Smartwatch-Derived VO2max Prediction Model for Korean Adults: Utilizing Heart Rate and GPS Data from the 12-Minute Cooper Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurement of VO2max
2.4. Cooper 12-Min Test
2.5. Statistical Analysis
3. Results
3.1. Results of Values from the Maximal GXT, Cooper Test with a Smartwatch, and Traditional Cooper Test
3.2. Results of Multiple Regression Model to Estimate VO2max Using a Cooper Test with a Smartwatch
3.3. Comparison of the Validity of the Cooper Test Using a Smartwatch vs. a Traditional Cooper Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fox, E.L. A simple, accurate technique for predicting maximal aerobic power. J. Appl. Physiol. 1973, 35, 914–916. [Google Scholar] [PubMed]
- Coquart, J.B.; Garcin, M.; Parfitt, G.; Tourny-Chollet, C.; Eston, R.G. Prediction of maximal or peak oxygen uptake from ratings of perceived exertion. Sports Med. 2014, 44, 563–578. [Google Scholar] [PubMed]
- Coquart, J.; Tabben, M.; Farooq, A.; Tourny, C.; Eston, R. Submaximal, Perceptually Regulated Exercise Testing Predicts Maximal Oxygen Uptake: A Meta-Analysis Study. Sports Med. 2016, 46, 885–897. [Google Scholar] [PubMed]
- Jurca, R.; Jackson, A.S.; LaMonte, M.J.; Morrow, J.R., Jr.; Blair, S.N.; Wareham, N.J.; Haskell, H.L.; van Mechelen, W.; Church, T.S.; Jakicic, J.M.; et al. Assessing cardiorespiratory fitness without performing exercise testing. Am. J. Prev. Med. 2005, 29, 185–193. [Google Scholar]
- Ekblom-Bak, E.; Björkman, F.; Hellenius, M.L.; Ekblom, B. A new submaximal cycle ergometer test for prediction of VO2max. Scand. J. Med. Sci. Sports 2014, 29, 319–326. [Google Scholar]
- Chung, J.W.; Lee, O.; Lee, K.H. Estimation of maximal oxygen consumption using the 20 m shuttle run test in Korean adults aged 19–64 years. Sci. Sports 2023, 38, 68–74. [Google Scholar]
- Coquart, J.B.; Mucci, P.; L’hermette, M.; Chamari, K.; Tourny, C.; Garcin, M. Correlation of gas exchange threshold and first muscle oxyhemoglobin inflection point with time-to-exhaustion during heavy-intensity exercise. J. Sports Med. Phys. Fit. 2015, 57, 171–178. [Google Scholar]
- Noonan, V.; Dean, E. Submaximal exercise testing: Clinical application and interpretation. Phys. Ther. 2000, 80, 782–807. [Google Scholar]
- Cooper, K.H. A means of assessing maximal oxygen intake: Correlation between field and treadmill testing. JAMA 1968, 203, 201–204. [Google Scholar]
- Hoff, J. Training and testing physical capacities for elite soccer players. J. Sports Sci. 2005, 23, 573–582. [Google Scholar]
- da Silva, D.F.; Bianchini, J.A.; Antonini, V.D.; Hermoso, D.A.; Lopera, C.A.; Pagan, B.G.; McNeil, J.; Nardo Junior, N. Parasympathetic cardiac activity is associated with cardiorespiratory fitness in overweight and obese adolescents. Pediatr. Cardiol. 2014, 35, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Alvero-Cruz, J.R.; Carnero, E.A.; Giráldez García, M.A.; Alacid, F.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Cooper test provides better half-marathon performance prediction in recreational runners than laboratory tests. Front. Physiol. 2019, 10, 1349. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Lee, K. A comparison of the validity of three exercise tests for estimating maximal oxygen uptake in Korean adults aged 19–64 years. Appl. Sci. 2022, 12, 1371. [Google Scholar] [CrossRef]
- Bandyopadhyay, A. Validity of Cooper’s 12-minute run test for estimation of maximum oxygen uptake in male university students. Biol. Sport 2015, 32, 59–63. [Google Scholar] [CrossRef]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR Mhealth Uhealth. 2020, 8, e18694. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Fu, X.; Zhao, C.; Wang, F.; He, H. Validity of Apple Watch 6 and Polar A370 for monitoring energy expenditure while resting or performing light to vigorous physical activity. J. Sci. Med. Sport 2023, 26, 482–486. [Google Scholar] [CrossRef]
- Passler, S.; Bohrer, J.; Blöchinger, L.; Senner, V. Validity of wrist-worn activity trackers for estimating VO2max and energy expenditure. Int. J. Environ. Res. Public Health 2019, 16, 3037. [Google Scholar] [CrossRef]
- Helgerud, J.; Haglo, H.; Hoff, J. Prediction of VO2max from submaximal exercise using the smartphone application myworkout GO: Validation study of a digital health method. JMIR Cardio 2022, 6, e38570. [Google Scholar] [CrossRef]
- Petek, B.J.; Al-Alusi, M.A.; Moulson, N.; Grant, A.J.; Besson, C.; Guseh, J.S.; Wasfy, M.M.; Gremeaux, V.; Churchill, T.W.; Baggish, A.L. Consumer wearable health and fitness technology in cardiovascular medicine: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2023, 82, 245–264. [Google Scholar] [CrossRef]
- McKay, A.K.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining training and performance caliber: A participant classification framework. Int. J. Sports Physiol. Perform. 2021, 17, 317–331. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Bruce, R.A.; Blackmon, J.R.; Jones, J.W.; Strait, G. Exercising testing in adult normal subjects and cardiac patients. Pediatrics 1963, 32, 742–756. [Google Scholar]
- Hamlin, M.; Draper, N.; Blackwell, G.; Shearman, J.; Kimber, N. Determination of maximal oxygen uptake using the bruce or a novel athlete-led protocol in a mixed population. J. Hum. Kinet. 2011, 31, 97–104. [Google Scholar]
- Midgley, A.W.; McNaughton, L.R.; Polman, R.; Marchant, D. Criteria for determination of maximal oxygen uptake: A brief critique and recommendations for future research. Sports Med. 2007, 37, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Doolittle, T.L.; Bigbee, R. The twelve-minute run-walk: A test of cardiorespiratory fitness of adolescent boys. Res. Q. 1968, 39, 491–495. [Google Scholar] [CrossRef]
- Martínez-Lemos, I.; Otero Rodriguez, A.; Diz, J.; Ayán, C. Reliability and criterion-related validity of the Cooper test in pre-adolescents and adolescents: A systematic review and meta-analysis. J. Sports Sci. 2024, 42, 222–236. [Google Scholar]
- Maksud, M.G.; Coutts, K.D. Application of the Cooper twelve-minute run-walk test to young males. Res. Q. 1971, 42, 54–59. [Google Scholar]
- Penry, J.T.; Wilcox, A.R.; Yun, J. Validity and reliability analysis of Cooper’s 12-minute run and the multistage shuttle run in healthy adults. J. Strength Cond. Res. 2011, 25, 597–605. [Google Scholar]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar]
- Tedeschi, A.; Palazzini, M.; Trimarchi, G.; Conti, N.; Di Spigno, F.; Gentile, P.; D’Angelo, L.; Garascia, A.; Ammirati, E.; Morici, N.; et al. Heart failure management through telehealth: Expanding care and connecting hearts. J. Clin. Med. 2024, 13, 2592. [Google Scholar] [CrossRef]
- Ceaser, T.G.; Fitzhugh, E.C.; Thompson, D.L.; Bassett, D.R., Jr. Association of physical activity, fitness, and race: NHANES 1999–2004. Med. Sci. Sports Exerc. 2013, 45, 286–293. [Google Scholar] [CrossRef]
- Kasiak, P.; Kowalski, T.; Klusiewicz, A.; Zdanowicz, R.; Ładyga, M.; Wiecha, S.; Mamcarz, A.; Śliż, D. Recalibrated FRIEND equation for peak oxygen pulse is accurate in endurance athletes: The NOODLE study. Sci. Rep. 2024, 14, 23133. [Google Scholar]
Male (53) | Female (51) | Total (104) | |
Age (years) | 35.00 ± 6.11 | 34.82 ± 7.52 | 34.91 ± 6.81 |
Height (cm) | 174.09 ± 5.68 | 161.30 ± 5.33 | 167.70 ± 8.53 |
Weight (kg) | 74.88 ± 9.95 | 57.67 ± 7.10 | 66.44 ± 12.22 |
BMI (kg/m2) | 24.71 ± 3.13 | 22.24 ± 2.66 | 23.50 ± 3.15 |
Muscle mass (kg) | 34.03 ± 3.69 | 22.73 ± 2.34 | 28.49 ± 6.46 |
Body fat (%) | 19.21 ± 6.61 | 26.91 ± 6.56 | 22.99 ± 7.61 |
Male (53) | Female (51) | Total (104) | |
---|---|---|---|
Maximal GXT | |||
Mean HR (beat/min) | 142.44 ± 11.35 | 139.66 ± 10.57 | 141.08 ± 11.01 |
Maximal HR (beat/min) | 182.55 ± 13.39 | 178.22 ± 9.47 | 180.45 ± 11.80 |
VO2max (mL/kg/min) | 50.06 ± 7.79 | 42.59 ± 6.38 | 46.39 ± 8.03 |
Cooper test with a smartwatch | |||
Mean HR (beat/min) | 164.64 ± 14.80 | 159.43 ± 21.23 | 162.09 ± 18.34 |
Maximal HR (beat/min) | 185.89 ± 10.18 | 181.84 ± 20.13 | 183.90 ± 15.91 |
Distance (m) | 2676.42 ± 515.49 | 2276.47 ± 367.92 | 2480.29 ± 490.13 |
Traditional Cooper test | |||
Distance (m) | 2683.32 ± 499.40 | 2264.55 ± 367.21 | 2477.96 ± 485.41 |
Estimated VO2max (mL/kg/min) | 48.50 ± 11.26 | 39.31 ± 8.20 | 43.99 ± 10.86 |
R | R2 | SEE | F | p | Durbin-Watson |
---|---|---|---|---|---|
0.923 | 0.853 | 3.176 | 93.540 | 0.000 | 1.934 |
Unstandardized Coefficients | Standardized Coefficients | Collinearity Statistic | |||
B | SEE | β | Tolerance | VIF | |
Constant | 27.620 | 10.161 | |||
Sex | 6.358 | 1.239 | 0.398 | 0.253 | 3.954 |
Height (kg) | −0.012 | 0.064 | −0.013 | 0.332 | 3.012 |
Weight (kg) | −0.202 | 0.046 | −0.308 | 0.306 | 3.273 |
Mean HR (beat/min) | −0.036 | 0.030 | −0.082 | 0.333 | 3.006 |
Maximal HR (beat/min) | 0.039 | 0.034 | 0.078 | 0.336 | 2.973 |
Distance (m) | 0.012 | 0.001 | 0.730 | 0.548 | 1.825 |
Equation for VO2max | Predicted Value | Measured- Predicted | ICC | CV (%) | |
---|---|---|---|---|---|
Cooper test with a smartwatch | = 27.620 + 6.358 (Sex; male 1, female 0) − 0.012 (Height) − 0.202 (Weight) − 0.036 (Mean HR) + 0.039 (Maximal HR) + 0.012 (Distance, m) | 46.48 ± 7.62 | −0.09 ± 3.01 | 0.961 | 16.39 |
Traditional Cooper test | = −11.288 + 22.351 (Distance, km) | 43.99 ± 10.86 | 2.40 ± 5.05 | 0.925 | 24.69 |
Tests | B | SE | β | 95% CI | R | R2 | SEE | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Cooper test with a smartwatch | ||||||||
Intercept | 0.973 | 1.842 | −2.680 | 4.627 | 0.927 | 0.860 | 3.024 | |
Slope | 0.977 | 0.039 | 0.927 | 0.900 | 1.055 | |||
Traditional Cooper test | ||||||||
Intercept | 17.131 | 1.445 | 14.266 | 19.997 | 0.900 | 0.810 | 3.516 | |
Slope | 0.665 | 0.032 | 0.900 | 0.649 | 0.788 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Kim, D.; Shin, S.; Choi, H.; Jang, A.; Chung, J. Smartwatch-Derived VO2max Prediction Model for Korean Adults: Utilizing Heart Rate and GPS Data from the 12-Minute Cooper Test. Healthcare 2025, 13, 722. https://doi.org/10.3390/healthcare13070722
Lee K, Kim D, Shin S, Choi H, Jang A, Chung J. Smartwatch-Derived VO2max Prediction Model for Korean Adults: Utilizing Heart Rate and GPS Data from the 12-Minute Cooper Test. Healthcare. 2025; 13(7):722. https://doi.org/10.3390/healthcare13070722
Chicago/Turabian StyleLee, Kihyuk, Dohee Kim, Sungeun Shin, Hongjun Choi, Ahyun Jang, and Jinwook Chung. 2025. "Smartwatch-Derived VO2max Prediction Model for Korean Adults: Utilizing Heart Rate and GPS Data from the 12-Minute Cooper Test" Healthcare 13, no. 7: 722. https://doi.org/10.3390/healthcare13070722
APA StyleLee, K., Kim, D., Shin, S., Choi, H., Jang, A., & Chung, J. (2025). Smartwatch-Derived VO2max Prediction Model for Korean Adults: Utilizing Heart Rate and GPS Data from the 12-Minute Cooper Test. Healthcare, 13(7), 722. https://doi.org/10.3390/healthcare13070722