Shigella flexneri Outbreak at a Rehabilitation Center: First Report from Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Microbiological Diagnosis
2.2.1. Stool Culture
2.2.2. Blood Culture
2.3. Molecular Diagnosis
2.3.1. Pulsed-Field Gel Electrophoresis (PFGE)
2.3.2. Detection of Virulence Genes
3. Results
3.1. Case 1
3.1.1. Patient History
3.1.2. Examination Findings
3.1.3. Laboratory Investigation
- Blood Work
- Microbiological
3.1.4. Imaging Studies
3.1.5. Hospital Course and Management
3.2. Case 2
3.2.1. Patient History
3.2.2. Examination Findings
3.2.3. Laboratory Investigation
- Blood Work
- Microbiological
3.2.4. Imaging Studies
3.2.5. Hospital Course and Management
3.3. Case 3
3.3.1. Patient History
3.3.2. Examination Findings
3.3.3. Laboratory Investigation
- Blood Work
- Microbiological
3.3.4. Imaging Studies
3.3.5. Hospital Course and Management
3.4. Case 4
3.4.1. Patient History
3.4.2. Examination Findings
3.4.3. Laboratory Investigation
- Blood Work
- Microbiological
- Other investigations
3.4.4. Imaging Studies
3.4.5. Hospital Course and Management
3.5. Molecular Diagnosis
3.6. Outbreak Management
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Philpott, D.J.; Edgeworth, J.D.; Sansonetti, P.J. The pathogenesis of Shigella flexneri infection: Lessons from in vitro and in vivo studies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, Z.; Qian, H.; Li, Y.; Chen, Y.; Ma, P.; Gu, B. Comparative genome analysis of 15 clinical Shigella flexneri strains regarding virulence and antibiotic resistance. AIMS Microbiol. 2019, 5, 205–222. [Google Scholar] [CrossRef] [PubMed]
- Chung The, H.; Baker, S. Out of Asia: The independent rise and global spread of fluoroquinolone-resistant Shigella. Microb. Genom. 2018, 4, e000171. [Google Scholar] [CrossRef] [PubMed]
- Torraca, V.; Brokatzky, D.; Miles, S.L.; Chong, C.E.; De Silva, P.M.; Baker, S.; Jenkins, C.; Holt, K.E.; Baker, K.S.; Mostowy, S. Shigella Serotypes Associated With Carriage in Humans Establish Persistent Infection in Zebrafish. J. Infect. Dis. 2023, 228, 1108–1118. [Google Scholar] [CrossRef]
- Clark, C.S.; Maurelli, A.T. Shigella flexneri Inhibits Staurosporine-Induced Apoptosis in Epithelial Cells. Infect. Immun. 2007, 75, 2531–2539. [Google Scholar] [CrossRef]
- Dao, K.T.; Dhillon, A.; Uddin, S.S.; Gracia-Corella, J.; Inga Jaco, E.; Zahid, M.; Sharma, R.; Lai, H. A Case of Co-infection Due to Shigella flexneri Colitis Resulting in Bacillus Septic Shock in an Immunocompetent Patient. Cureus 2024, 16, e65364. [Google Scholar] [CrossRef]
- Hossain, M.U.; Khan, M.A.; Hashem, A.; Islam, M.M.; Morshed, M.N.; Keya, C.A.; Salimullah, M. Finding Potential Therapeutic Targets against Shigella flexneri through Proteome Exploration. Front. Microbiol. 2016, 7, 1817. [Google Scholar] [CrossRef]
- Sun, Q.; Lan, R.; Wang, Y.; Zhao, A.; Zhang, S.; Wang, J.; Wang, Y.; Xia, S.; Jin, D.; Cui, Z.; et al. Development of a Multiplex PCR Assay Targeting O-Antigen Modification Genes for Molecular Serotyping of Shigella flexneri. J. Clin. Microbiol. 2011, 49, 3766–3770. [Google Scholar] [CrossRef]
- Muthuirulandi Sethuvel, D.P.; Mutreja, A.; Pragasam, A.K.; Vasudevan, K.; Murugan, D.; Anandan, S.; Michael, J.S.; Walia, K.; Veeraraghavan, B. Phylogenetic and Evolutionary Analysis Reveals the Recent Dominance of Ciprofloxacin-Resistant Shigella sonnei and Local Persistence of S. flexneri Clones in India. mSphere 2020, 5, e00569-20. [Google Scholar] [CrossRef]
- Afrad, M.H.; Isalm, M.T.; Begum, Y.A.; Saifullah, M.; Ahmmed, F.; Khan, Z.H.; Habib, Z.H.; Alam, A.N.; Shirin, T.; Bhuiyan, T.R.; et al. Antibiotic resistance and serotype distribution of Shigella strains in Bangladesh over the period of 2014–2022: Evidence from a nationwide hospital-based surveillance for cholera and other diarrheal diseases. Microbiol. Spectr. 2024, 12, e00739-24. [Google Scholar] [CrossRef]
- Fogolari, M.; Mavian, C.; Angeletti, S.; Salemi, M.; Lampel, K.A.; Maurelli, A.T. Distribution and characterization of Shiga toxin converting temperate phages carried by Shigella flexneri in Hispaniola. Infect. Genet. Evol. 2018, 65, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, R.; Allard, R.; Pilon, P.A. Shifting dominance of Shigella species in men who have sex with men. Epidemiol. Infect. 2012, 140, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Guichon, A.; Zychlinsky, A. Clinical Isolates of Shigella Species Induce Apoptosis in Macrophages. J. Infect. Dis. 1997, 175, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Koestler, B.J.; Ward, C.M.; Fisher, C.R.; Rajan, A.; Maresso, A.W.; Payne, S.M. Human Intestinal Enteroids as a Model System of Shigella Pathogenesis. Infect. Immun. 2019, 87, e00733-18. [Google Scholar] [CrossRef]
- Alkan, M.; Salzstein, E.; Simu, A. Four cases of shigella septicemia in Israel. Eur. J. Clin. Microbiol. 1985, 4, 417–418. [Google Scholar] [CrossRef]
- Hannu, T.; Mattila, L.; Siitonen, A.; Leirisalo-Repo, M. Reactive arthritis attributable to Shigella infection: A clinical and epidemiological nationwide study. Ann. Rheum. Dis. 2005, 64, 594–598. [Google Scholar] [CrossRef]
- Apidianakis, Y.; Rahme, L.G. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis. Model. Mech. 2011, 4, 21–30. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, B.; Qiu, S.; Xia, Y.; Liang, B.; Yang, C.; Dong, N.; Li, Y.; Xiang, Y.; Wang, S.; et al. Dominant serotype distribution and antimicrobial resistance profile of Shigella spp. in Xinjiang, China. PLoS ONE 2018, 13, e0195259. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, T.; Lv, X.; Shi, L.; Bai, W.; Ye, L. An RPA-Based CRISPR/Cas12a Assay in Combination with a Lateral Flow Assay for the Rapid Detection of Shigella flexneri in Food Samples. Foods 2024, 13, 3200. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Xu, L.; Guo, X.; Yang, H.; Zhuang, L.; Li, Y.; Wang, Z.; Gu, B. Rapid and sensitive detection of Shigella flexneri using fluorescent microspheres as label for immunochromatographic test strip. Ann. Transl. Med. 2019, 7, 565. [Google Scholar] [CrossRef]
- Farfán, M.J.; Garay, T.A.; Prado, C.A.; Filliol, I.; Ulloa, M.T.; Toro, C.S. A new multiplex PCR for differential identification of Shigella flexneri and Shigella sonnei and detection of Shigella virulence determinants. Epidemiol. Infect. 2010, 138, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Luo, W.; Zhang, J.; Wang, S.; Lin, S. Rapid Detection of Shigella Species in Environmental Sewage by an Immunocapture PCR with Universal Primers. Appl. Environ. Microbiol. 2002, 68, 2580–2583. [Google Scholar] [CrossRef]
- Rahman, S.R.; Stimson, W.H. Characterization of Monoclonal Antibodies with Specificity for the Core Oligosaccharide of Shigella Lipopolysaccharide. Hybridoma 2001, 20, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Yahaya, M.L.; Zakaria, N.D.; Noordin, R.; Abdul Razak, K. Development of rapid gold nanoparticles based lateral flow assays for simultaneous detection of Shigella and Salmonella genera. Biotechnol. Appl. Biochem. 2021, 68, 1095–1106. [Google Scholar] [CrossRef]
- Asad, A.; Jahan, I.; Munni, M.A.; Begum, R.; Mukta, M.A.; Saif, K.; Faruque, S.N.; Hayat, S.; Islam, Z. Increasing trend of antibiotic resistance in Shigella in Bangladesh: A plasmid-mediated transfer of mphA macrolide resistance gene. Res. Sq. 2023, 29, rs.3. [Google Scholar] [CrossRef]
- Salah, M.; Shtayeh, I.; Ghneim, R.; Al-Qass, R.; Sabateen, A.; Marzouqa, H.; Hindiyeh, M. Evaluation of Shigella Species Azithromycin CLSI Epidemiological Cutoff Values and Macrolide Resistance Genes. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef]
- Sati, H.F.; Bruinsma, N.; Galas, M.; Hsieh, J.; Sanhueza, A.; Ramon Pardo, P.; Espinal, M.A. Characterizing Shigella species distribution and antimicrobial susceptibility to ciprofloxacin and nalidixic acid in Latin America between 2000–2015. PLoS ONE 2019, 14, e0220445. [Google Scholar] [CrossRef]
- Lu, T.; Zhang, C.; Chen, Y.; Guo, Y. Outbreak of Infections Caused by Shigella flexneri 2a with ESBL-Producing and Quinolone-Resistance in a Mental Healthcare Center in China. Res. Sq. 2019, preprint. [Google Scholar] [CrossRef]
- Shen, H.; Chen, J.; Xu, Y.; Lai, Z.; Zhang, J.; Yang, H.; Li, Y.; Jiang, M.; Ye, Y.; Bai, X. An outbreak of shigellosis in a Children Welfare Institute caused by a multiple-antibiotic-resistant strain of Shigella flexneri 2a. J. Infect. Public. Health 2017, 10, 814–818. [Google Scholar] [CrossRef]
- O’Brien, S. Shigella flexneri outbreak in south east England. Wkly. Releases (1997–2007) 1998, 2, 1169. [Google Scholar] [CrossRef]
- KO, C.F.; Wang, L.Y.; Lin, N.T.; Chiou, C.S.; Yeh, H.C.; Renn, J.H.; Lee, Y.S. Transmission and strain variation of Shigella flexneri 4a after mass prophylaxis in a long-stay psychiatric centre. Epidemiol. Infect. 2013, 141, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Legese, H.; Kahsay, T.; Gebrewahd, A.; Berhe, B.; Fseha, B.; Tadesse, S.; Gebremariam, G.; Negash, H.; Mardu, F.; Tesfay, K.; et al. Prevalence, antimicrobial susceptibility pattern, and associated factors of Salmonella and Shigella among food handlers in Adigrat University student’s cafeteria, northern Ethiopia, 2018. Trop. Dis. Travel. Med. Vaccines 2020, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Jin, S.; Park, G.; Lee, H.Y.; Lee, H.; Shin, E.; Kim, J.; Yoo, J.; Kim, Y. Epidemiological analysis and prevention strategies in response to a shigellosis cluster outbreak: A retrospective case series in an alternative school in the Republic of Korea, 2023. Osong Public. Health Res. Perspect. 2024, 15, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Blacksell, S.D.; Dhawan, S.; Kusumoto, M.; Le, K.K.; Summermatter, K.; O’Keefe, J.; Kozlovac, J.; Almuhairi, S.S.; Sendow, I.; Scheel, C.M.; et al. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory—Shigella spp. Appl. Biosaf. 2023, 28, 96–101. [Google Scholar] [CrossRef]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, W.; Cao, M.; Zhu, Q.; Ma, T.; Zhang, Y.; Liu, G.; Zhou, X.; Li, B.; Shi, Y.; et al. Virulence factors and molecular characteristics of Shigella flexneri isolated from calves with diarrhea. BMC Microbiol. 2021, 21, 214. [Google Scholar] [CrossRef]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am. J. Infect. Control. 2007, 35, S65–S164. [Google Scholar] [CrossRef]
- McCall, B.; Stafford, R.; Cherian, S.; Heel, K.; Smith, H.; Corones, N.; Gilmore, S. An outbreak of multi-resistant Shigella sonnei in a long-stay geriatric nursing centre. Commun. Dis. Intell. 2000, 24, 272–275. [Google Scholar]
- Mohle-Boetani, J.C.; Stapleton, M.; Finger, R.; Bean, N.H.; Poundstone, J.; Blake, P.A.; Griffin, P.M. Communitywide shigellosis: Control of an outbreak and risk factors in child day-care centers. Am. J. Public. Health 1995, 85, 812–816. [Google Scholar] [CrossRef]
- Benny, E.; Mesere, K.; Pavlin, B.I.; Yakam, L.; Ford, R.; Yoannes, M.; Kisa, D.; Abdad, M.Y.; Menda, L.; Greenhill, A.R.; et al. A large outbreak of shigellosis commencing in an internally displaced population, Papua New Guinea, 2013. Western Pac. Surveill. Response J. 2014, 5, 18–21. [Google Scholar] [CrossRef]
- Morduchowicz, G. Shigella bacteremia in adults. A report of five cases and review of the literature. Arch. Intern. Med. 1987, 147, 2034–2037. [Google Scholar] [CrossRef] [PubMed]
- Rotramel, H.E.; Zamir, H.S. Shigella Bacteremia in an Immunocompetent Patient. Cureus 2021, 13, e19778. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, B.; Brück, W.M.; Brück, T.B. Molecular Mechanisms of Shigella Pathogenesis; Recent Advances. Int. J. Mol. Sci. 2023, 24, 2448. [Google Scholar] [CrossRef] [PubMed]
- Phiri, A.F.N.D.; Abia, A.L.K.; Amoako, D.G.; Mkakosya, R.; Sundsfjord, A.; Essack, S.Y.; Simonsen, G.S. Burden, Antibiotic Resistance, and Clonality of Shigella spp. Implicated in Community-Acquired Acute Diarrhoea in Lilongwe, Malawi. Trop. Med. Infect. Dis. 2021, 6, 63. [Google Scholar] [CrossRef]
- Zhi, S.; Parsons, B.D.; Szelewicki, J.; Yuen, Y.T.K.; Fach, P.; Delannoy, S.; Li, V.; Ferrato, C.; Freedman, S.B.; Lee, B.E.; et al. Identification of Shiga-Toxin-Producing Shigella Infections in Travel and Non-Travel Related Cases in Alberta, Canada. Toxins 2021, 13, 755. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, S.; Thaker, H.; Dong, M. Shiga Toxins: An Update on Host Factors and Biomedical Applications. Toxins 2021, 13, 222. [Google Scholar] [CrossRef]
- Stażyk, K.; Krycińska, R.; Jacek, C.; Garlicki, A.; Biesiada, G. Diarrhea caused by Shigella flexneri in patients with primary HIV infection. Int. J. Std. Aids 2019, 30, 814–816. [Google Scholar] [CrossRef]
- Aslam, A. Shigellosis, StatPearls [Internet]. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482337/ (accessed on 5 March 2025).
- Brocklebank, V.; Wong, E.K.S.; Fielding, R.; Goodship, T.H.J.; Kavanagh, D. Atypical haemolytic uraemic syndrome associated with a CD46 mutation triggered by Shigella flexneri. Clin. Kidney J. 2014, 7, 286–288. [Google Scholar] [CrossRef]
- Haston, J.C.; Esschert, K.V.; Ford, L.; Plumb, L.D.; Logan, N.Z.; Watkins, L.F.; Garcia-Williams, A. 1194. Assessing Healthcare Professionals’ Knowledge of Shigella Transmission, Risk Factors, and Prevention—DocStyles Survey, 2020. Open Forum Infect. Dis. 2021, 8, S688. [Google Scholar] [CrossRef]
- Public Health Considerations for Shigellosis Among People Experiencing Homelessness (March 2024) Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/shigella/php/public-health-strategy/index.html (accessed on 5 March 2025).
- About Shigella Infection (January 2024) Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/shigella/about/index.html (accessed on 5 March 2025).
- Bloomfield, S.F.; Aiello, A.E.; Cookson, B.; O’Boyle, C.; Larson, E.L. The effectiveness of hand hygiene procedures in reducing the risks of infections in home and community settings including handwashing and alcohol-based hand sanitizers. Am. J. Infect. Control 2007, 35, S27–S64. [Google Scholar] [CrossRef]
- Shigellosis|CDC Yellow Book 2024. (n.d.). CDC.gov. Available online: https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/shigellosis#prevent (accessed on 3 April 2025).
- Mattison, C.P.; Calderwood, L.E.; Marsh, Z.A.; Wikswo, M.E.; Balachandran, N.; Kambhampati, A.K.; Gleason, M.E.; Lawinger, H.; Mirza, S.A. Childcare and School Acute Gastroenteritis Outbreaks: 2009–2020. Pediatrics 2022, 150, e2021056002. [Google Scholar] [CrossRef] [PubMed]
- Shigella Prevention and Control Toolkit—March 2021. Available online: https://www.cdc.gov/shigella/pdf/Shigella-prevention-and-control-toolkit-508.pdf (accessed on 5 March 2025).
- Preventing Shigella Infection (February 2024) Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/shigella/prevention/index.html (accessed on 5 March 2025).
- Infection Prevention & Control in Medical Rehabilitation and Long-Term Care Services. Saudi Ministry of Health. July 2024. Available online: https://www.moh.gov.sa/Ministry/Rules/Documents/IC-Medical-Rehabilitation-Long-Term-Care-Services.pdf (accessed on 5 March 2025).
- Pichel, M.; Brengi, S.P.; Cooper, K.L.; Ribot, E.M.; Al-Busaidy, S.; Araya, P.; Fernández, J.; Vaz, T.I.; Kam, K.M.; Morcos, M.; et al. Standardization and International Multicenter Validation of a PulseNet Pulsed-Field Gel Electrophoresis Protocol for Subtyping Shigella flexneri Isolates. Foodborne Pathog. Dis. 2012, 9, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Ribot, E.M.; Fair, M.A.; Gautom, R.; Cameron, D.N.; Hunter, S.B.; Swaminathan, B.; Barrett, T.J. Standardization of Pulsed-Field Gel Electrophoresis Protocols for the Subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog. Dis. 2006, 3, 59–67. [Google Scholar] [CrossRef] [PubMed]
- De Lappe, N.; Cormican, M. Case Study of the Use of Pulsed Field Gel Electrophoresis in the Detection of a Food-Borne Outbreak. Pulse Field Gel Electrophor. Methods Protoc. 2015, 35–40. [Google Scholar] [CrossRef]
- Naimi, T.S.; Wicklund, J.H.; Olsen, S.J.; Krause, G.; Wells, J.G.; Bartkus, J.M.; Boxrud, D.J.; Sullivan, M.; Kassenborg, H.; Besser, J.M.; et al. Concurrent Outbreaks of Shigella sonnei and Enterotoxigenic Escherichia coli Infections Associated with Parsley: Implications for Surveillance and Control of Foodborne Illness. J. Food Prot. 2003, 66, 535–541. [Google Scholar] [CrossRef]
- Michaud, S.; Arbeit, R.D.; Gaudreau, C. Molecular strain typing of Campylobacter jejuni by pulsed-field gel electrophoresis in a single day. Can. J. Microbiol. 2001, 47, 667–669. [Google Scholar] [CrossRef]
- Lawson, B.; Hughes, L.A.; Peters, T.; de Pinna, E.; John, S.K.; Macgregor, S.K.; Cunningham, A.A. Pulsed-Field Gel Electrophoresis Supports the Presence of Host-Adapted Salmonella enterica subsp. enterica Serovar Typhimurium Strains in the British Garden Bird Population. Appl. Environ. Microbiol. 2011, 77, 8139–8144. [Google Scholar] [CrossRef]
- Tang, S.; Orsi, R.H.; Luo, H.; Ge, C.; Zhang, G.; Baker, R.C.; Stevenson, A.; Wiedmann, M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front. Microbiol. 2019, 10, 1591. [Google Scholar] [CrossRef]
- Ferrari, R.G.; Panzenhagen, P.H.N.; Conte-Junior, C.A. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front. Microbiol. 2017, 8, 2587. [Google Scholar] [CrossRef]
- Chadi, Z.D.; Arcangioli, M.-A. Pulsed-Field Gel Electrophoresis Analysis of Bovine Associated Staphylococcus aureus: A Review. Pathogens 2023, 12, 966. [Google Scholar] [CrossRef]
- Tseng, M.; Fratamico, P.M.; Bagi, L.; Delannoy, S.; Fach, P.; Manning, S.D.; Funk, J.A. Diverse Virulence Gene Content of Shiga Toxin-Producing Escherichia coli from Finishing Swine. Appl. Environ. Microbiol. 2014, 80, 6395–6402. [Google Scholar] [CrossRef]
Case No. | Age | Sex | Comorbidities | Type of Shigella flexneri Infection | Treatment | Outcome |
---|---|---|---|---|---|---|
1 | 52 | Male | Cerebral palsy, ataxia, epilepsy, right eye strabismus, aphasia | Gastroenteritis | IV meropenem for 7 days | Recovered |
2 | 40 | Male | Spastic encephalopathy, spastic diplegia, epilepsy, severe cognitive impairment, poor eyesight, aphasia, chronic kidney disease | Gastroenteritis | IV meropenem for 5 days, de-escalated to IV ceftriaxone (total 10-day course), followed by oral ciprofloxacin for 4 days | Recovered |
3 | 46 | Male | Cerebral palsy, intellectual disability, aphasia, diplegia, type 2 diabetes mellitus, dyslipidemia | Gastroenteritis | IV meropenem for 7 days | Recovered |
4 | 38 | Male | Cerebral palsy, intellectual disability, dysarthria, hyperactivity | Bacteremia | IV ceftriaxone for 3 days followed by oral ciprofloxacin for 7 days | Recovered |
Lab Findings | Case 1 | Case 2 | Case 3 | Case 4 |
---|---|---|---|---|
CBC | ||||
WBC | Leukocytosis (19,000//μL) | Leukocytosis (16,000//μL) | Leukocytosis (20,000//μL) | Leukocytosis (20,000//μL) |
Hemoglobin | Normal (180 g/L) | Low (128 g/L) | Normal (134 g/L) | Normal (163 g/L) |
Platelets | Normal (240 × 10⁹/L) | Normal (158 × 10⁹/L) | Normal (237 × 10⁹/L) | Normal (373 × 10⁹/L) |
Differential | Predominantly neutrophils | Predominantly neutrophils | Predominantly neutrophils | Predominantly neutrophils |
Inflammatory Markers | ||||
ESR | Elevated (27 mm/h) | Elevated (51 mm/h) | Elevated (23 mm/h) | Elevated (47 mm/h) |
CRP | Elevated (325.320 mg/L) | Elevated (360.330 mg/L) | Elevated (187 mg/L) | Elevated (442.70 mg/L) |
Procalcitonin | Not performed | Elevated (4.92 ng/mL) | Elevated (3.44 ng/mL) | Elevated (31.10 ng/mL) |
Renal Function Tests | ||||
BUN | Normal (6.2 mmol/L) | Elevated (28.7 mmol/L) | Elevated (9.6 mmol/L) | Normal (3.3 mmol/L) |
Creatinine | Elevated (127 μmol/L) | Elevated (750 μmol/L) | Normal (89 μmol/L) | Normal (66 μmol/L) |
Electrolytes | ||||
Potassium | Decreased (3.24 mmol/L) | Normal (4.27 mmol/L) | Decreased (3.44 mmol/L) | Decreased (2.85 mmol/L) |
Calcium | Decreased (1.68 mmol/L) | Decreased (1.78 mmol/L) | Decreased (1.95 mmol/L) | Decreased (1.8 mmol/L) |
Phosphorus | Decreased (0.34 mmol/L) | Elevated (1.48 mmol/L) | Decreased (0.53 mmol/L) | Decreased (0.68 mmol/L) |
Sodium | Normal (138 mmol/L) | Decreased (128 mmol/L) | Normal (136 mmol/L) | Normal (137mmol/L) |
Lactic acid | Elevated (4.32 mmol/L) | Elevated (2.5 mmol/L) | Elevated (8.8 mmol/L) | Elevated (5 mmol/L) |
ABG/VBG | Mild metabolic acidosis | Metabolic acidosis | High anion gap metabolic acidosis | Respiratory alkalosis |
pH | Decreased (7.234) | Decreased (7.266) | Decreased (7.240) | Elevated (7.405) |
pCO2 | Normal (44 mmHg) | Decreased (30 mmHg) | Elevated (47 mmHg) | Normal (37 mmHg) |
HCO3⁻ | Decreased (17.1 mmol/L) | Decreased (12.6 mmol/L) | Decreased (16.9 mmol/L) | Normal (22.3 mmol/L) |
Liver Function Tests | Normal | Normal | Normal | Normal |
Virulence Gene | Function | Effect on Pathogenicity |
---|---|---|
ipaH | Encodes an effector protein secreted via the type III secretion system (T3SS) | Facilitates immune evasion and intracellular survival |
ipaBCD | Encodes invasion plasmid antigens required for epithelial cell invasion | Essential for bacterial entry into host cells |
virA | Disrupts host microtubules to promote bacterial spread between cells | Enhances intracellular motility and spread |
ial | Involved in epithelial cell invasion | Promotes adhesion and penetration into host intestinal cells |
sen | Encodes enterotoxin (ShET-2) that induces fluid secretion | Causes watery diarrhea by increasing intestinal secretion |
Set1A, and Set1B | Encode Shigella enterotoxin 1 | Increases enterotoxin-mediated diarrhea |
stx | Encodes Shiga toxin (Stx), which inhibits protein synthesis in host cells | Causes endothelial cell damage, particularly in the kidneys, leading to hemolytic uremic syndrome (HUS) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binkhamis, K.; Alangari, S.; Juma, F.; Althawadi, S.; Al-Qahtani, A.A.; Bohol, M.F.F.; Alshahrani, F.S.; Alotaibi, F. Shigella flexneri Outbreak at a Rehabilitation Center: First Report from Saudi Arabia. Healthcare 2025, 13, 971. https://doi.org/10.3390/healthcare13090971
Binkhamis K, Alangari S, Juma F, Althawadi S, Al-Qahtani AA, Bohol MFF, Alshahrani FS, Alotaibi F. Shigella flexneri Outbreak at a Rehabilitation Center: First Report from Saudi Arabia. Healthcare. 2025; 13(9):971. https://doi.org/10.3390/healthcare13090971
Chicago/Turabian StyleBinkhamis, Khalifa, Sarah Alangari, Fatema Juma, Sahar Althawadi, Ahmed A. Al-Qahtani, Marie Fe F. Bohol, Fatimah S. Alshahrani, and Fawzia Alotaibi. 2025. "Shigella flexneri Outbreak at a Rehabilitation Center: First Report from Saudi Arabia" Healthcare 13, no. 9: 971. https://doi.org/10.3390/healthcare13090971
APA StyleBinkhamis, K., Alangari, S., Juma, F., Althawadi, S., Al-Qahtani, A. A., Bohol, M. F. F., Alshahrani, F. S., & Alotaibi, F. (2025). Shigella flexneri Outbreak at a Rehabilitation Center: First Report from Saudi Arabia. Healthcare, 13(9), 971. https://doi.org/10.3390/healthcare13090971