Effectiveness of Telecoaching and Music Therapy in Neurological Disorders: A Narrative Review and Proposal for a New Interventional Approach
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Telecoaching and Neurological Disorder
3.1.1. Telecoaching and Parkinson’s Disease
3.1.2. Telecoaching and Multiple Sclerosis
3.1.3. Telecoaching and Ataxia
3.1.4. Telecoaching and Other Neurological Disorders
3.2. Music Therapy and Neurological Disorder
3.2.1. Music Therapy and Alzheimer’s Disease
3.2.2. Music Therapy and Parkinson’s Disease
3.2.3. Music Therapy and Multiple Sclerosis
3.2.4. Music Therapy and Other Neurological Disorders
4. Discussion
4.1. Proposed Integrated Intervention Program: Music Therapy and Telecoaching for Neurological Disorders
4.2. Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Harris, E. Neurological Conditions Are Leading Cause of Disability Worldwide. JAMA 2024, 331, 1440. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Sousa, C.; Pereira, M.; Pereira, M.G. Quality of life in patients with multiple sclerosis: A study with patients and caregivers. Disabil. Health J. 2019, 12, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yang, Y.; Zhang, L.; Zhang, Q.; Balbuena, L.; Ungvari, G.S.; Zang, Y.F.; Xiang, Y.T. Quality of life in Parkinson’s disease: A systematic review and meta-analysis of comparative studies. CNS Neurosci. Ther. 2021, 27, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Kanmounye, U.S.; Abu-Bonsrah, N.; Shlobin, N.A.; Djoutsop, O.M. Letter: The World Health Organization’s Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders 2022–2031. Neurosurgery 2022, 90, e201–e203. [Google Scholar]
- Grisold, W.; Freedman, M.; Gouider, R.; Guekht, A.; Lewis, S.; Medina, M.; Meshram, C.; Rouleau, G.; Stark, R. The Intersectoral Global Action Plan (IGAP): A unique opportunity for neurology across the globe. J. Neurol. Sci. 2023, 449, 120645. [Google Scholar] [CrossRef]
- León-Salas, B.; González-Hernández, Y.; Infante-Ventura, D.; de Armas-Castellano, A.; García-García, J.; García-Hernández, M.; Carmona-Rodríguez, M.; Olazarán, J.; Dobato, J.L.; Rodríguez-Rodríguez, L.; et al. Telemedicine for neurological diseases: A systematic review and meta-analysis. Eur. J. Neurol. 2023, 30, 241–254. [Google Scholar] [CrossRef]
- Ohannessian, R.; Duong, T.A.; Odone, A. Global Telemedicine Implementation and Integration Within Health Systems to Fight the COVID-19 Pandemic: A Call to Action. JMIR Public Health Surveill. 2020, 6, e18810. [Google Scholar] [CrossRef]
- Colorado State University. Telecoaching Emerges as Tool in Nutrition and Medicine. 2016. Available online: https://source.colostate.edu/telecoaching-emerges-as-tool-in-nutrition-and-medicine/ (accessed on 20 January 2025).
- Leubner, D.; Hinterberger, T. Reviewing the Effectiveness of Music Interventions in Treating Depression. Front. Psychol. 2017, 8, 1109. [Google Scholar] [CrossRef]
- Wang, S.; Agius, M. The use of Music Therapy in the treatment of Mental Illness and the enhancement of Societal Wellbeing. Psychiatr. Danub. 2018, 30, 595–600. [Google Scholar]
- Garza-Villarreal, E.A.; Pando, V.; Vuust, P.; Parsons, C. Music-Induced Analgesia in Chronic Pain Conditions: A Systematic Review and Meta-Analysis. Pain Physician 2017, 20, 597–610. [Google Scholar]
- American Music Therapy Association. Definition and Quotes About Music Therapy. 2020. Available online: https://www.musictherapy.org/about/quotes/ (accessed on 20 January 2025).
- Vinciguerra, C.; Federico, A. Neurological music therapy during the COVID-19 outbreak: Updates and future challenges. Neurol. Sci. 2022, 43, 3473–3478. [Google Scholar] [CrossRef] [PubMed]
- Sihvonen, A.J.; Särkämö, T.; Leo, V.; Tervaniemi, M.; Altenmüller, E.; Soinila, S. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017, 16, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.G.; Rundell, J.R. Anxiety and neurological disorders. Semin. Clin. Neuropsychiatry 1999, 4, 98–102. [Google Scholar] [PubMed]
- Salas, C.E.; Rojas-Líbano, D.; Castro, O.; Cruces, R.; Evans, J.; Radovic, D.; Arévalo-Romero, C.; Torres, J.; Aliaga, Á. Social isolation after acquired brain injury: Exploring the relationship between network size, functional support, loneliness and mental health. Neuropsychol. Rehabil. 2022, 32, 2294–2318. [Google Scholar] [CrossRef]
- Busse, M.E.; Wiles, C.M.; van Deursen, R.W. Community walking activity in neurological disorders with leg weakness. J. Neurol. Neurosurg. Psychiatry 2006, 77, 359–362. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Lavorgna, L.; Maida, E.; Reinhard, C.; Cras, P.; Reetz, K.; Molnar, M.J.; Nonnekes, J.; Medijainen, K.; Summa, S.; Diserens, K.; et al. The Growing Role of Telerehabilitation and Teleassessment in the Management of Movement Disorders in Rare Neurological Diseases: A Scoping Review. Telemed. J. e-Health 2024, 30, 2419–2430. [Google Scholar] [CrossRef]
- Gandolfi, M.; Geroin, C.; Dimitrova, E.; Boldrini, P.; Waldner, A.; Bonadiman, S.; Picelli, A.; Regazzo, S.; Stirbu, E.; Primon, D.; et al. Virtual Reality Telerehabilitation for Postural Instability in Parkinson’s Disease: A Multicenter, Single-Blind, Randomized, Controlled Trial. BioMed Res. Int. 2017, 2017, 7962826. [Google Scholar] [CrossRef]
- Yang, W.-C.; Wang, H.-K.; Wu, R.-M.; Lo, C.-S.; Lin, K.-H. Home-based virtual reality balance training and conventional balance training in Parkinson’s disease: A randomized controlled trial. J. Formos. Med. Assoc. 2016, 115, 734–743. [Google Scholar] [CrossRef]
- Atterbury, E.M.; Welman, K.E. Balance training in individuals with Parkinson’s disease: Therapist-supervised vs. home-based exercise programme. Gait Posture 2017, 55, 138–144. [Google Scholar] [CrossRef]
- Pagliari, C.; Di Tella, S.; Jonsdottir, J.; Mendozzi, L.; Rovaris, M.; De Icco, R.; Milanesi, T.; Federico, S.; Agostini, M.; Goffredo, M.; et al. Effects of home-based virtual reality telerehabilitation system in people with multiple sclerosis: A randomized controlled trial. J. Telemed. Telecare 2021, 30, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Hoang, P.; Schoene, D.; Gandevia, S.; Smith, S.; Lord, S.R. Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis—A randomized controlled trial. Mult. Scler. J. 2015, 22, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Güngör, F.; Tarakci, E.; Özdemir-Acar, Z.; Soysal, A. The effects of supervised versus home Pilates-based core stability training on lower extremity muscle strength and postural sway in people with multiple sclerosis. Mult. Scler. 2022, 28, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Cabanas-Valdés, R.; Fernández-Lago, H.; Peláez-Hervás, S.; Serra-Rusiñol, L.; López-de-Celis, C.; Masbernat-Almenara, M. Effect of a Home-Base Core Stability Exercises in Hereditary Ataxia. A Randomized Controlled Trial. A Pilot Randomized Controlled Trial. Mov. Disord. Clin. Pract. 2024, 11, 666–675. [Google Scholar] [CrossRef]
- Jabri, S.; Bushart, D.D.; Kinnaird, C.; Bao, T.; Bu, A.; Shakkottai, V.G.; Sienko, K.H. Preliminary Study of Vibrotactile Feedback during Home-Based Balance and Coordination Training in Individuals with Cerebellar Ataxia. Sensors 2022, 22, 3512. [Google Scholar] [CrossRef]
- Burns, J.; Sman, A.D.; Cornett, K.M.D.; Wojciechowski, E.; Walker, T.; Menezes, M.P.; Mandarakas, M.R.; Rose, K.J.; Bray, P.; Sampaio, H.; et al. Safety and efficacy of progressive resistance exercise for Charcot-Marie-Tooth disease in children: A randomised, double-blind, sham-controlled trial. Lancet Child Adolesc. Health 2017, 1, 106–113. [Google Scholar] [CrossRef]
- Mehta, J.N.; Parikh, S.; Desai, S.D.; Solanki, R.C.; Pathak, A.G. Study of Additive Effect of Yoga and Physical Therapies to Standard Pharmacologic Treatment in Migraine. J. Neurosci. Rural. Pract. 2021, 12, 60–66. [Google Scholar] [CrossRef]
- Menengiç, K.N.; Yeldan, İ.; Çınar, N.; Şahiner, T. Effectiveness of motor-cognitive dual-task exercise via telerehabilitation in Alzheimer’s disease: An online pilot randomized controlled study. Clin. Neurol. Neurosurg. 2022, 223, 107501. [Google Scholar] [CrossRef]
- Gómez Gallego, M.; Gómez García, J. Music therapy and Alzheimer’s disease: Cognitive, psychological, and behavioural effects. Neurologia 2017, 32, 300–308. [Google Scholar] [CrossRef]
- Gómez-Gallego, M.; Gómez-Gallego, J.C.; Gallego-Mellado, M.; García-García, J. Comparative Efficacy of Active Group Music Intervention versus Group Music Listening in Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2021, 18, 8067. [Google Scholar] [CrossRef]
- Lyu, J.; Zhang, J.; Mu, H.; Li, W.; Champ, M.; Xiong, Q.; Gao, T.; Xie, L.; Jin, W.; Yang, W.; et al. The Effects of Music Therapy on Cognition, Psychiatric Symptoms, and Activities of Daily Living in Patients with Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, 1347–1358. [Google Scholar] [CrossRef]
- Pohl, P.; Wressle, E.; Lundin, F.; Enthoven, P.; Dizdar, N. Group-based music intervention in Parkinson’s disease—Findings from a mixed-methods study. Clin. Rehabil. 2020, 34, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Fodor, D.M.; Breda, X.M.; Valean, D.; Marta, M.M.; Perju-Dumbrava, L. Music as Add-On Therapy in the Rehabilitation Program of Parkinson’s Disease Patients-A Romanian Pilot Study. Brain Sci. 2021, 11, 569. [Google Scholar] [CrossRef] [PubMed]
- Li, K.P.; Zhang, Z.Q.; Zhou, Z.L.; Su, J.Q.; Wu, X.H.; Shi, B.H.; Xu, J.G. Effect of music-based movement therapy on the freezing of gait in patients with Parkinson’s disease: A randomized controlled trial. Front. Aging Neurosci. 2022, 14, 924784. [Google Scholar] [CrossRef]
- Vinciguerra, C.; De Stefano, N.; Federico, A. Exploring the role of music therapy in multiple sclerosis: Brief updates from research to clinical practice. Neurol. Sci. 2019, 40, 2277–2285. [Google Scholar] [CrossRef]
- Maggio, M.G.; Tripoli, D.; Porcari, B.; Manuli, A.; Filoni, S.; Naro, A.; Eschweiler, M.; Calabrò, R.S. How may patients with MS benefit from using music assisted therapy? A case-control feasability study investigating motor outcomes and beyond. Mult. Scler. Relat. Disord. 2021, 48, 102713. [Google Scholar] [CrossRef]
- Impellizzeri, F.; Leonardi, S.; Latella, D.; Maggio, M.G.; Foti Cuzzola, M.; Russo, M.; Sessa, E.; Bramanti, P.; De Luca, R.; Calabrò, R.S. An integrative cognitive rehabilitation using neurologic music therapy in multiple sclerosis: A pilot study. Medicine 2020, 99, e18866. [Google Scholar] [CrossRef]
- Lee, M.-W.; Yang, N.-J.; Mok, H.-K.; Yang, R.-C.; Chiu, Y.-H.; Lin, L.-C. Music and movement therapy improves quality of life and attention and associated electroencephalogram changes in patients with attention-deficit/hyperactivity disorder. Pediatr. Neonatol. 2024, 65, 581–587. [Google Scholar] [CrossRef]
- Lu, M.J.; Chen, W.Y.; Li, D.J. Efficacy of music therapy and predictors of sleep disturbance among patients with chronic schizophrenia: A prospective study. Arch. Psychiatr. Nurs. 2022, 40, 1–7. [Google Scholar] [CrossRef]
- Cibrian, F.L.; Madrigal, M.; Avelais, M.; Tentori, M. Supporting coordination of children with ASD using neurological music therapy: A pilot randomized control trial comparing an elastic touch-display with tambourines. Res. Dev. Disabil. 2020, 106, 103741. [Google Scholar] [CrossRef]
- Moreu-Valls, A.; Puig-Davi, A.; Martinez-Horta, S.; Kulisevsky, G.; Sampedro, F.; Perez-Perez, J.; Horta-Barba, A.; Olmedo-Saura, G.; Pagonabarraga, J.; Kulisevsky, J. A randomized clinical trial to evaluate the efficacy of cognitive rehabilitation and music therapy in mild cognitive impairment in Huntington’s disease. J. Neurol. 2025, 272, 202. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersson, A.; Lindén, M. A systematic review of wearable sensors for monitoring physical activity. Sensors 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Giustino, V.; Leale, I.; Cicero, L.; Petrigna, L.; Lo Nigro, M.; Fontana, V.; Mignosi, E.; Cataldo, P.; Macaluso, A.; Gómez-López, M.; et al. Acute effects of a dog sport on fitness parameters in young adults: A randomised controlled crossover study. Hum. Mov. 2024, 25, 138–146. [Google Scholar] [CrossRef]
- Romeo, A.; Edney, S.; Plotnikoff, R.; Curtis, R.; Ryan, J.; Sanders, I.; Crozier, A.; Maher, C. Can Smartphone Apps Increase Physical Activity? Systematic Review and Meta-Analysis. J. Med. Internet Res. 2019, 21, e12053. [Google Scholar] [CrossRef]
- Muntaner-Mas, A.; Martinez-Nicolas, A.; Lavie, C.J.; Blair, S.N.; Ross, R.; Arena, R.; Ortega, F.B. A Systematic Review of Fitness Apps and Their Potential Clinical and Sports Utility for Objective and Remote Assessment of Cardiorespiratory Fitness. Sports Med. 2019, 49, 587–600. [Google Scholar] [CrossRef]
- Gentile, A.; Ficarra, S.; Thomas, E.; Bianco, A. Nature Through Virtual Reality as a Stress-Reduction Tool: A Systematic Review. Int. J. Stress Manag. 2023, 30, 341–353. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Y.; Ren, Z. Rehabilitative Effects of Virtual Reality Technology for Mild Cognitive Impairment: A Systematic Review With Meta-Analysis. Front. Psychol. 2020, 11, 1811. [Google Scholar] [CrossRef]
- Leale, I.; Figlioli, F.; Giustino, V.; Brusa, J.; Barcellona, M.; Nocera, V.; Canzone, A.; Patti, A.; Messina, G.; Barbagallo, M.; et al. Telecoaching as a new training method for elderly people: A systematic review. Aging Clin. Exp. Res. 2024, 36, 18. [Google Scholar] [CrossRef]
- Leale, I.; Giustino, V.; Brusa, J.; Barcellona, M.; Barbagallo, M.; Palma, A.; Messina, G.; Dominguez, L.J.; Battaglia, G. Effectiveness of a Sustainable Training Program Combining Supervised Outdoor Exercise with Telecoaching on Physical Performance in Elderly People. Sustainability 2024, 16, 3254. [Google Scholar] [CrossRef]
- Hume, E.; Muse, H.; Wallace, K.; Wilkinson, M.; Heslop Marshall, K.; Nair, A.; Clark, S.; Vogiatzis, I. Feasibility and acceptability of a physical activity behavioural modification tele-coaching intervention in lung transplant recipients. Chron Respir. Dis. 2022, 19, 14799731221116588. [Google Scholar] [CrossRef]
- Cameron-Tucker, H.L.; Wood-Baker, R.; Joseph, L.; Walters, J.A.; Schüz, N.; Walters, E.H. A randomized controlled trial of telephone-mentoring with home-based walking preceding rehabilitation in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, H.C.A.; Lira Neto, J.C.G.; De Araújo, M.F.M.; Carvalho, G.C.N.; De Souza Teixeira, C.R.; De Freitas, R.W.J.F.; Damasceno, M.M.C. Telecoaching programme for type 2 diabetes control: A randomised clinical trial. Br. J. Nurs. 2018, 27, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Snoek, J.A.; Meindersma, E.P.; Prins, L.F.; van’t hof, A.W.J.; de Boer, M.J.; Hopman, M.T.; Eijsvogels, T.M.H.; de Kluiver, E.P. The sustained effects of extending cardiac rehabilitation with a six-month telemonitoring and telecoaching programme on fitness, quality of life, cardiovascular risk factors and care utilisation in CAD patients: The TeleCaRe study. J. Telemed. Telecare 2021, 27, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Leale, I.; Di Stefano, V.; Torrente, A.; Alonge, P.; Monastero, R.; Roccella, M.; Brighina, F.; Giustino, V.; Battaglia, G. Telecoaching and Migraine: Digital Approach to Physical Activity in Migraine Management. A Scoping Review. J. Clin. Med. 2025, 14, 861. [Google Scholar] [CrossRef]
- Leale, I.; Di Stefano, V.; Costanza, C.; Brighina, F.; Roccella, M.; Palma, A.; Battaglia, G. Telecoaching: A potential new training model for Charcot-Marie-Tooth patients: A systematic review. Front. Neurol. 2024, 15, 1359091. [Google Scholar] [CrossRef]
- Hartasanchez, S.A.; Heen, A.F.; Kunneman, M.; García-Bautista, A.; Hargraves, I.G.; Prokop, L.J.; May, C.R.; Montori, V.M. Remote shared decision making through telemedicine: A systematic review of the literature. Patient Educ. Couns. 2022, 105, 356–365. [Google Scholar] [CrossRef]
- Aderinto, N.; AbdulBasit, M.O.; Olatunji, G.; Adejumo, T. Exploring the transformative influence of neuroplasticity on stroke rehabilitation: A narrative review of current evidence. Ann. Med. Surg. 2023, 85, 4425–4432. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Torres, F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 1993, 116 Pt 1, 39–52. [Google Scholar] [CrossRef]
- Bavelier, D.; Neville, H.J. Cross-modal plasticity: Where and how? Nat. Rev. Neurosci. 2002, 3, 443–452. [Google Scholar] [CrossRef]
- Schlaug, G. The brain of musicians. A model for functional and structural adaptation. Ann. N. Y. Acad. Sci. 2001, 930, 281–299. [Google Scholar] [CrossRef]
- Kraus, N.; Chandrasekaran, B. Music training for the development of auditory skills. Nat. Rev. Neurosci. 2010, 11, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Reybrouck, M.; Vuust, P.; Brattico, E. Music and brain plasticity: How sounds trigger neurogenerative adaptations. In Neuroplasticity Insights of Neural Reorganization; InTech: Rijeka, Croatia, 2018; pp. 85–103. [Google Scholar]
- Groussard, M.; La Joie, R.; Rauchs, G.; Landeau, B.; Chételat, G.; Viader, F.; Desgranges, B.; Eustache, F.; Platel, H. When music and long-term memory interact: Effects of musical expertise on functional and structural plasticity in the hippocampus. PLoS ONE 2010, 5, e13225. [Google Scholar] [CrossRef] [PubMed]
- Burrai, F.; Hasan, W.; Fancourt, D.; Luppi, M.; Di Somma, S. A Randomized Controlled Trial of Listening to Recorded Music for Heart Failure Patients: Study Protocol. Holist. Nurs. Pract. 2016, 30, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Boehlig, A.; Hohenadel, M.; Nitsche, I.; Bauer, K.; Sack, U. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood. Sci. Rep. 2016, 6, 23008. [Google Scholar] [CrossRef]
- Akin, A.; Iskender, M. Internet addiction and depression, anxiety and stress. Int. Online J. Educ. Sci. 2011, 3, 138–148. [Google Scholar]
- Pittman, S.; Kridli, S. Music intervention and preoperative anxiety: An integrative review. Int. Nurs. Rev. 2011, 58, 157–163. [Google Scholar] [CrossRef]
- Linnemann, A.; Strahler, J.; Nater, U.M. The stress-reducing effect of music listening varies depending on the social context. Psychoneuroendocrinology 2016, 72, 97–105. [Google Scholar] [CrossRef]
- Myint, K.; Jayakumar, R.; Hoe, S.-Z.; Kanthimathi, M.; Lam, S.-K. Cortisol, β-endorphin and oxidative stress markers in healthy medical students in response to examination stress. Biomed. Res. 2017, 28, 3774–3779. [Google Scholar]
- Amir, S.; Brown, Z.W.; Amit, Z. The role of endorphins in stress: Evidence and speculations. Neurosci. Biobehav. Rev. 1980, 4, 77–86. [Google Scholar] [CrossRef]
- Moreira, S.V.; Justi, F.; Gomes, C.F.A.; Moreira, M. Music Therapy Enhances Episodic Memory in Alzheimer’s and Mixed Dementia: A Double-Blind Randomized Controlled Trial. Healthcare 2023, 11, 2912. [Google Scholar] [CrossRef]
- Rubio-Sastre, P.; Gómez-Abellán, P.; Martinez-Nicolas, A.; Ordovás, J.M.; Madrid, J.A.; Garaulet, M. Evening physical activity alters wrist temperature circadian rhythmicity. Chronobiol. Int. 2014, 31, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Antúnez, J.M. Circadian typology is related to emotion regulation, metacognitive beliefs and assertiveness in healthy adults. PLoS ONE 2020, 15, e0230169. [Google Scholar] [CrossRef]
- Ayala, V.; Martínez-Bebia, M.; Latorre, J.A.; Gimenez-Blasi, N.; Jimenez-Casquet, M.J.; Conde-Pipo, J.; Bach-Faig, A.; Mariscal-Arcas, M. Influence of circadian rhythms on sports performance. Chronobiol. Int. 2021, 38, 1522–1536. [Google Scholar] [CrossRef] [PubMed]
- Penner, I.-K.; Paul, F. Fatigue as a symptom or comorbidity of neurological diseases. Nat. Rev. Neurol. 2017, 13, 662–675. [Google Scholar] [CrossRef]
- De Bergeyck, R.; Geoffroy, P.A. Insomnia in neurological disorders: Prevalence, mechanisms, impact and treatment approaches. Rev. Neurol. 2023, 179, 767–781. [Google Scholar] [CrossRef]
- Popescu, B.O.; Batzu, L.; Ruiz, P.J.G.; Tulbă, D.; Moro, E.; Santens, P. Neuroplasticity in Parkinson’s disease. J. Neural Transm. 2024, 131, 1329–1339. [Google Scholar] [CrossRef]
- Ambrens, M.; Macniven, R.; Perram, A.; Andrews, S.; Hawley-Hague, H.; Razee, H.; Todd, C.; Valenzuela, T.; Delbaere, K. How Perceptions of Aging Influence Physical Activity and Exercise in Older Age: Exploring the Behavior of People Aged 70+ Years Engaged in Fall Prevention Activities. J. Appl. Gerontol. 2024, 43, 1386–1396. [Google Scholar] [CrossRef]
Neurological Disorder | TC Strategies | Main Results | |
---|---|---|---|
Hoang, 2015 [24] | MS | Stepmania open source software; Supervised training sessions; Asynchronous TC approach; Interactive exergaming systems; Weekly progress assessment calls. | TC training program is a feasible, safe, and effective approach for improving stepping, standing balance, coordination, and functional performance in individuals with MS. |
Yang, 2016 [21] | PD | Virtual reality balance training; Synchronous TC approach. | TC and conventional balance training are equally effective in enhancing balance, gait, and QoL in individuals with PD. |
Gandolfi, 2017 [20] | PD | Virtual reality balance training; Supervised training sessions; Synchronous TC approach; Interactive exergaming systems. Weekly progress assessment calls; Logbook. | TC is a viable and cost-effective alternative to conventional training for reducing postural instability in individuals with PD. |
Burns, 2017 [28] | CMT | Supervised training sessions; Asynchronous TC approach; Digital tools. | TC resistance training attenuates the long-term progression of dorsiflexion weakness without adverse effects in children with CMT disease. |
Atterbury, 2017 [22] | PD | Asynchronous TC approach; Digital tools. | TC is effective in improving some aspects of gait, such as stride velocity and cadence, in individuals with mild to moderate PD. |
Pagliari, 2021 [23] | MS | Virtual reality training; Asynchronous TC approach; Offline Remote Monitoring. | TC is effective in improving QoL and alleviating motor symptoms in individuals with MS. |
Mehta, 2021 [29] | MG | Supervised training sessions; Asynchronous TC approach; Weekly progress assessment calls; Digital tools; Logbook. | TC approach, when added to standard care, improves QoL and reduces headache frequency in individuals with MG. |
Güngör, 2022 [25] | MS | Supervised training sessions; Asynchronous TC approach; Weekly progress assessment calls. | TC approach can be recommended for individuals with limitations in attending supervised sessions to improve postural control, agility, and strength in MS. |
Menengi, 2022 [30] | AD | Synchronous TC approach; Digital tools. | TC dual-task training programs can lead to significant improvements in cognition and mobility, enhance functional independence, and reduce symptoms of anxiety and depression in individuals with AD. |
Jabri, 2022 [27] | AT | Digital tools; Synchronous TC approach. | TC balance and coordination training program improves physical performance in individuals with AT. |
Cabanas Valdés, 2024 [26] | AT | Supervised training sessions; Asynchronous TC approach; Weekly progress assessment calls. Digital tools; Logbook. | TC improves balance confidence, gait speed, and QoL and reduces the fall rate in individuals with AT. |
Neurological Disorder | MT Strategies | Main Results | |
---|---|---|---|
Gómez Gallego, 2017 [31] | AD | Comfortable, well-lit, and soundproof rooms; Varied musical activities; Music played through speakers. | MT is effective in improving various cognitive, psychological, and behavioural alterations in individuals with AD. |
Lyu, 2018 [33] | AD | Familiar and favourite songs. | MT is effective in enhancing cognitive function and mental well-being in individuals with AD. |
Pohl, 2020 [34] | PD | Ronnie Gardiner Method; Varied musical activities; Music played through speakers. | MT is effective in improving the QoL in individuals with PD; however, it does not lead to improvements in dual-task performance, cognition, or balance. |
Cibrian 2020, [42] | ASD | BendableSound; 10” tambourines with a wood frame; Familiar and favourite songs. | MT is effective in improving the coordination skills of children with ASD. |
Impelizzeri, 2020 [39] | MS | Associative Mood and Memory Training (AMMT); Music in Psychosocial Training and Counseling (MPC). | MT is an effective complementary approach to conventional rehabilitation in individuals with MS. |
Gómez Gallego, 2021 [32] | AD | Comfortable and spacious rooms; Familiar and favourite songs. | MT is effective in improving AD symptoms and could be prescribed as a complementary treatment alongside standard care. |
Fodor, 2021 [35] | PD | Familiar and favourite songs. | MT combined with a multimodal program focused on physical therapy may be beneficial for individuals with PD. |
Maggio, 2021 [38] | MS | Rhythmic auditory stimulation (RAS). | The integration of the GT3 with MT is a feasible and effective approach for gait rehabilitation in individuals with MS. |
Lu, 2022 [41] | SH | Music with a slow beat of 60–80 per minute; Familiar and favourite songs. | MT is effective in reducing sleep disturbances among individuals with SH. |
Li, 2022 [36] | PD | Headphone audio playback; Familiar and favourite songs. | MT associated with exercise is effective in improving gait disorders in individuals with PD. |
Lee, 2024 [40] | ADHD | Music played on a piano; Familiar nursery rhymes. | MT combined with exercise is an effective and alternative approach for treating ADHD in children. |
Moreu-Valls, 2025 [43] | HD | Varied musical activities; Familiar and favourite songs. | MT is effective in improving cognitive function and the severity of the disease in individuals with HD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leale, I.; Vinciguerra, C.; Di Stefano, V.; Brighina, F.; Battaglia, G. Effectiveness of Telecoaching and Music Therapy in Neurological Disorders: A Narrative Review and Proposal for a New Interventional Approach. Healthcare 2025, 13, 826. https://doi.org/10.3390/healthcare13070826
Leale I, Vinciguerra C, Di Stefano V, Brighina F, Battaglia G. Effectiveness of Telecoaching and Music Therapy in Neurological Disorders: A Narrative Review and Proposal for a New Interventional Approach. Healthcare. 2025; 13(7):826. https://doi.org/10.3390/healthcare13070826
Chicago/Turabian StyleLeale, Ignazio, Claudia Vinciguerra, Vincenzo Di Stefano, Filippo Brighina, and Giuseppe Battaglia. 2025. "Effectiveness of Telecoaching and Music Therapy in Neurological Disorders: A Narrative Review and Proposal for a New Interventional Approach" Healthcare 13, no. 7: 826. https://doi.org/10.3390/healthcare13070826
APA StyleLeale, I., Vinciguerra, C., Di Stefano, V., Brighina, F., & Battaglia, G. (2025). Effectiveness of Telecoaching and Music Therapy in Neurological Disorders: A Narrative Review and Proposal for a New Interventional Approach. Healthcare, 13(7), 826. https://doi.org/10.3390/healthcare13070826