Mason, L., Rowlatt, A., & Willems, C. (2025). Footwear Choice and Locomotor Health Throughout the Life Course: A Critical Review. Healthcare, 13(5), 527. https://doi.org/10.3390/healthcare13050527