Public Trust in Different Sources of Information: Gaps in Rural Residents and Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Demographics
3.2. Levels of Trust in Information Sources
4. Discussion
4.1. Overall Research Findings
4.2. Discussion About Population Makeup
4.3. Rural–Urban Differences in Trust Level
4.4. Differences in Trust Level by Cancer Status—No Cancer, Cancer Survivors, and Cancer Patients
4.5. Influence of Social Media
4.6. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HISB | Health information-seeking behavior |
HINTS | Health In-formation National Trends Survey |
NCI | National Cancer Institute |
References
- Lambert, S.D.; Loiselle, C.G. Health information seeking behavior. Qual. Health Res. 2007, 17, 1006–1019. [Google Scholar] [CrossRef] [PubMed]
- CDC Rural Public Health. Available online: https://www.cdc.gov/rural-health/php/index.html (accessed on 5 February 2025).
- Finney Rutten, L.J.; Agunwamba, A.A.; Wilson, P.; Chawla, N.; Vieux, S.; Blanch-Hartigan, D.; Arora, N.K.; Blake, K.; Hesse, B.W. Cancer-Related Information Seeking Among Cancer Survivors: Trends Over a Decade (2003–2013). J. Cancer Educ. Off. J. Am. Assoc. Cancer Educ. 2016, 31, 348–357. [Google Scholar] [CrossRef]
- Jia, X.; Pang, Y.; Liu, L.S. Online Health Information Seeking Behavior: A Systematic Review. Healthcare 2021, 9, 1740. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Wild, E.-M.; Schreyögg, J. Explaining variation in health information seeking behaviour—Insights from a multilingual survey. Health Policy Amst. Neth. 2021, 125, 618–626. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society Cancer Facts & Figures. 2022. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (accessed on 5 February 2025).
- National Cancer Institute Division of Cancer Control & Population Sciences. Statistics and Graphs. 2024. Available online: https://cancercontrol.cancer.gov/ocs/statistics (accessed on 5 February 2025).
- Shih, Y.-C.T.; Kim, B.; Halpern, M.T. State of Physician and Pharmacist Oncology Workforce in the United States in 2019. JCO Oncol. Pract. 2021, 17, e1–e10. [Google Scholar] [CrossRef]
- Charlton, M.; Schlichting, J.; Chioreso, C.; Ward, M.; Vikas, P. Challenges of Rural Cancer Care in the United States. Oncol. Williston Park N 2015, 29, 633–640. [Google Scholar]
- Duggleby, W.D.; Penz, K.; Leipert, B.D.; Wilson, D.M.; Goodridge, D.; Williams, A. “I am part of the community but...” The changing context of rural living for persons with advanced cancer and their families. Rural Remote Health 2011, 11, 1733. [Google Scholar] [CrossRef]
- Chen, X.; Orom, H.; Hay, J.L.; Waters, E.A.; Schofield, E.; Li, Y.; Kiviniemi, M.T. Differences in Rural and Urban Health Information Access and Use. J. Rural Health Off. J. Am. Rural Health Assoc. Natl. Rural Health Care Assoc. 2019, 35, 405–417. [Google Scholar] [CrossRef]
- Crawford-Williams, F.; Goodwin, B.C.; Chambers, S.K.; Aitken, J.F.; Ford, M.; Dunn, J. Information needs and preferences among rural cancer survivors in Queensland, Australia: A qualitative examination. Aust. N. Z. J. Public Health 2022, 46, 81–86. [Google Scholar] [CrossRef]
- Zahnd, W.E.; Askelson, N.; Vanderpool, R.C.; Stradtman, L.; Edward, J.; Farris, P.E.; Petermann, V.; Eberth, J.M. Challenges of using nationally representative, population-based surveys to assess rural cancer disparities. Prev. Med. 2019, 129, 105812. [Google Scholar] [CrossRef]
- Finney Rutten, L.J.; Blake, K.D.; Skolnick, V.G.; Davis, T.; Moser, R.P.; Hesse, B.W. Data Resource Profile: The National Cancer Institute’s Health Information National Trends Survey (HINTS). Int. J. Epidemiol. 2020, 49, 17-17j. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Yao, Y.; Han, J.; Yang, X.T.; Parton, J. Examining the existing usage gap of electronic health records in the United States: A study of National Health Survey. SSM Popul. Health 2024, 25, 101577. [Google Scholar] [CrossRef] [PubMed]
- Befort, C.A.; Nazir, N.; Engelman, K.; Choi, W. Fatalistic cancer beliefs and information sources among rural and urban adults in the USA. J. Cancer Educ. Off. J. Am. Assoc. Cancer Educ. 2013, 28, 521–526. [Google Scholar] [CrossRef]
- Eheman, C.R.; Berkowitz, Z.; Lee, J.; Mohile, S.; Purnell, J.; Rodriguez, E.M.; Roscoe, J.; Johnson, D.; Kirshner, J.; Morrow, G. Information-seeking styles among cancer patients before and after treatment by demographics and use of information sources. J. Health Commun. 2009, 14, 487–502. [Google Scholar] [CrossRef]
- Ferraris, G.; Monzani, D.; Coppini, V.; Conti, L.; Maria Pizzoli, S.F.; Grasso, R.; Pravettoni, G. Barriers to and facilitators of online health information-seeking behaviours among cancer patients: A systematic review. Digit. Health 2023, 9, 20552076231210663. [Google Scholar] [CrossRef]
- National Cancer Institute Learn More About HINTS|HINTS. Available online: https://hints.cancer.gov/about-hints/learn-more-about-hints.aspx (accessed on 5 February 2025).
- Purdeu University Center for Regional Ddevelopment [PCRD]. The Rural Urban Continuum Code: What Changed? 11 March 2024. Available online: https://pcrd.purdue.edu/the-rural-urban-continuum-code-what-changed/ (accessed on 10 March 2025).
- National Cancer Institute Age and Cancer Risk. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/age (accessed on 5 February 2025).
- Chandak, A.; Nayar, P.; Lin, G. Rural-Urban Disparities in Access to Breast Cancer Screening: A Spatial Clustering Analysis. J. Rural Health Off. J. Am. Rural Health Assoc. Natl. Rural Health Care Assoc. 2019, 35, 229–235. [Google Scholar] [CrossRef]
- Zahnd, W.E.; James, A.S.; Jenkins, W.D.; Izadi, S.R.; Fogleman, A.J.; Steward, D.E.; Colditz, G.A.; Brard, L. Rural-Urban Differences in Cancer Incidence and Trends in the United States. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. The Costs of Cancer Survivorship—2022. American Cancer Society Cancer Action Network. 8 December 2022. Available online: https://www.fightcancer.org/policy-resources/costs-cancer-survivorship-2022 (accessed on 5 February 2025).
- Myerson, R.M.; Tucker-Seeley, R.D.; Goldman, D.P.; Lakdawalla, D.N. Does Medicare Coverage Improve Cancer Detection and Mortality Outcomes? J. Policy Anal. Manag. J. Assoc. Public Policy Anal. Manag. 2020, 39, 577–604. [Google Scholar] [CrossRef]
- Mendes, Á.; Abreu, L.; Vilar-Correia, M.R.; Borlido-Santos, J. “That should be left to doctors, that’s what they are there for!”—Exploring the reflexivity and trust of young adults when seeking health information. Health Commun. 2017, 32, 1076–1081. [Google Scholar] [CrossRef]
- Faller, H.; Koch, U.; Brähler, E.; Härter, M.; Keller, M.; Schulz, H.; Wegscheider, K.; Weis, J.; Boehncke, A.; Hund, B.; et al. Satisfaction with information and unmet information needs in men and women with cancer. J. Cancer Surviv. Res. Pract. 2016, 10, 62–70. [Google Scholar] [CrossRef]
- Halbach, S.M.; Ernstmann, N.; Kowalski, C.; Pfaff, H.; Pförtner, T.-K.; Wesselmann, S.; Enders, A. Unmet information needs and limited health literacy in newly diagnosed breast cancer patients over the course of cancer treatment. Patient Educ. Couns. 2016, 99, 1511–1518. [Google Scholar] [CrossRef]
- Parmar, G.S.; Das, S.; Ingledew, P.-A. Quality of Online Information for Esophageal Cancer. J. Cancer Educ. 2023, 38, 863–869. [Google Scholar] [CrossRef]
- Sohail, S.; Zuk, V.; Halfdanarson, T.; Chan, D.; Pattison, S.; Vasdev, R.; Law, C.; Hallet, J. The Quality of Online Information for an Uncommon Malignancy—Neuroendocrine Tumours (NETs). Curr. Oncol. 2021, 28, 842–846. [Google Scholar] [CrossRef]
- President’s Cancer Panel. Improving Cancer-Related Outcomes with Connected Health Report—President’s Cancer Panel. 23 August 2024. Available online: https://prescancerpanel.cancer.gov/reports-meetings/connected-health-report-2016 (accessed on 5 February 2025).
- RHIhub. Health Communication. 17 January 2024. Available online: https://www.ruralhealthinfo.org/toolkits/health-promotion/2/strategies/health-communication (accessed on 10 March 2025).
- Larsen, M.B.; Hansen, R.P.; Olesen, F.; Vedsted, P. Patients’ confidence in their GP before and after being diagnosed with cancer. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2011, 61, e215–e222. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wu, F.; Zhang, W.; Stinson, J.; Yang, Y.; Yuan, C. Risk factors for low self-care self-efficacy in cancer survivors: Application of latent profile analysis. Nurs. Open 2022, 9, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Shahsavar, Y.; Choudhury, A. Examining influential factors in newly diagnosed cancer patients and survivors: Emphasizing distress, self-care ability, peer support, health perception, daily life activity, and the role of time since diagnosis. PLoS ONE 2023, 18, e0291064. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, W.; Amuta, A.O.; Jeon, K.C. Health information seeking in the digital age: An analysis of health information seeking behavior among US adults. Cogent Soc. Sci. 2017, 3, 1302785. [Google Scholar] [CrossRef]
- Bender, J.L.; Hueniken, K.; Eng, L.; Brown, M.C.; Kassirian, S.; Geist, I.; Balaratnam, K.; Liang, M.; Paulo, C.B.; Geist, A.; et al. Internet and social media use in cancer patients: Association with distress and perceived benefits and limitations. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2021, 29, 5273–5281. [Google Scholar] [CrossRef]
- Shea-Budgell, M.A.; Kostaras, X.; Myhill, K.P.; Hagen, N.A. Information needs and sources of information for patients during cancer follow-up. Curr. Oncol. 2014, 21, 165–173. [Google Scholar] [CrossRef]
- Gage-Bouchard, E.A.; LaValley, S.; Warunek, M.; Beaupin, L.K.; Mollica, M. Is Cancer Information Exchanged on Social Media Scientifically Accurate? J. Cancer Educ. 2018, 33, 1328–1332. [Google Scholar] [CrossRef]
- Storino, A.; Castillo-Angeles, M.; Watkins, A.A.; Vargas, C.; Mancias, J.D.; Bullock, A.; Demirjian, A.; Moser, A.J.; Kent, T.S. Assessing the Accuracy and Readability of Online Health Information for Patients With Pancreatic Cancer. JAMA Surg. 2016, 151, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Choukou, M.A.; Sanchez-Ramirez, D.C.; Pol, M.; Uddin, M.; Monnin, C.; Syed-Abdul, S. COVID-19 infodemic and digital health literacy in vulnerable populations: A scoping review. Digit. Health 2022, 8, 20552076221076927. [Google Scholar] [CrossRef] [PubMed]
- Häfliger, C.; Diviani, N.; Rubinelli, S. Communication inequalities and health disparities among vulnerable groups during the COVID-19 pandemic—A scoping review of qualitative and quantitative evidence. BMC Public Health 2023, 23, 428. [Google Scholar] [CrossRef] [PubMed]
Corresponding Factor Loading | Highly Structured | Less Structured | Others (Semi-Structured) |
---|---|---|---|
Doctor | 0.4252 | −0.2800 | 0.2312 |
Family | 0.2659 | 0.3952 | 0.1927 |
Government | 0.4828 | −0.1428 | −0.1832 |
Charity | 0.4227 | 0.3267 | −0.3656 |
Religion | 0.2336 | 0.5800 | −0.0581 |
Scientist | 0.4189 | −0.2895 | −0.2804 |
Social Media | 0.0402 | 0.3866 | 0.5150 |
Health System | 0.3242 | −0.2620 | 0.6285 |
Rural | No Cancer | Diagnosed More Than 6+ Years | Diagnosed in 0–5 Years | p-Value |
---|---|---|---|---|
Age (mean, std.) | 51.4 (0.97) | 66.5 (1.85) | 65.4 (2.37) | <0.001 |
Gender (%, 95%CI) | 0.0179 | |||
Female (n = 14,370,060) | 85.2 (81.1, 88.6) | 11.4 (8.3, 15.6) | 3.3 (2.0, 5.6) | |
Male (n = 15,359,510)) | 89.4 (85.5, 92.3) | 5.5 (3.6, 8.4) | 5.1 (3.1, 8.4) | |
Race (%, 95%CI) | 0.3824 | |||
Non-Hispanic White (n = 22,782,307) | 85.3 (82.3, 88.0) | 9.8 (7.6, 12.6) | 4.8 (3.2, 7.1) | |
Non-Hispanic Black (n = 2,166,475) | 92.5 (83.1, 96.9) | 3.7 (1.5, 8.7) | 3.8 (0.9, 15.2) | |
Hispanic (n = 1,796,938) | 98.6 (93.3, 99.7) | 0.0 | 1.4 (0.3, 6.7) | |
Non-Hispanic AAPI ‡ (n = 595,623) | 100.0 | 0.0 | 0.0 | |
Non-Hispanic Others (n = 2,388,228) | 88.6 (69.7, 96.3) | 9.4 (2.6, 29.1) | 2.0 (0.4, 8.7) | |
Education (%, 95%CI) | 0.3509 | |||
Less than high school (n = 2,788,211) | 93.2 (88.5, 96.1) | 4.2 (2.1, 8.2) | 2.6 (0.8, 8.1) | |
12 years or completed high school (n = 9,010,681) | 86.1 (79.9, 90.7) | 10.1 (6.2, 16.0) | 3.8 (1.9, 7.4) | |
Some college (n = 10,968,997) | 84.5 (77.8, 89.5) | 9.8 (6.2, 15.2) | 5.7 (3.0, 10.4) | |
College graduate or higher (n = 6,961,681) | 90.5 (85.5, 93.9) | 6.4 (3.6, 11.3) | 3.1 (1.7, 5.5) | |
Finance (%, 95%CI) | 0.0501 | |||
Difficulty (n = 6,181,737) | 89.8 (83.1, 94.1) | 7.4 (3.8, 13.8) | 2.8 (1.1, 7.2) | |
Doing ok (n = 12,343,207) | 89.8 (85.7, 92.9) | 5.6 (3.8, 8.3) | 4.5 (2.7, 7.6) | |
Comfortable (n = 11,204,625) | 82.9 (77.8, 87.0) | 12.5 (8.6, 17.8) | 4.6 (2.9, 7.3) | |
Insurance (%, 95%CI) | 0.0146 | |||
Uninsured (n = 3,186,102) | 99.0 (92.9, 99.9) | 1.0 (0.1, 7.1) | 0.0 | |
Insured (n = 26,543,468) | 85.8 (83.0, 88.2) | 9.5 (7.5, 12.0) | 4.7 (3.2, 6.8) | |
Multiple Conditions (%, 95%CI) | 0.3161 | |||
0 Condition (n = 7,589,648) | 91.7 (85.7, 95.3) | 5.3 (2.4, 11.5) | 3.0 (1.4, 6.2) | |
1 Condition (n = 7,244,941) | 86.4 (79.4, 91.3) | 10.3 (6.0, 17.0) | 3.3 (1.5, 7.2) | |
More than one (n = 14,894,981) | 85.3 (81.1, 88.8) | 9.4 (6.7, 13.0) | 5.3 (3.4, 8.1) |
Urban | No Cancer | Diagnosed More Than 6+ Years | Diagnosed in 0–5 Years | p-Value |
---|---|---|---|---|
Age (mean, std.) | 46.9 (0.48) | 68.7 (1.06) | 61.0 (1.66) | <0.001 |
Gender (%, 95%CI) | 0.0108 | |||
Female (n = 103,171,036) | 89.3 (87.6, 90.8) | 6.8 (5.8, 8.0) | 3.9 (2.9, 5.2) | |
Male (n = 106,070,620) | 92.2 (90.7, 93.5) | 5.3 (4.2, 6.6) | 2.5 (1.9, 3.3) | |
Race (%, 95%CI) | <0.001 | |||
Non-Hispanic White (n = 120,646,452) | 87.2 (85.5, 88.8) | 8.3 (7.2, 9.5) | 4.4 (3.5, 5.6) | |
Non-Hispanic Black (n = 26,690,458) | 95.0 (93.2, 96.4) | 3.4 (2.4, 4.8) | 1.6 (0.9, 2.7) | |
Hispanic (n = 35,709,702) | 96.1 (94.5, 97.2) | 2.9 (1.9, 4.4) | 1.0 (0.6, 1.9) | |
Non-Hispanic AAPI ‡ (n = 19,131,787) | 96.3 (93.6, 98.0) | 1.6 (0.8, 3.3) | 2.1 (0.9, 4.5) | |
Non-Hispanic Others (%n = 7,063,257) | 91.5 (83.0, 95.9) | 5.1 (2.2, 11.6) | 3.4 (0.9, 11.8) | |
Education (%, 95%CI) | 0.0474 | |||
Less than high school (n = 15,186,940) | 93.2 (89.1, 95.8) | 3.5 (1.9, 6.2) | 3.3 (1.8, 6.0) | |
12 years or completed high school (n = 42,108,200) | 92.9 (91.0, 94.4) | 5.1 (3.8, 6.8) | 2.0 (1.2, 3.3) | |
Some college (n = 81,658,090) | 90.2 (88.0, 92.0) | 6.7 (5.3, 8.5) | 3.1 (2.2, 4.5) | |
College graduate or higher (n = 70,288,426) | 89.5 (88.2, 90.7) | 6.4 (5.3, 7.7) | 4.1 (3.2, 5.2) | |
Finance (%, 95%CI) | 0.0014 | |||
Difficulty (n = 41,991,548) | 93.6 (91.2, 95.4) | 4.7 (3.2, 6.8) | 1.7 (0.9, 3.3) | |
Doing ok (n = 76,019,235) | 92.1 (90.4, 93.5) | 5.2 (4.2, 6.5) | 2.7 (1.8, 4.0) | |
Comfortable (n = 91,230,872) | 88.2 (86.7, 89.7) | 7.3 (6.2, 8.7) | 4.4 (3.4, 5.8) | |
Insurance (%, 95%CI) | 0.0011 | |||
Uninsured (n = 22,928,607) | 97.0 (94.1, 98.5) | 1.3 (0.6, 2.9) | 1.7 (0.6, 4.8) | |
Insured (n = 186,313,049) | 89.9 (88.7, 91.0) | 6.6 (5.8, 7.6) | 3.4 (2.7, 4.3) | |
Multiple Conditions (%, 95%CI) | <0.001 | |||
0 Condition (n = 7,589,648) | 91.7 (85.7, 95.3) | 5.3 (2.4, 11.5) | 3.0 (1.4, 6.2) | |
1 Condition (n = 7,244,941) | 86.4 (79.4, 91.3) | 10.3 (6.0, 17.0) | 3.3 (1.5, 7.2) | |
More than one (n = 14,894,981) | 85.3 (81.1, 88.8) | 9.4 (6.7, 13.0) | 5.3 (3.4, 8.1) |
Total = 238,971,225 | No Cancer | Diagnosed More Than 6+ Years | Diagnosed in 0–5 Years |
---|---|---|---|
Mean (S.E.) | N = 215,739,175 | N = 15,200,815 | N = 8,031,236 |
Doctor | |||
Rural | 3.58 (0.04) | 3.64 (0.08) | 3.62 (0.10) |
Urban | 3.66 (0.02) | 3.74 (0.04) | 3.85 (0.03) |
Government | |||
Rural | 2.69 (0.06) | 2.61 (0.11) | 2.47 (0.14) |
Urban | 2.91 (0.03) | 2.95 (0.07) | 2.88 (0.07) |
Charity | |||
Rural | 2.35 (0.06) | 2.31 (0.10) | 1.92 (0.13) |
Urban | 2.38 (0.03) | 2.20 (0.06) | 2.36 (0.08) |
Scientist | |||
Rural | 3.15 (0.05) | 3.06 (0.12) | 2.71 (0.17) |
Urban | 3.38 (0.02) | 3.39 (0.07) | 3.32 (0.08) |
Component 1 | |||
Rural | 2.89 (0.03) | 2.79 (0.07) | 2.67 (0.10) |
Urban | 3.00 (0.02) | 2.98 (0.05) | 3.08 (0.05) |
Family | |||
Rural | 2.57 (0.04) | 2.58 (0.13) | 2.57 (0.14) |
Urban | 2.55 (0.02) | 2.45 (0.05) | 2.49 (0.06) |
Religion | |||
Rural | 2.02 (0.06) | 2.13 (0.16) | 1.90 (0.14) |
Urban | 1.90 (0.03) | 1.74 (0.05) | 1.87 (0.06) |
Component 2 | |||
Rural | 2.24 (0.04) | 2.24 (0.11) | 2.24 (0.12) |
Urban | 2.16 (0.02) | 2.01 (0.04) | 2.14 (0.05) |
Social media | |||
Rural | 1.51 (0.05) | 1.41 (0.11) | 1.36 (0.14) |
Urban | 1.60 (0.04) | 1.43 (0.06) | 1.54 (0.09) |
Health system | |||
Rural | 3.08 (0.04) | 3.23 (0.11) | 3.24 (0.13) |
Urban | 3.16 (0.02) | 3.32 (0.05) | 3.33 (0.08) |
Component 3 | |||
Rural | 2.15 (0.03) | 2.15 (0.09) | 2.09 (0.08) |
Urban | 2.26 (0.02) | 2.16 (0.04) | 2.28 (0.05) |
Ref: No Cancer (Coefficient and Std.) | Diagnosed More Than 6+ Years | Diagnosed in 0–5 Years |
---|---|---|
Doctor | ||
Rural | 0.053 (0.091) | 0.013 (0.106) |
Urban | 0.063 (0.046) | 0.163 (0.038) *** |
Government | ||
Rural | −0.095 (0.127) | −0.212 (0.159) |
Urban | 0.050 (0.077) | −0.054 (0.078) |
Charity | ||
Rural | −0.022 (0.108) | −0.357 (0.124) ** |
Urban | −0.037 (0.063) | 0.114 (0.083) |
Scientist | ||
Rural | −0.109 (0.149) | −0.374 (0.183) * |
Urban | 0.088 (0.064) | −0.038 (0.078) |
Component 1 | ||
Rural | −0.055 (0.081) | −0.166 (0.105) |
Urban | 0.062 (0.054) | 0.100 (0.048) * |
Family | ||
Rural | −0.025 (0.129) | 0.022 (0.142) |
Urban | −0.131 (0.060) * | −0.099 (0.065) |
Religion | ||
Rural | 0.131 (0.185) | −0.177 (0.170) |
Urban | −0.200 (0.061) *** | −0.0254 (0.071) |
Component 2 | ||
Rural | 0.025 (0.119) | 0.010 (0.128) |
Urban | −0.129 (0.048) ** | 0.0003 (0.049) |
Social media | ||
Rural | −0.107 (0.110) | −0.107 (0.133) |
Urban | 0.028 (0.084) | 0.090 (0.082) |
Health system | ||
Rural | 0.072 (0.121) | 0.097 (0.156) |
Urban | 0.020 (0.051) | 0.046 (0.080) |
Component 3 | ||
Rural | 0.045 (0.096) | 0.022 (0.082) |
Urban | 0.032 (0.047) | 0.084 (0.053) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-C.; Kim, E.M.; Nemirovski, E.A.; Kamprath, S.; Masel, M.C.; Patel, D.I. Public Trust in Different Sources of Information: Gaps in Rural Residents and Cancer Patients. Healthcare 2025, 13, 640. https://doi.org/10.3390/healthcare13060640
Lee W-C, Kim EM, Nemirovski EA, Kamprath S, Masel MC, Patel DI. Public Trust in Different Sources of Information: Gaps in Rural Residents and Cancer Patients. Healthcare. 2025; 13(6):640. https://doi.org/10.3390/healthcare13060640
Chicago/Turabian StyleLee, Wei-Chen, Emily M. Kim, Elizabeth A. Nemirovski, Sagar Kamprath, Meredith C. Masel, and Darpan I. Patel. 2025. "Public Trust in Different Sources of Information: Gaps in Rural Residents and Cancer Patients" Healthcare 13, no. 6: 640. https://doi.org/10.3390/healthcare13060640
APA StyleLee, W.-C., Kim, E. M., Nemirovski, E. A., Kamprath, S., Masel, M. C., & Patel, D. I. (2025). Public Trust in Different Sources of Information: Gaps in Rural Residents and Cancer Patients. Healthcare, 13(6), 640. https://doi.org/10.3390/healthcare13060640