Risk Predictors and Cognitive Outcomes of the Psychosocial Functioning of North American Older Adults During the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. The Psychosocial Impacts of the Pandemic
1.2. The Sociodemographic and COVID-Related Predictors
1.3. The Stress: Appraisal and Coping Theory
1.4. The Stress: Appraisal and Coping Theory in Relation to Cognition
1.5. The Current Study
2. Materials and Methods
2.1. Participants
2.2. Online Study Package
2.2.1. Sociodemographic, Health Information, and ADL, and Coping Measure
2.2.2. Psychosocial Outcome Variables
2.2.3. Cognitive Outcome Variables
2.3. Data Analysis
2.4. Ethical Considerations
3. Results
3.1. Sociodemographic and COVID-Related Predictors for Psychosocial Functions
3.2. Psychosocial and Sociodemographic/COVID Prediction for Cognition
4. Discussion
4.1. Sociodemographic and COVID-19-Related Predictors for Psychosocial Functions
4.2. Psychosocial and Sociodemographic Predictors for Cognitive Performance
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
K10 | Kessler-10 |
SWLS | Satisfaction with Life Scale |
UCLA | UCLA Loneliness Scale Revised |
GNG | Go/No-go Task |
LCT | Letter Comparison Task |
BACQ | Brief Approach/Avoidance Coping Questionnaire |
ADL | Engagement in Activities of Daily Living |
RT | Reaction Time |
SES | Socioeconomic Status |
MCI | Mild cognitive impairment |
TIA | Transient ischemic attack |
SBT | Short blessed test |
ROC | Receiver Operating Characteristics |
GAF | Global Assessment of Functioning |
References
- Filindassi, V.; Pedrini, C.; Sabadini, C.; Duradoni, M.; Guazzini, A. Impact of COVID-19 First Wave on Psychological and Psychosocial Dimensions: A Systematic Review. COVID 2022, 2, 273–340. [Google Scholar] [CrossRef]
- Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The Psychological Impact of Quarantine and How to Reduce It: Rapid Review of the Evidence. Lancet 2020, 395, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A Nationwide Survey of Psychological Distress among Chinese People in the COVID-19 Epidemic: Implications and Policy Recommendations. Gen. Psychiatry 2020, 33, e100213. [Google Scholar] [CrossRef]
- World Health Organization. WHO Announces COVID-19 Outbreak a Pandemic. Available online: https://1drv.ms/b/s!ApUbN5q8QDXCh-YbWXgLYo1SRrI-CA?e=iuHMKg (accessed on 3 May 2020).
- López, J.; Perez-Rojo, G.; Noriega, C.; Carretero, I.; Velasco, C.; Martinez-Huertas, J.A.; López-Frutos, P.; Galarraga, L. Psychological Well-Being among Older Adults during the COVID-19 Outbreak: A Comparative Study of the Young–Old and the Old–Old Adults. Int. Psychogeriatr. 2020, 32, 1365–1370. [Google Scholar] [CrossRef]
- Minahan, J.; Falzarano, F.; Yazdani, N.; Siedlecki, K.L. The COVID-19 Pandemic and Psychosocial Outcomes Across Age Through the Stress and Coping Framework. Gerontologist 2021, 61, 228–239. [Google Scholar] [CrossRef]
- Whitehead, B.R.; Torossian, E. Older Adults’ Experience of the COVID-19 Pandemic: A Mixed-Methods Analysis of Stresses and Joys. Gerontologist 2021, 61, 36–47. [Google Scholar] [CrossRef]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 Pandemic on Mental Health in the General Population: A Systematic Review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef]
- Thygesen, L.C.; Rosenkilde, S.; Møller, S.P.; Ersbøll, A.K.; Santini, Z.I.; Dahl Nielsen, M.B.; Grønbæk, M.K.; Ekholm, O. Changes in Mental Well-Being during the COVID-19 Pandemic: A Longitudinal Study among Danes from 2019 to 2021. J. Psychiatr. Res. 2023, 161, 310–315. [Google Scholar] [CrossRef]
- Helliwell, J.F.; Schellenberg, G.; Fonberg, J. Life Satisfaction in Canada Before and During the COVID-19 Pandemic. Available online: https://www150.statcan.gc.ca/n1/pub/11f0019m/11f0019m2020020-eng.htm (accessed on 31 December 2024).
- Wright, A.; De Livera, A.; Lee, K.H.; Higgs, C.; Nicholson, M.; Gibbs, L.; Jorm, A. A Repeated Cross-Sectional and Longitudinal Study of Mental Health and Wellbeing during COVID-19 Lockdowns in Victoria, Australia. BMC Public Health 2022, 22, 2434. [Google Scholar] [CrossRef]
- Yang, L.; Lee, A.D.Y.; Dong, L. Psychological Wellbeing and Life Satisfaction among Chinese Older Immigrants in Canada across the Early and Late Stages of the COVID-19 Pandemic. Healthcare 2024, 12, 1899. [Google Scholar] [CrossRef]
- Armitage, R.; Nellums, L.B. COVID-19 and the Consequences of Isolating the Elderly. Lancet Public Health 2020, 5, e256. [Google Scholar] [CrossRef] [PubMed]
- Galea, S.; Merchant, R.M.; Lurie, N. The Mental Health Consequences of COVID-19 and Physical Distancing: The Need for Prevention and Early Intervention. JAMA Intern. Med. 2020, 180, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Wu, B. Social Isolation and Loneliness among Older Adults in the Context of COVID-19: A Global Challenge. Glob. Health Res. Policy 2020, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Lassale, C.; Steptoe, A.; Cadar, D. Exploring the Bidirectional Associations between Loneliness and Cognitive Functioning over 10 Years: The English Longitudinal Study of Ageing. Int. J. Epidemiol. 2019, 48, 1937–1948. [Google Scholar] [CrossRef]
- Kowal, M.; Coll-Martín, T.; Ikizer, G.; Rasmussen, J.; Eichel, K.; Studzińska, A.; Koszałkowska, K.; Karwowski, M.; Najmussaqib, A.; Pankowski, D.; et al. Who Is the Most Stressed During the COVID-19 Pandemic? Data from 26 Countries and Areas. Appl. Psychol. Health Well-Being 2020, 12, 946–966. [Google Scholar] [CrossRef]
- Banerjee, D.; Rai, M. Social Isolation in Covid-19: The Impact of Loneliness. Int. J. Soc. Psychiatry 2020, 66, 525–527. [Google Scholar] [CrossRef]
- Shah, S.M.A.; Mohammad, D.; Qureshi, M.F.H.; Abbas, M.Z.; Aleem, S. Prevalence, Psychological Responses and Associated Correlates of Depression, Anxiety and Stress in a Global Population, During the Coronavirus Disease (COVID-19) Pandemic. Community Ment. Health J. 2021, 57, 101–110. [Google Scholar] [CrossRef]
- Na, L.; Yang, L. Psychological and Behavioral Responses during the COVID-19 Pandemic among Individuals with Mobility and/or Self-Care Disabilities. Disabil. Health J. 2022, 15, 101216. [Google Scholar] [CrossRef]
- Mueller, A.L.; McNamara, M.S.; Sinclair, D.A. Why Does COVID-19 Disproportionately Affect Older People? Aging 2020, 12, 9959–9981. [Google Scholar] [CrossRef]
- Dong, L.; Yang, L. COVID-19 Anxiety: The Impact of Older Adults’ Transmission of Negative Information and Online Social Networks. Aging Health Res. 2023, 3, 100119. [Google Scholar] [CrossRef]
- Sorokowski, P.; Groyecka, A.; Kowal, M.; Sorokowska, A.; Białek, M.; Lebuda, I.; Dobrowolska, M.; Zdybek, P.; Karwowski, M. Can Information about Pandemics Increase Negative Attitudes toward Foreign Groups? A Case of COVID-19 Outbreak. Sustainability 2020, 12, 4912. [Google Scholar] [CrossRef]
- Su, C.; Yang, L.; Dong, L.; Zhang, W. The Psychological Well-Being of Older Chinese Immigrants in Canada amidst COVID-19: The Role of Loneliness, Social Support, and Acculturation. Int. J. Environ. Res. Public Health 2022, 19, 8612. [Google Scholar] [CrossRef] [PubMed]
- Colucci, E.; Nadeau, S.; Higgins, J.; Kehayia, E.; Poldma, T.; Saj, A.; de Guise, E. COVID-19 Lockdowns’ Effects on the Quality of Life, Perceived Health and Well-Being of Healthy Elderly Individuals: A Longitudinal Comparison of Pre-Lockdown and Lockdown States of Well-Being. Arch. Gerontol. Geriatr. 2022, 99, 104606. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Yang, L.; Mezo, P.G.; Liu, R. Age Disparities in Mental Health during the COVID19 Pandemic: The Roles of Resilience and Coping. Soc. Sci. Med. 2022, 305, 115031. [Google Scholar] [CrossRef]
- Yang, L.; Yu, L.; Kandasamy, K.; Wang, Y.; Shi, F.; Zhang, W.; Wang, P.P. Non-Pathological Psychological Distress among Mainland Chinese in Canada and Its Sociodemographic Risk Factors amidst the Pandemic. Healthcare 2022, 10, 2326. [Google Scholar] [CrossRef]
- Yang, L.; Kandasamy, K.; Na, L.; Zhang, W.; Wang, P. Perceived and Experienced Anti-Chinese Discrimination and Its Associated Psychological Impacts Among Chinese Canadians During the Wave 2 of the COVID-19 Pandemic. Psychol. Health Med. 2024, 29, 108–125. [Google Scholar] [CrossRef]
- Holman, E.A.; Thompson, R.R.; Garfin, D.R.; Silver, R.C. The Unfolding COVID-19 Pandemic: A Probability-Based, Nationally Representative Study of Mental Health in the United States. Sci. Adv. 2020, 6, eabd5390. [Google Scholar] [CrossRef]
- Groarke, J.M.; Berry, E.; Graham-Wisener, L.; McKenna-Plumley, P.E.; McGlinchey, E.; Armour, C. Loneliness in the UK during the COVID-19 Pandemic: Cross-Sectional Results from the COVID-19 Psychological Wellbeing Study. PLoS ONE 2020, 15, e0239698. [Google Scholar] [CrossRef]
- Shevlin, M.; McBride, O.; Murphy, J.; Miller, J.G.; Hartman, T.K.; Levita, L.; Mason, L.; Martinez, A.P.; McKay, R.; Stocks, T.V.A.; et al. Anxiety, Depression, Traumatic Stress and COVID-19-Related Anxiety in the UK General Population during the COVID-19 Pandemic. BJPsych Open 2020, 6, e125. [Google Scholar] [CrossRef]
- Wang, K.; Manning, R.B., III; Bogart, K.R.; Adler, J.M.; Nario-Redmond, M.R.; Ostrove, J.M.; Lowe, S.R. Predicting Depression and Anxiety among Adults with Disabilities during the COVID-19 Pandemic. Rehabil. Psychol. 2022, 67, 179–188. [Google Scholar] [CrossRef]
- Wu, C.; Wilkes, R.; Qian, Y.; Kennedy, E.B. Acute Discrimination and East Asian-White Mental Health Gap During COVID-19 in Canada; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Yu, L.; Lecompte, M.; Zhang, W.; Wang, P.; Yang, L. Sociodemographic and COVID-Related Predictors for Mental Health Condition of Mainland Chinese in Canada Amidst the Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 171. [Google Scholar] [CrossRef] [PubMed]
- Katsiris, A.; Kandasamy, K.; Yang, L. Peritraumatic Distress among Chinese Canadians during the Early Lockdown Stage of the COVID-19 Pandemic: Sociodemographic and Pandemic-Related Predictors. COVID 2024, 4, 391–408. [Google Scholar] [CrossRef]
- Wang, L.; Kala, M.P.; Jafar, T.H. Factors Associated with Psychological Distress during the Coronavirus Disease 2019 (COVID-19) Pandemic on the Predominantly General Population: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0244630. [Google Scholar] [CrossRef]
- Folkman, S.; Moskowitz, J.T. Coping: Pitfalls and Promise. Annu. Rev. Psychol. 2004, 55, 745–774. [Google Scholar] [CrossRef]
- Folkman, S. Stress: Appraisal and Coping. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013; pp. 1913–1915. ISBN 978-1-4419-1005-9. [Google Scholar]
- Finset, A.; Steine, S.; Haugli, L.; Steen, E.; Laerum, E. The Brief Approach/Avoidance Coping Questionnaire: Development and Validation. Psychol. Health Med. 2002, 7, 75–85. [Google Scholar] [CrossRef]
- Tull, M.T.; Edmonds, K.A.; Scamaldo, K.M.; Richmond, J.R.; Rose, J.P.; Gratz, K.L. Psychological Outcomes Associated with Stay-at-Home Orders and the Perceived Impact of COVID-19 on Daily Life. Psychiatry Res. 2020, 289, 113098. [Google Scholar] [CrossRef]
- Compas, B.E. Psychobiological Processes of Stress and Coping. Ann. N. Y. Acad. Sci. 2006, 1094, 226–234. [Google Scholar] [CrossRef]
- Nieto, M.; Romero, D.; Ros, L.; Zabala, C.; Martínez, M.; Ricarte, J.J.; Serrano, J.P.; Latorre, J.M. Differences in Coping Strategies Between Young and Older Adults: The Role of Executive Functions. Int. J. Aging Hum. Dev. 2020, 90, 28–49. [Google Scholar] [CrossRef]
- Morris, M.C.; Evans, L.D.; Rao, U.; Garber, J. Executive Function Moderates the Relation between Coping and Depressive Symptoms. Anxiety Stress Coping 2015, 28, 31–49. [Google Scholar] [CrossRef]
- Rettie, H.; Daniels, J. Coping and Tolerance of Uncertainty: Predictors and Mediators of Mental Health during the COVID-19 Pandemic. Am. Psychol. 2021, 76, 427–437. [Google Scholar] [CrossRef]
- Siedlecki, K.L.; Yazdani, N.; Minahan, J.; Falzarano, F. Examining Processing Speed as a Predictor of Subjective Well-Being across Age and Time in the German Aging Survey. Aging Neuropsychol. Cogn. 2020, 27, 66–82. [Google Scholar] [CrossRef]
- Yazdani, N.; Siedlecki, K.L. Mediators of the Relationship Between Cognition and Subjective Well-Being. J. Happiness Stud. 2021, 22, 3091–3109. [Google Scholar] [CrossRef]
- Ostir, G.V.; Markides, K.S.; Black, S.A.; Goodwin, J.S. Emotional Well-Being Predicts Subsequent Functional Independence and Survival. J. Am. Geriatr. Soc. 2000, 48, 473–478. [Google Scholar] [CrossRef]
- Jones, T.G.; Rapport, L.J.; Hanks, R.A.; Lichtenberg, P.A.; Telmet, K. Cognitive and Psychosocial Predictors of Subjective Well-Being in Urban Older Adults. Clin. Neuropsychol. 2003, 17, 3–18. [Google Scholar] [CrossRef]
- Fiorenzato, E.; Zabberoni, S.; Costa, A.; Cona, G. Cognitive and Mental Health Changes and Their Vulnerability Factors Related to COVID-19 Lockdown in Italy. PLoS ONE 2021, 16, e0246204. [Google Scholar] [CrossRef]
- De Pue, S.; Gillebert, C.; Dierckx, E.; Vanderhasselt, M.-A.; De Raedt, R.; Van den Bussche, E. The Impact of the COVID-19 Pandemic on Wellbeing and Cognitive Functioning of Older Adults. Sci. Rep. 2021, 11, 4636. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Wei, H.-T.; Liou, Y.-J.; Su, T.-P.; Bai, Y.-M.; Tsai, S.-J.; Yang, A.C.; Chen, T.-J.; Tsai, C.-F.; Chen, M.-H. Risk for Developing Dementia among Patients with Posttraumatic Stress Disorder: A Nationwide Longitudinal Study. J. Affect. Disord. 2016, 205, 306–310. [Google Scholar] [CrossRef]
- Flatt, J.D.; Gilsanz, P.; Quesenberry, C.P.; Albers, K.B.; Whitmer, R.A. Post-Traumatic Stress Disorder and Risk of Dementia among Members of a Health Care Delivery System. Alzheimers Dement. 2018, 14, 28–34. [Google Scholar] [CrossRef]
- Holahan, C.J.; Moos, R.H.; Holahan, C.K.; Brennan, P.L.; Schutte, K.K. Stress Generation, Avoidance Coping, and Depressive Symptoms: A 10-Year Model. J. Consult. Clin. Psychol. 2005, 73, 658–666. [Google Scholar] [CrossRef]
- Shankar, A.; Hamer, M.; McMunn, A.; Steptoe, A. Social Isolation and Loneliness: Relationships with Cognitive Function during 4 Years of Follow-up in the English Longitudinal Study of Ageing. Psychosom. Med. 2013, 75, 161–170. [Google Scholar] [CrossRef]
- Krueger, K.R.; Wilson, R.S.; Kamenetsky, J.M.; Barnes, L.L.; Bienias, J.L.; Bennett, D.A. Social Engagement and Cognitive Function in Old Age. Exp. Aging Res. 2009, 35, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Katzman, R.; Brown, T.; Fuld, P.; Peck, A.; Schechter, R.; Schimmel, H. Validation of a Short Orientation-Memory-Concentration Test of Cognitive Impairment. Am. J. Psychiatry 1983, 140, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Gorilla Experiment Builder. Available online: https://gorilla.sc/ (accessed on 24 April 2020).
- Coyne, R.; Kluwer, W. The Lawton Instrumental Activities of Daily Living Scale. AJN 2008, 108, 52–62. [Google Scholar] [CrossRef]
- Guo, H.J.; Sapra, A. Instrumental Activity of Daily Living (IADL). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Johnson, N.; Barion, A.; Rademaker, A.; Rehkemper, G.; Weintraub, S. The Activities of Daily Living Questionnaire: A Validation Study in Patients with Dementia. Alzheimer Dis. Assoc. Disord. 2004, 18, 223–230. [Google Scholar]
- Carver, C.S.; Scheier, M.F.; Weintraub, J.K. Assessing Coping Strategies: A Theoretically Based Approach. J. Personal. Soc. Psychol. 1989, 56, 267–283. [Google Scholar] [CrossRef]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.-L.T.; Walters, E.E.; Zaslavsky, A.M. Short Screening Scales to Monitor Population Prevalences and Trends in Non-Specific Psychological Distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef]
- Vasiliadis, H.-M.; Chudzinski, V.; Gontijo-Guerra, S.; Préville, M. Screening Instruments for a Population of Older Adults: The 10-Item Kessler Psychological Distress Scale (K10) and the 7-Item Generalized Anxiety Disorder Scale (GAD-7). Psychiatry Res. 2015, 228, 89–94. [Google Scholar] [CrossRef]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Pavot, W.; Diener, E. The Satisfaction with Life Scale and the Emerging Construct of Life Satisfaction. J. Posit. Psychol. 2008, 3, 137–152. [Google Scholar] [CrossRef]
- Pavot, W.; Diener, E.; Colvin, C.R.; Sandvik, E. Further Validation of the Satisfaction with Life Scale: Evidence for the Cross-Method Convergence of Well-Being Measures. J. Pers. Assess. 1991, 57, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Ausín, B.; Muñoz, M.; Martín, T.; Pérez-Santos, E.; Castellanos, M.Á. Confirmatory Factor Analysis of the Revised UCLA Loneliness Scale (UCLA LS-R) in Individuals over 65. Aging Ment. Health 2019, 23, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.W. UCLA Loneliness Scale (Version 3): Reliability, Validity, and Factor Structure. J. Personal. Assess. 1996, 66, 20–40. [Google Scholar] [CrossRef]
- Hsieh, S.; Wu, M.; Tang, C.-H. Adaptive Strategies for the Elderly in Inhibiting Irrelevant and Conflict No-Go Trials While Performing the Go/No-Go Task. Front. Aging Neurosci. 2016, 7, 243. [Google Scholar] [CrossRef]
- Votruba, K.L.; Langenecker, S.A. Factor Structure, Construct Validity, and Age- and Education-Based Normative Data for the Parametric Go/No-Go Test. J. Clin. Exp. Neuropsychol. 2013, 35, 132–146. [Google Scholar] [CrossRef]
- Salthouse, T.A. The Nature of the Influence of Speed on Adult Age Differencesin Cognition. Dev. Psychol. 1994, 30, 20. [Google Scholar]
- Lustig, C.; Hasher, L.; Tonev, S.T. Distraction as a Determinant of Processing Speed. Psychon. Bull. Rev. 2006, 13, 619–625. [Google Scholar] [CrossRef]
- Tun, P.A.; Lachman, M.E. Age Differences in Reaction Time and Attention in a National Telephone Sample of Adults: Education, Sex, and Task Complexity Matter. Dev. Psychol. 2008, 44, 1421–1429. [Google Scholar] [CrossRef]
- Tomaszewski Farias, S.; Schmitter-Edgecombe, M.; Weakley, A.; Harvey, D.; Denny, K.G.; Barba, C.; Gravano, J.T.; Giovannetti, T.; Willis, S. Compensation Strategies in Older Adults: Association with Cognition and Everyday Function. Am. J. Alzheimers Dis. Other Dement. 2018, 33, 184–191. [Google Scholar] [CrossRef]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef]
- Lemke, U.; Zimprich, D. Longitudinal Changes in Memory Performance and Processing Speed in Old Age Abstract Keywords. Aging Neuropsychol. Cogn. 2005, 12, 57–77. [Google Scholar] [CrossRef]
- Manor, O.; Matthews, S.; Power, C. Dichotomous or Categorical Response? Analysing Self-Rated Health and Lifetime Social Class. Int. J. Epidemiol. 2000, 29, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating; Statistics for Biology and Health; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-16398-3. [Google Scholar]
- Raimo, S.; Maggi, G.; Ilardi, C.R.; Cavallo, N.D.; Torchia, V.; Pilgrom, M.A.; Cropano, M.; Roldán-Tapia, M.D.; Santangelo, G. The Relation between Cognitive Functioning and Activities of Daily Living in Normal Aging, Mild Cognitive Impairment, and Dementia: A Meta-Analysis. Neurol. Sci. 2024, 45, 2427–2443. [Google Scholar] [CrossRef] [PubMed]
- Carstensen, L.L.; Shavit, Y.Z.; Barnes, J.T. Age Advantages in Emotional Experience Persist Even Under Threat From the COVID-19 Pandemic. Psychol. Sci. 2020, 31, 1374–1385. [Google Scholar] [CrossRef]
- Festini, S.B.; Katz, B. A Frontal Account of False Alarms. J. Cogn. Neurosci. 2021, 33, 1657–1678. [Google Scholar] [CrossRef]
- Ringlein, G.V.; Ettman, C.K.; Stuart, E.A. Income or Job Loss and Psychological Distress During the COVID-19 Pandemic. JAMA Netw. Open 2024, 7, e2424601. [Google Scholar] [CrossRef]
- Chan, J.K.; Marzuki, A.A.; Vafa, S.; Thanaraju, A.; Yap, J.; Chan, X.W.; Harris, H.A.; Todi, K.; Schaefer, A. A Systematic Review on the Relationship between Socioeconomic Conditions and Emotional Disorder Symptoms during Covid-19: Unearthing the Potential Role of Economic Concerns and Financial Strain. BMC Psychol. 2024, 12, 237. [Google Scholar] [CrossRef]
- Gallagher, M.W.; Zvolensky, M.J.; Long, L.J.; Rogers, A.H.; Garey, L. The Impact of Covid-19 Experiences and Associated Stress on Anxiety, Depression, and Functional Impairment in American Adults. Cogn. Ther. Res. 2020, 44, 1043–1051. [Google Scholar] [CrossRef]
- Pettinicchio, D.; Maroto, M.; Chai, L.; Lukk, M. Findings from an Online Survey on the Mental Health Effects of COVID-19 on Canadians with Disabilities and Chronic Health Conditions. Disabil. Health J. 2021, 14, 101085. [Google Scholar] [CrossRef]
- Park, D.C.; Reuter-Lorenz, P. The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef]
- Salthouse, T. The Processing-Speed Theory of Adult Age Differences in Cognition. Psychol. Rev. 1996, 103, 403–428. [Google Scholar] [CrossRef] [PubMed]
- Loepp, E.; Kelly, J.T. Distinction without a Difference? An Assessment of MTurk Worker Types. Res. Politics 2020, 7, 2053168019901185. [Google Scholar] [CrossRef]
- Ogletree, A.M.; Katz, B. How Do Older Adults Recruited Using MTurk Differ from Those in a National Probability Sample? Int. J. Aging Hum. Dev. 2021, 93, 700–721. [Google Scholar] [CrossRef] [PubMed]
- Rouse, S.V. Reliability of MTurk Data from Masters and Workers. J. Individ. Differ. 2020, 41, 30–36. [Google Scholar] [CrossRef]
Variables | Psychosocial Index | GNG No-Go Accuracy | GNG Go Accuracy | LCT Accuracy | Cognitive Speed Index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N (%) | M | F (p) | M | F (p) | M | F (p) | M | F (p) | M | F (p) | |
Gender | 1.871 | 0.578 | 4.447 | 0.084 | 1.148 | ||||||
Woman | 79 (77) | 0.275 | (0.175) | 0.871 | (0.449) | 0.957 | (0.038) | 0.969 | (0.772) | 0.010 | (0.287) |
Man | 23 (22) | 0.005 | 0.846 | 0.936 | 0.964 | 0.253 | |||||
Age | 1.928 | 3.707 | 1.127 | 2.593 | 1.846 | ||||||
60–64 | 37 (36) | −0.252 | (0.132) | 0.896 | (0.015) | 0.959 | (0.343) | 0.955 | (0.059) | −0.089 | (0.146) |
65–69 | 23 (22) | 0.225 | 0.866 | 0.947 | 0.979 | 0.037 | |||||
70–74 | 21 (20) | 0.290 | 0.900 | 0.946 | 0.999 | 0.006 | |||||
75 and over | 20 (19) | 0.295 | 0.772 | 0.934 | 0.933 | 0.573 | |||||
Marital status | 1.232 | 1.091 | 0.990 | 0.795 | 0.660 | ||||||
Partnered/Married | 51 (50) | 0.148 | (0.297) | 0.847 | (0.341) | 0.953 | (0.376) | 0.963 | (0.455) | 0.094 | (0.520) |
Divorced | 21 (20) | 0.321 | 0.892 | 0.946 | 0.954 | 0.003 | |||||
Widowed/single | 31 (30) | −0.050 | 0.837 | 0.939 | 0.982 | 0.298 | |||||
Education | 1.528 | 1.060 | 3.878 | 0.684 | 0.571 | ||||||
High school or lower | 15 (15) | 0.219 | (0.223) | 0.891 | (0.351) | 0.933 | (0.025) | 0.965 | (0.508) | 0.083 | (0.567) |
Post-secondary | 56 (54) | −0.056 | 0.858 | 0.941 | 0.955 | 0.033 | |||||
Graduate school | 32 (31) | 0.256 | 0.827 | 0.965 | 0.979 | 0.278 | |||||
Employment | 0.010 | 0.439 | 0.000 | 0.079 | 0.792 | ||||||
Retired/Unemployed | 67 (65) | 0.149 | (0.921) | 0.869 | (0.510) | 0.946 | (0.998) | 0.969 | (0.779) | 0.230 | (0.376) |
Employed | 36 (35) | 0.130 | 0.848 | 0.946 | 0.964 | 0.033 | |||||
Income | 6.633 | 0.500 | 0.269 | 1.398 | 0.113 | ||||||
Low | 29 (28) | 0.304 | (0.002) | 0.857 | (0.609) | 0.947 | (0.765) | 0.976 | (0.253) | 0.130 | (0.893) |
Average | 48 (47) | −0.273 | 0.876 | 0.943 | 0.947 | 0.076 | |||||
High | 25 (24) | 0.388 | 0.843 | 0.950 | 0.976 | 0.189 | |||||
Religion | 1.208 | 1.483 | 0.188 | 2.452 | 0.382 | ||||||
Christian/Catholicism | 56 (54) | 0.098 | (0.304) | 0.873 | (0.233) | 0.949 | (0.829) | 0.980 | (0.093) | 0.124 | (0.684) |
None | 28 (27) | 0.345 | 0.885 | 0.947 | 0.985 | 0.009 | |||||
Other | 19 (18) | −0.024 | 0.818 | 0.943 | 0.935 | 0.262 | |||||
Health status | 9.298 | 1.450 | 0.535 | 0.020 | 0.360 | ||||||
Poor to medium | 9 (9) | −0.657 | (<0.001) | 0.806 | (0.241) | 0.937 | (0.588) | 0.963 | (0.981) | 0.133 | (0.698) |
Medium to good | 59 (57) | 0.373 | 0.883 | 0.950 | 0.968 | 0.218 | |||||
Excellent | 35 (34) | 0.703 | 0.887 | 0.952 | 0.969 | 0.044 | |||||
COVID-19 symptom | 1.957 | 0.151 | 0.491 | 0.356 | 0.006 | ||||||
No symptoms | 68 (66) | 0.265 | (0.166) | 0.864 | (0.698) | 0.943 | (0.486) | 0.972 | (0.553) | 0.105 | (0.798) |
At least one symptom | 35 (34) | 0.014 | 0.853 | 0.949 | 0.961 | 0.159 | |||||
COVID-19 contact | 5.205 | 3.175 | 0.028 | 0.514 | 0.774 | ||||||
No contact | 97 (94) | −0.432 | (0.025) | 0.785 | (0.079) | 0.948 | (0.868) | 0.949 | (0.475) | 0.384 | (0.382) |
Yes contact | 5 (5) | 0.712 | 0.932 | 0.944 | 0.984 | −0.121 | |||||
COVID-19 travel | 0.831 | 3.518 | 0.000 | 0.499 | 0.751 | ||||||
No (within 14 days) | 98 (95) | 0.392 | (0.365) | 0.944 | (0.064) | 0.946 | (0.993) | 0.947 | (0.482) | −0.143 | (0.389) |
Yes (within 14 days) | 4 (4) | −0.112 | 0.773 | 0.946 | 0.986 | 0.406 | |||||
Compliance to COVID-19 protocol | 0.043 | 0.079 | 0.002 | 0.002 | 1.194 | ||||||
Low to Moderate | 49 (48) | 0.123 | (0.836) | 0.862 | (0.780) | 0.946 | (0.963) | 0.967 | (0.967) | 0.234 | (0.278) |
High | 54 (53) | 0.157 | 0.855 | 0.947 | 0.966 | 0.029 |
Variables | Psychosocial Index | GNG No-Go Accuracy | GNG Go Accuracy | LCT Accuracy | Cognitive Speed Index | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M (SD) | r | p | r | p | r | p | r | p | r | p | |
ADL | 16.12 (2.464) | 0.274 | 0.005 | 0.141 | 0.155 | −0.089 | 0.369 | −0.147 | 0.141 | −0.059 | 0.559 |
BACQ: Approach | 23.54 (3.155) | 0.435 | <0.001 | 0.025 | 0.800 | 0.035 | 0.724 | −0.002 | 0.984 | −0.044 | 0.661 |
BACQ: Avoidance | 15.49 (3.581) | −0.466 | <0.001 | −0.130 | 0.192 | −0.179 | 0.071 | −0.229 | 0.021 | 0.014 | 0.891 |
Predictors | Psychosocial Index (N = 98) | ||
---|---|---|---|
β | 95% CI | ||
ADL | 0.145 | −0.007 | 0.106 |
BACQ Approach | 0.200 * | 0.007 | 0.103 |
BACQ Avoid | −0.298 *** | −0.111 | −0.030 |
Age | |||
60–64 (ref) | |||
65–69 | 0.240 * | 0.104 | 0.867 |
70–74 | 0.223 * | 0.088 | 0.846 |
75 and over | 0.193 * | 0.004 | 0.820 |
Gender | |||
Woman (ref) | |||
Man | −0.042 | −0.403 | 0.231 |
Income | |||
Low (ref) | |||
Average | −0.252 * | −0.785 | −0.078 |
High | 0.047 | −0.289 | 0.480 |
Health status | |||
Poor (ref) | |||
Medium to good | 0.414 ** | 0.215 | 1.224 |
Excellent | 0.509 ** | 0.372 | 1.488 |
COVID Contact | |||
No (ref) | |||
Yes | 0.153 | −0.056 | 1.250 |
COVID Symptom | |||
No (ref) | |||
At least one symptom | −0.049 | −0.404 | 0.228 |
Predictors | GNG No-go Accuracy N = 99 | GNG Go Accuracy N = 101 | LCT Accuracy N = 99 | Cognitive Speed Index N = 99 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | 95% CI | β | 95% CI | β | 95% CI | β | 95% CI | |||||
Psychosocial Index | 0.144 | −0.013 | 0.057 | 0.059 | −0.008 | 0.013 | 0.022 | −0.019 | 0.022 | −0.132 | −0.373 | 0.109 |
ADL | 0.143 | −0.003 | 0.018 | −0.074 | −0.004 | 0.002 | −0.166 | −0.011 | 0.001 | −0.008 | −0.072 | 0.066 |
BACQ Approach | −0.057 | −0.011 | 0.006 | −0.027 | −0.003 | 0.002 | −0.019 | −0.005 | 0.005 | −0.037 | −0.068 | 0.048 |
BACQ Avoid | −0.100 | −0.011 | 0.004 | −0.106 | −0.003 | 0.001 | −0.228 * | −0.009 | 0.000 | −0.029 | −0.058 | 0.044 |
Age | ||||||||||||
60–64 (ref) | X | X | X | |||||||||
65–69 | −0.137 | −0.107 | 0.023 | X | X | X | 0.023 | −0.033 | 0.041 | 0.087 | −0.259 | 0.609 |
70–74 | −0.113 | −0.103 | 0.031 | X | X | X | 0.161 | −0.014 | 0.070 | 0.185 | −0.062 | 0.833 |
75 and over | −0.445 *** | −0.211 | −0.075 | X | X | X | −0.155 | −0.068 | 0.011 | 0.435 *** | 0.484 | 1.402 |
Gender | ||||||||||||
Woman (ref) | X | X | X | X | X | X | X | X | X | |||
Man | X | X | X | −0.156 | −0.031 | 0.004 | X | X | X | X | X | X |
Education | ||||||||||||
High school or lower (ref) | X | X | X | X | X | X | X | X | X | |||
Post-secondary | X | X | X | 0.115 | −0.012 | 0.029 | X | X | X | X | X | X |
Graduate school | X | X | X | 0.285 | −0.001 | 0.045 | X | X | X | X | X | X |
Religion | ||||||||||||
Christian/Catholicism (ref) | X | X | X | X | X | X | X | X | X | |||
None | X | X | X | X | X | X | −0.021 | −0.037 | 0.030 | X | X | X |
Other | X | X | X | X | X | X | −0.231 * | −0.081 | −0.002 | X | X | X |
COVID Contact | ||||||||||||
No (ref) | X | X | X | X | X | X | X | X | X | |||
Yes | 0.176 | −0.045 | 0.253 | X | X | X | X | X | X | X | X | X |
COVID Travel | ||||||||||||
No (ref) | X | X | X | X | X | X | X | X | X | |||
Yes | −0.246 | −0.325 | 0.001 | X | X | X | X | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolton, K.; Yang, L. Risk Predictors and Cognitive Outcomes of the Psychosocial Functioning of North American Older Adults During the COVID-19 Pandemic. Healthcare 2025, 13, 792. https://doi.org/10.3390/healthcare13070792
Bolton K, Yang L. Risk Predictors and Cognitive Outcomes of the Psychosocial Functioning of North American Older Adults During the COVID-19 Pandemic. Healthcare. 2025; 13(7):792. https://doi.org/10.3390/healthcare13070792
Chicago/Turabian StyleBolton, Kathryn, and Lixia Yang. 2025. "Risk Predictors and Cognitive Outcomes of the Psychosocial Functioning of North American Older Adults During the COVID-19 Pandemic" Healthcare 13, no. 7: 792. https://doi.org/10.3390/healthcare13070792
APA StyleBolton, K., & Yang, L. (2025). Risk Predictors and Cognitive Outcomes of the Psychosocial Functioning of North American Older Adults During the COVID-19 Pandemic. Healthcare, 13(7), 792. https://doi.org/10.3390/healthcare13070792