Evaluating the Efficiency and Productivity of Opioid Substitution Treatment Units in Greece: A DEA-Malmquist Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Envelopment Analysis and Malmquist Index
2.2. The Model: Input-Oriented MPI DEA
subject to:
−yi + Yλ ≥ 0; θxi − Xλ ≥ 0; λ ≥ 0.
[dt + 1 (xt + 1, yt + 1)]−1 = minθ,λ θ, subject to: −yi,t + 1 + Yt + 1λ ≥ 0, θxi,t + 1 − Xt + 1λ ≥ 0, λ ≥ 0
[dt (xt + 1, yt + 1)]−1 = minθ,λ θ, subject to: −yi,t + 1 + Ytλ ≥ 0, θxi,t + 1 − Xtλ ≥ 0, λ ≥ 0
[dt + 1 (xt, yt)]−1 = minθ,λ θ, subject to: −yi,t + Yt + 1λ ≥ 0, θxi,t − Xt + 1λ ≥ 0, λ ≥ 0
2.3. Data
Outputs: |
Number of Patients receiving therapy, psychosocial support, and healthcare services—output 1 |
Total Number of exams conducted for parallel drug use—output 2 |
Total Number of psychosocial support sessions—output 3 |
Inputs: |
Total number of staff occupied—input 1 |
Total expenses for payroll—input 2 |
Total expenses to cover the operational costs of the OST unit—input 3 |
Total expenses for medication costs (methadone and/or buprenorphine) necessary for providing therapy—input 4 |
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OKANA | Organization Against Drugs |
EMCDDA | Europeans Monitor Center for Drugs and Drug Addictions |
EUDA | European Union Drugs Agency |
OST | Opioid Substitution Treatment |
DEA | Data Envelopment Analysis |
DMU | Decision-Making Units |
CRS | Constant Return to Scale |
VRS | Variable Return to Scale |
MPI | Malmquist Productivity Index |
References
- Organization Against Drugs. Information—English. OKANA. Available online: https://okana.gr/el/information-english (accessed on 8 November 2024).
- European Monitoring Centre for Drugs and Drug Addictions. European Drug Report 2022: Trends and Developments; EMCDDA: Lisbon, Portugal, 2022. [Google Scholar]
- European Monitoring Centre for Drugs and Drug Addictions. European Drug Report 2023: Trends and Developments; EMCDDA: Lisbon, Portugal, 2023. [Google Scholar]
- European Monitoring Centre for Drugs and Drug Addictions. European Drug Report 2019: Trends and Developments; EMCDDA: Lisbon, Portugal, 2019. [Google Scholar]
- Stimmel, B.; Kreek, M.J. Neurobiology of Addictive Behaviors and Its Relationship to Methadone Maintenance. Mt. Sinai J. Med. 2000, 67, 375–380. [Google Scholar]
- Dematteis, M.; Auriacombe, M.; D’Agnone, O.; Somaini, L.; Szerman, N.; Littlewood, R.; Alam, F.; Alho, H.; Benyamina, A.; Bobes, J.; et al. Recommendations for Buprenorphine and Methadone Therapy in Opioid Use Disorder: A European Consensus. Expert Opin. Pharmacother. 2017, 18, 1987–1999. [Google Scholar] [CrossRef]
- Strang, J.; Volkow, N.D.; Degenhardt, L.; Hickman, M.; Johnson, K.; Koob, G.F.; Marshall, B.D.L.; Tyndall, M.; Walsh, S.L. Opioid Use Disorder. Nat. Rev. Dis. Primers 2020, 6, 3. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office on Drugs and Crime. Emerging Trends in Stimulants: Global Drug Use Report 2023; EMCDDA: Lisbon, Portugal, 2023. [Google Scholar]
- World Health Organization. Assessment of Public Health Functions. WHO Regional Office for the Eastern Mediterranean. Available online: https://www.emro.who.int/about-who/public-health-functions/assessment-public-health-functions.html (accessed on 8 November 2024).
- Corredoira, R.A.; Chilingerian, J.A.; Kimberly, J.R. Analyzing Performance in Addiction Treatment: An Application of Data Envelopment Analysis to the State of Maryland System. J. Subst. Abuse Treat. 2011, 41, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Geitona, M.; Carayanni, V.; Petratos, P.; Androutsou, L. PSY24 Economic Evaluation of Opioid Substitution Treatment (OST) in Greece. Value Health 2012, 15, A512. [Google Scholar] [CrossRef]
- Dennis, B.B.; Naji, L.; Bawor, M.; Bonner, A.; Varenbut, M.; Daiter, J.; Plater, C.; Pare, G.; Marsh, D.C.; Worster, A.; et al. The Effectiveness of Opioid Substitution Treatments for Patients with Opioid Dependence: A Systematic Review and Multiple Treatment Comparison Protocol. Syst. Rev. 2014, 3, 105. [Google Scholar] [CrossRef] [PubMed]
- Seiford, L.M.; Thrall, R.M. Recent Developments in DEA: The Mathematical Programming Approach to Frontier Analysis. J. Econ. 1990, 46, 7–38. [Google Scholar] [CrossRef]
- Dimas, G.; Goula, A.; Soulis, S. Productive Performance and Its Components in Greek Public Hospitals. Oper. Res. Int. J. 2012, 12, 15–27. [Google Scholar] [CrossRef]
- Trakakis, A.; Nektarios, M.; Tziaferi, S.; Prezerakos, P. Evaluation of the Efficiency in Public Health Centers in Greece Regarding the Human Resources Occupied: A Bootstrap Data Envelopment Analysis Application. Int. J. Environ. Res. Public Health 2022, 19, 1597. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision Making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A Gen. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Debreu, G. The Coefficient of Resource Utilization. Econometrica 1951, 19, 273–292. [Google Scholar] [CrossRef]
- Koopmans, T.C. Activity Analysis of Production and Allocation; Wiley: New York, NY, USA, 1951; pp. 33–97. [Google Scholar]
- Worthington, A.C. Frontier Efficiency Measurement in Health Care: A Review of Empirical Techniques and Selected Applications. Med. Care Res. Rev. 2004, 61, 135–170. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, A.; Gravelle, H. Measuring Performance in Primary Care: Econometric Analysis and DEA. Appl. Econ. 2001, 33, 163–175. [Google Scholar] [CrossRef]
- Hjalmarsson, L.; Kumbhakar, S.C.; Heshmati, A. DEA, DFA and SFA: A Comparison. J. Prod. Anal. 1996, 7, 303–327. [Google Scholar] [CrossRef]
- Ruggiero, J. Non-Discretionary Inputs. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Zhu, J., Cook, W.D., Eds.; Springer: Boston, MA, USA, 2007. [Google Scholar] [CrossRef]
- Coelli, T.J. A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) Program (CEPA Working Paper 96/08); University of New England: Armidale, Australia, 1996. [Google Scholar]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Trakakis, A.; Nektarios, M.; Tziaferi, S.; Prezerakos, P. Total Productivity Change of Health Centers in Greece in 2016–2018: A Malmquist Index Data Envelopment Analysis Application for the Primary Health System of Greece. Cost Eff. Resour. Alloc. 2021, 19, 72. [Google Scholar] [CrossRef]
- Androutsou, L.; Geitona, M.; Yfantopoulos, J. Measuring Efficiency and Productivity Across Hospitals in the Regional Health Authority of Thessaly, Greece. J. Health Manag. 2011, 13, 121–140. [Google Scholar] [CrossRef]
- Fragkiadakis, G.; Doumpos, M.; Zopounidis, C.; Germain, C. Operational and Economic Efficiency Analysis of Public Hospitals in Greece. Ann. Oper. Res. 2016, 247, 787–806. [Google Scholar] [CrossRef]
- Xenos, P.; Yfantopoulos, J.; Nektarios, M.; Polyzos, N.; Tinios, P.; Constantopoulos, A. Efficiency and Productivity Assessment of Public Hospitals in Greece During the Crisis Period 2009–2012. Cost Eff. Resour. Alloc. 2017, 15, 6. [Google Scholar] [CrossRef]
- Hollingsworth, B.; Dawson, P.; Maniadakis, N. Efficiency Measurement of Health Care: A Review of Non-parametric Methods and Applications. Health Care Manag. Sci. 1999, 2, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Hollingsworth, B. Non-Parametric and Parametric Applications Measuring Efficiency in Health Care. Health Care Manag. Sci. 2003, 6, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. Available online: http://www.jstor.org/stable/2117971 (accessed on 16 April 2025).
- Madhanagopal, R.; Chandrasekaran, R. Global Economic Crisis and Productivity Changes of Banks in India: A DEA-MPI Analysis. Int. J. Data Envel. Anal. Oper. Res. 2014, 1, 40–48. [Google Scholar]
- Grosskopf, S. Efficiency and Productivity. In The Measurement of Productive Efficiency: Techniques and Applications; Fried, H.O., Lovell, C.A.K., Schmidt, S.S., Eds.; Oxford University Press: Oxford, UK, 1993; pp. 160–194. [Google Scholar]
- Yang, J.; Brashear, T.G.; Asare, A. The Value Relevance of Brand Equity, Intellectual Capital, and Intellectual Capital Management Capability. J. Strateg. Mark. 2015, 23, 543–559. [Google Scholar] [CrossRef]
- Johnson, P.T.; Ostfeld, R.S.; Keesing, F. Frontiers in Research on Biodiversity and Disease. Ecol. Lett. 2015, 18, 1119–1133. [Google Scholar] [CrossRef]
- Sarkis, J.; Talluri, S. A Model for Strategic Supplier Selection. J. Supply Chain Manag. 2002, 38, 18–28. [Google Scholar] [CrossRef]
- Sarkis, J. Preparing Your Data for DEA. In Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis; Zhu, J., Cook, W.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 305–320. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Modeling Undesirable Factors in Efficiency Evaluation: Comment. Eur. J. Oper. Res. 2004, 157, 242–245. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Grosskopf, S. Some Remarks on Productivity and Its Decompositions. J. Prod. Anal. 2003, 20, 459–474. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Cousins, G.; Durand, L.; Barry, J.; Boland, F. Retention of Patients in Opioid Substitution Treatment: A Systematic Review. PLoS ONE 2020, 15, e0232086. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Family, H.; Kesten, J.; Hines, L.; Millar, J. Understanding and Learning from Rural Drug Service Adaptations to Opioid Substitution Therapy During the COVID-19 Pandemic: The What C-OST? Study. Front. Public Health 2023, 11, 1240402. [Google Scholar] [CrossRef]
- Adams, A.; Blawatt, S.; Magel, T.; MacDonald, S.; Lajeunesse, J.; Harrison, S.; Byres, D.; Schechter, M.T.; Oviedo-Joekes, E. The Impact of Relaxing Restrictions on Take-Home Doses During the COVID-19 Pandemic on Program Effectiveness and Client Experiences in Opioid Agonist Treatment: A Mixed Methods Systematic Review. Subst. Abuse Treat. Prev. Policy 2023, 18, 56. [Google Scholar] [CrossRef]
- Jobski, K.; Bantel, C.; Hoffmann, F. Characteristics and Completeness of Spontaneous Reports by Reporter’s Role in Germany: An Analysis of the EudraVigilance Database Using the Example of Opioid-Associated Abuse, Dependence, or Withdrawal. Pharmacol. Res. Perspect. 2023, 11, e01077. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.; Silva, V.; Valeiro, C.; Joaquim, J.; van Hunsel, F.; Matos, C. Misuse, Abuse, and Medication Errors’ Adverse Events Associated with Opioids—A Systematic Review. Pharmaceuticals 2024, 17, 1009. [Google Scholar] [CrossRef]
- Chiappini, S.; Vickers-Smith, R.; Guirguis, A.; Corkery, J.M.; Martinotti, G.; Harris, D.R.; Schifano, F. Pharmacovigilance Signals of the Opioid Epidemic Over 10 Years: Data Mining Methods in the Analysis of Pharmacovigilance Datasets Collecting Adverse Drug Reactions (ADRs) Reported to EudraVigilance (EV) and the FDA Adverse Event Reporting System (FAERS). Pharmaceuticals 2022, 15, 675. [Google Scholar] [CrossRef]
- Gustafsson, M.; Matos, C.; Joaquim, J.; Scholl, J.; van Hunsel, F. Adverse Drug Reactions to Opioids: A Study in a National Pharmacovigilance Database. Drug Saf. 2023, 46, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Wakeman, S.E.; Larochelle, M.R.; Ameli, O.; Chaisson, C.E.; McPheeters, J.T.; Crown, W.H.; Azocar, F.; Sanghavi, D.M. Comparative Effectiveness of Different Treatment Pathways for Opioid Use Disorder. JAMA Netw. Open 2020, 3, e1920622. [Google Scholar] [CrossRef]
- Volkow, N.D.; Blanco, C. Substance Use Disorders: A Comprehensive Update of Classification, Epidemiology, Neurobiology, Clinical Aspects, Treatment, and Prevention. World Psychiatry 2023, 22, 203–229. [Google Scholar] [CrossRef]
- Johns Hopkins Medicine. Stigma of Addiction. Johns Hopkins Medicine. Available online: https://www.hopkinsmedicine.org/stigma-of-addiction (accessed on 31 March 2025).
- Kourounis, G.; Richards, B.D.; Kyprianou, E.; Symeonidou, E.; Malliori, M.M.; Samartzis, L. Opioid Substitution Therapy: Lowering the Treatment Thresholds. Drug Alcohol Depend. 2016, 161, 1–8. [Google Scholar] [CrossRef]
- Cook, W.; Harrison, J.; Imanirad, R.; Rouse, P.; Zhu, J. Data Envelopment Analysis with Non-Homogeneous DMUs. In Data Envelopment Analysis; Zhu, J., Ed.; International Series in Operations Research & Management Science; Springer: Boston, MA, USA, 2015; Volume 221. [Google Scholar] [CrossRef]
Variables | Statistics | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|
Number of Patients (monthly average) | Mean | 138.796 | 134.611 | 133.981 | 127.574 |
St. Dev. | 71.035 | 71.213 | 70.258 | 66.604 | |
Min | 34 | 30 | 33 | 30 | |
Max | 342 | 322 | 313 | 312 | |
Exams for Parallel Drug Use | Mean | 5033.333 | 4048.055 | 5157.203 | 4440.203 |
St. Dev. | 2423.231 | 2308.128 | 3137.907 | 2646.900 | |
Min | 15 | 276 | 136 | 182 | |
Max | 10,393 | 12,913 | 18,335 | 12,220 | |
Psychosocial Support Sessions | Mean | 3211.166 | 2125.944 | 2328.555 | 3074.962 |
St. Dev. | 2149.564 | 1385.723 | 1994.245 | 3034.302 | |
Min | 590 | 491 | 346 | 308 | |
Max | 8520 | 7051 | 9728 | 17,883 | |
Total Staff | Mean | 8.851 | 10.259 | 9.962 | 9.5 |
St. Dev. | 3.935 | 4.084 | 4.220 | 4.364 | |
Min | 1 | 3 | 2 | 2 | |
Max | 21 | 22 | 22 | 23 | |
Payroll | Mean | 197,386.306 | 210,642.243 | 212,365.632 | 210,583.136 |
St. Dev. | 119,920.836 | 117,467.833 | 114,525.735 | 114,597.159 | |
Min | 19,450.6 | 28,956 | 26,543 | 28,148.9 | |
Max | 552,969.59 | 564,191.56 | 576,690.62 | 595,531.12 | |
Operating Costs | Mean | 31,829.728 | 49,463.625 | 46,670.727 | 42,703.714 |
St. Dev. | 16,472.947 | 25,931.021 | 24,947.269 | 24,210.411 | |
Min | 11,496.46 | 10,908.69 | 11,608.04 | 5677.18 | |
Max | 89,750.01 | 135,110.77 | 129,696.47 | 123,675.11 | |
Medicine Costs (Normalized Costs) | Mean | 1.020405927 | 1.018518519 | 1.018518519 | 1.018518519 |
St. Dev. | 0.439889694 | 0.414488071 | 0.420808803 | 0.380470204 | |
Min | 0.101920058 | 0.114757665 | 0.153171942 | 0.145834726 | |
Max | 1.890265396 | 1.861751428 | 2.381074881 | 1.921010149 | |
Valid N (listwise) | 54 |
Mean | 2019–2020 | 2020–2021 | 2021–2022 | Total (2019–2022) |
---|---|---|---|---|
Effch | 1.026 | 0.908 | 0.953 | 0.961 |
Techch | 0.649 | 1.209 | 1.118 | 0.958 |
Pech | 1.000 | 0.952 | 0.980 | 0.977 |
Sech | 1.026 | 0.954 | 0.972 | 0.984 |
Tfpch | 0.666 | 1.099 | 1.065 | 0.920 |
DMUs that progressed (tfpch > 1) | 4 (7.4%) | 39 (72.3%) | 36 (66.7%) | 11 (20.4%) |
DMUs that regressed (tfpch < 1) | 50 (92.6%) | 15 (27.7%) | 18 (33.3%) | 43 (79.6%) |
DMUs remained constant (tfpch = 1) | 0 | 0 | 0 | 0 |
PERIOD (Comparing Years) | 2019–2020 | 2020–2021 | 2021–2022 | Total (2019–2022) |
---|---|---|---|---|
Change into Effch | ||||
Prog. (effch > 1) | 23 (42.6%) | 9 (16.7%) | 19 (35.2%) | 15 (27.8%) |
Reg. (effch < 1) | 21 (38.9%) | 33 (61.1%) | 24 (44.4%) | 29 (53.7%) |
Constant (effch = 1) | 10 (18.5%) | 12 (22.2%) | 11 (20.4%) | 10 (18.5%) |
Change into Techch | ||||
Prog. (techch > 1) | 1 (1.9%) | 50 (92.6%) | 38 (70.4%) | 14 (26%) |
Reg. (techch < 1) | 53 (98.1%) | 4 (7.4%) | 16 (29.6%) | 40 (74%) |
Constant (techch = 1) | 0 | 0 | 0 | 0 |
Change into Tfpch | ||||
Prog. (tfpch > 1) | 4 (7.4%) | 39 (72.2%) | 36 (66.7%) | 11 (20.4%) |
Reg. (tfpch < 1) | 50 (92.6%) | 15 (27.8%) | 18 (33.3%) | 43 (79.6%) |
Constant (tfpch = 1) | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trakakis, A.; Theocharis, A.; Prezerakos, P. Evaluating the Efficiency and Productivity of Opioid Substitution Treatment Units in Greece: A DEA-Malmquist Analysis. Healthcare 2025, 13, 943. https://doi.org/10.3390/healthcare13080943
Trakakis A, Theocharis A, Prezerakos P. Evaluating the Efficiency and Productivity of Opioid Substitution Treatment Units in Greece: A DEA-Malmquist Analysis. Healthcare. 2025; 13(8):943. https://doi.org/10.3390/healthcare13080943
Chicago/Turabian StyleTrakakis, Anastasios, Athanasios Theocharis, and Panagiotis Prezerakos. 2025. "Evaluating the Efficiency and Productivity of Opioid Substitution Treatment Units in Greece: A DEA-Malmquist Analysis" Healthcare 13, no. 8: 943. https://doi.org/10.3390/healthcare13080943
APA StyleTrakakis, A., Theocharis, A., & Prezerakos, P. (2025). Evaluating the Efficiency and Productivity of Opioid Substitution Treatment Units in Greece: A DEA-Malmquist Analysis. Healthcare, 13(8), 943. https://doi.org/10.3390/healthcare13080943