Assessing Medical Students’ Perceptions of AI-Integrated Telemedicine: A Cross-Sectional Study in Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Instruments and Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Analysis of Findings
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kruse, C.S.; Karem, P.; Shifflett, K.; Vegi, L.; Ravi, K.; Brooks, M. Evaluating Barriers to Adopting Telemedicine Worldwide: A Systematic Review. J. Telemed. Telecare 2018, 24, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Wootton, R. Twenty Years of Telemedicine in Chronic Disease Management—an Evidence Synthesis. J. Telemed. Telecare 2012, 18, 211–220. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Topol, E.J. State of Telehealth. N. Engl. J. Med. 2016, 375, 154–161. [Google Scholar] [CrossRef]
- Totten, A.M.; Womack, D.M.; Eden, K.B.; McDonagh, M.S.; Griffin, J.C.; Grusing, S.; Hersh, W.R. Telehealth: Mapping the Evidence for Patient Outcomes from Systematic Reviews; AHRQ Comparative Effectiveness Review; Technical Brief No. 26; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2016; pp. 1–220. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Keane, P.A.; Topol, E.J. With an Eye to AI and Autonomous Diagnosis. NPJ Digit. Med. 2018, 1, 40. [Google Scholar] [CrossRef]
- Krittanawong, C.; Johnson, K.W.; Rosenson, R.S.; DeFer, T.M.; Flores, E.J.; Kaplan, B.; Narasimhan, B.; Wang, Z.; Hanson, P.; Integrating AI into Cardiovascular Practice Working Group. Deep Learning for Cardiovascular Medicine: A Practical Primer. Eur. Heart J. 2019, 40, 2058–2073. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef]
- Smith, A.C.; Thomas, E.; Snoswell, C.L.; Haydon, H.; Mehrotra, A.; Clemensen, J.; Caffery, L.J. Telehealth for Global Emergencies: Implications for Coronavirus Disease 2019 (COVID-19). J. Telemed. Telecare 2020, 26, 309–313. [Google Scholar] [CrossRef]
- Ohannessian, R.; Duong, T.A.; Odone, A. Global Telemedicine Implementation and Integration within Health Systems to Fight the COVID-19 Pandemic: A Call to Action. JMIR Public Health Surveill. 2020, 6, e18810. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jang, S.H.; Kim, S.; Lee, S.-H.; Chae, D.; Park, S. Medical Students’ Perspectives on the Integration of Telemedicine Into Medical Education: A Cross-Sectional Study. BMC Med. Educ. 2021, 21, 531. [Google Scholar]
- Gadzinski, A.J.; Andino, J.; Odisho, A.Y.; Watts, K.L.; Gore, J.L.; Ellimoottil, C. Telemedicine and eConsults for Hospitalized Patients During COVID-19. Urology 2020, 141, 12–14. [Google Scholar] [CrossRef]
- Car, J.; Koh, G.C.; Foong, P.S.; Wang, C.J. Video Consultations in Primary and Specialist Care During the COVID-19 Pandemic and Beyond. BMJ 2020, 371, m3945. [Google Scholar] [CrossRef]
- Monaghesh, E.; Hajizadeh, A. The Role of Telehealth During COVID-19 Outbreak: A Systematic Review Based on Current Evidence. BMC Public Health 2020, 20, 1193. [Google Scholar] [CrossRef] [PubMed]
- Gajarawala, S.N.; Pelkowski, J.N. Telehealth Benefits and Barriers. J. Nurse Pract. 2021, 17, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Keesara, S.; Jonas, A.; Schulman, K. COVID-19 and Health Care’s Digital Revolution. N. Engl. J. Med. 2020, 382, e82. [Google Scholar] [CrossRef]
- Ryu, S. Telemedicine: Opportunities and Developments in Member States: Report on the Second Global Survey on eHealth. Healthc. Inform. Res. 2012, 18, 153–155. [Google Scholar] [CrossRef]
- Kakoria, A.; Florea, M. Telemedicine Adoption During the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Telemed. J. e-Health 2021, 27, 1373–1384. [Google Scholar]
- Li, Q.; Qin, Y. AI in Medical Education: Medical Student Perception, Curriculum Recommendations and Design Suggestions. BMC Med. Educ. 2023, 23, 852. [Google Scholar] [CrossRef]
- Egici, M.T.; Sever, S.O.; Bektemur, G.; Ozturk, G.Z.; Bagcı, H.; Bukhari, M.H. What Do Medical Faculty Students Think About Telehealth? Pak. J. Med. Sci. 2024, 40, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, K.; Muellers, K.A.; Lin, J.J.; Mkuu, R.; Horowitz, C.R.; Kaushal, R.; Ancker, J.S. Navigating Privacy and Security in Telemedicine for Primary Care. Am. J. Manag. Care 2024, 30, SP459–SP463. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.S.; Azarfar, A.; Ashour, A.; Atkins, C.; Bhanusali, N. Awareness and Attitudes Towards Telemedicine Among Medical Students in the United States. Cureus 2020, 12, e11574. [Google Scholar] [CrossRef]
- Cheng, C.; Humphreys, H.; Kane, B. Transition to Telehealth: Engaging Medical Students in Telemedicine Healthcare Delivery. Ir. J. Med. Sci. 2022, 191, 2405–2422. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.M.; Dua, A.; Chang, K.; Jupalli, H.; Rizwan, F.; Chouthai, A.; Chen, C. An Outpatient Telehealth Elective for Displaced Clinical Learners During the COVID-19 Pandemic. BMC Med. Educ. 2021, 21, 174. [Google Scholar] [CrossRef]
- Franklin, G.; Martin, C.; Ruszaj, M.; Matin, M.; Kataria, A.; Hu, J.; Brickman, A.; Elkin, P.L. How the COVID-19 Pandemic Impacted Medical Education During the Last Year of Medical School: A Class Survey. Life 2021, 11, 294. [Google Scholar] [CrossRef]
- Abraham, H.N.; Opara, I.N.; Dwaihy, R.L.; Acuff, C.; Brauer, B.; Nabaty, R.; Levine, D.L. Engaging Third-Year Medical Students on Their Internal Medicine Clerkship in Telehealth During COVID-19. Cureus 2020, 12, e8791. [Google Scholar] [CrossRef]
- Leep Hunderfund, A.N.; Dyrbye, L.N.; Starr, S.R.; Mandrekar, J.; Tilburt, J.C.; George, P.; Baxley, E.G.; Gonzalo, J.D.; Moriates, C.; Goold, S.D.; et al. Attitudes Toward Cost-Conscious Care Among U.S. Physicians and Medical Students: Analysis of National Cross-Sectional Survey Data by Age and Stage of Training. BMC Med. Educ. 2018, 18, 275. [Google Scholar] [CrossRef]
- Robleto, E.; Habashi, A.; Kaplan, M.B.; Riley, R.L.; Zhang, C.; Bianchi, L.; Shehadeh, L.A. Medical Students’ Perceptions of an Artificial Intelligence (AI) Assisted Diagnosing Program. Med. Teach. 2024, 46, 1180–1186. [Google Scholar] [CrossRef]
- Jackson, P.; Ponath Sukumaran, G.; Babu, C.; Tony, M.C.; Jack, D.S.; Reshma, V.R.; Davis, D.; Kurian, N.; John, A. Artificial Intelligence in Medical Education—Perception Among Medical Students. BMC Med. Educ. 2024, 24, 804. [Google Scholar] [CrossRef]
- Weidener, L.; Fischer, M. Proposing a Principle-Based Approach for Teaching AI Ethics in Medical Education. JMIR Med. Educ. 2024, 10, e55368. [Google Scholar] [CrossRef] [PubMed]
- Weidener, L.; Fischer, M. Teaching AI Ethics in Medical Education: A Scoping Review of Current Literature and Practices. Perspect. Med. Educ. 2023, 12, 399–410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schubert, T.; Oosterlinck, T.; Stevens, R.D.; Maxwell, P.H.; van der Schaar, M. AI Education for Clinicians. eClinicalMedicine. 2024, 79, 102968. [Google Scholar] [CrossRef]
- Luong, J.; Tzang, C.C.; McWatt, S.; Brassett, C.; Stearns, D.; Sagoo, M.G.; Kunzel, C.; Sakurai, T.; Chien, C.L.; Noel, G.; et al. Exploring Artificial Intelligence Readiness in Medical Students: Analysis of a Global Survey. Med. Sci. Educ. 2024, 35, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Sahan, F.; Guthardt, L.; Panitz, K.; Siegel-Kianer, A.; Eichhof, I.; Schmitt, B.D.; Apolinario-Hagen, J. Enhancing Digital Health Awareness and mHealth Competencies in Medical Education: Proof-of-Concept Study and Summative Process Evaluation of a Quality Improvement Project. JMIR Med. Educ. 2024, 10, e59454. [Google Scholar] [CrossRef] [PubMed]
- Joseph, N.E.; Srulevich, M.E.; Finkelstein, L.N.; Roberts, M.B.; Carango, P.J.; Wolf, B.L.; Galluzzi, K.E. Utilization of Telemedicine to Supervise Medical Students in the Post-Acute/Long-Term Care Setting. J. Am. Med. Dir. Assoc. 2024, 25, 105179. [Google Scholar] [CrossRef]
- European Commission. Digital Economy and Society Index (DESI) 2024—Country Report: Romania; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Bîlbîie, A.; Puiu, A.I.; Mihăilă, V.; Burcea, M. Investigating Physicians’ Adoption of Telemedicine in Romania Using Technology Acceptance Model (TAM). Healthcare 2024, 12, 1531. [Google Scholar] [CrossRef]
- World Health Organization Regional Office for Europe. Romania: Digital Health Country Profile 2022; WHO/EURO: Copenhagen, Denmark, 2022. [Google Scholar]
Demographic Subgroup | n | Telemedicine Use n (%) | High AI Familiarity n (%) | Risk of Data Breaches Mean ± SD | Patient Confidentiality Mean ± SD | Liability for AI Errors Mean ± SD |
---|---|---|---|---|---|---|
Gender | ||||||
Female | 92 | 40 (43.5) | 38 (41.3) | 4.18 ± 0.65 | 4.05 ± 0.70 | 3.82 ± 0.80 |
Male | 68 | 29 (42.6) | 27 (39.7) | 4.10 ± 0.68 | 3.97 ± 0.72 | 3.74 ± 0.83 |
Other/No answer | 1 | 1 (100.0) | 1 (100.0) | 4.00 ± 0.58 | 4.00 ± 0.66 | 3.50 ± 0.56 |
p-value (Gender) | 0.517 | 0.475 | 0.588 | 0.461 | 0.506 | |
Age (years) | ||||||
18–20 | 41 | 15 (36.6) | 10 (24.4) | 4.12 ± 0.64 | 3.98 ± 0.69 | 3.70 ± 0.79 |
21–23 | 66 | 29 (43.9) | 30 (45.5) | 4.16 ± 0.66 | 4.04 ± 0.71 | 3.80 ± 0.81 |
24–26 | 40 | 18 (45.0) | 19 (47.5) | 4.17 ± 0.67 | 4.05 ± 0.73 | 3.85 ± 0.80 |
>26 | 14 | 8 (57.1) | 7 (50.0) | 4.20 ± 0.63 | 4.10 ± 0.68 | 3.90 ± 0.78 |
p-value (Age) | 0.593 | 0.094 | 0.605 | 0.673 | 0.576 | |
Academic year | ||||||
Years 1–2 | 57 | 22 (38.6) | 20 (35.1) | 4.10 ± 0.66 | 3.95 ± 0.72 | 3.76 ± 0.82 |
Years 3–4 | 49 | 22 (44.9) | 18 (36.7) | 4.13 ± 0.65 | 4.00 ± 0.70 | 3.78 ± 0.81 |
Years 5–6 | 55 | 26 (47.3) | 28 (50.9) | 4.22 ± 0.66 | 4.10 ± 0.70 | 3.83 ± 0.80 |
p-value (Year) | 0.633 | 0.180 | 0.308 | 0.062 | 0.047 |
Concern Statement | Mean Score (SD) | % Agree (≥4 on 5-pt Scale) | p-Value (ANOVA Across Years) |
---|---|---|---|
Risk of data breaches | 4.15 (0.66) | 71.40% | 0.029 |
Patient confidentiality | 4.02 (0.71) | 64.00% | 0.062 |
Liability for AI-driven errors | 3.78 (0.82) | 52.80% | 0.047 |
Statement | Years 1–2 (Mean ± SD) | Years 3–4 (Mean ± SD) | Years 5–6 (Mean ± SD) | p-Value (ANOVA) |
---|---|---|---|---|
AI can enhance remote diagnosis | 3.72 ± 0.74 | 3.87 ± 0.69 | 4.05 ± 0.66 | 0.027 |
AI reduces clinician workload (e.g., e-notes) | 3.41 ± 0.80 | 3.65 ± 0.72 | 3.73 ± 0.81 | 0.112 |
AI algorithms are trustworthy for treatment | 3.26 ± 0.95 | 3.51 ± 0.77 | 3.62 ± 0.88 | 0.045 |
AI integration improves patient follow-up | 3.55 ± 0.83 | 3.78 ± 0.70 | 4.01 ± 0.72 | 0.013 |
Subgroup | n | Mean Score | SD | 95% CI | p-Value (2-Way ANOVA) |
---|---|---|---|---|---|
Female, Years 1–2 | 32 | 3.38 | 0.77 | 3.18–3.58 | |
Female, Years 3–4 | 29 | 3.58 | 0.83 | 3.34–3.82 | |
Female, Years 5–6 | 31 | 3.9 | 0.7 | 3.67–4.13 | |
Male, Years 1–2 | 25 | 3.16 | 0.62 | 2.98–3.34 | |
Male, Years 3–4 | 20 | 3.45 | 0.66 | 3.22–3.68 | |
Male, Years 5–6 | 24 | 3.72 | 0.79 | 3.48–3.96 | |
Other/No Answer | 1 | 3.2 | – | – | |
Overall p-value | – | – | – | – | 0.039 |
Variable | 1. Telemedicine Acceptance | 2. AI Familiarity | 3. Privacy Concern | 4. Perceived Benefit |
---|---|---|---|---|
1. Telemedicine Acceptance | — | 0.44 ** | −0.25 * | 0.38 ** |
2. AI Familiarity | 0.44 ** | — | −0.22 * | 0.42 ** |
3. Privacy Concern | −0.25 * | −0.22 * | — | −0.16 |
4. Perceived Benefit | 0.38 ** | 0.42 ** | −0.16 | — |
Predictor | Beta (β) | SE (β) | t-Value | p-Value |
---|---|---|---|---|
Academic Year (1–2 vs. 5–6) | 0.27 | 0.1 | 2.7 | 0.008 |
AI Familiarity (Likert 1–5) | 0.32 | 0.09 | 3.45 | 0.001 |
Privacy Concern (Likert 1–5) | −0.20 | 0.08 | −2.46 | 0.015 |
Gender (Male = 0, Female = 1) | 0.12 | 0.07 | 1.71 | 0.089 |
Model R2 | 0.29 | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onetiu, F.; Bratu, M.L.; Folescu, R.; Bratosin, F.; Bratu, T. Assessing Medical Students’ Perceptions of AI-Integrated Telemedicine: A Cross-Sectional Study in Romania. Healthcare 2025, 13, 990. https://doi.org/10.3390/healthcare13090990
Onetiu F, Bratu ML, Folescu R, Bratosin F, Bratu T. Assessing Medical Students’ Perceptions of AI-Integrated Telemedicine: A Cross-Sectional Study in Romania. Healthcare. 2025; 13(9):990. https://doi.org/10.3390/healthcare13090990
Chicago/Turabian StyleOnetiu, Florina, Melania Lavinia Bratu, Roxana Folescu, Felix Bratosin, and Tiberiu Bratu. 2025. "Assessing Medical Students’ Perceptions of AI-Integrated Telemedicine: A Cross-Sectional Study in Romania" Healthcare 13, no. 9: 990. https://doi.org/10.3390/healthcare13090990
APA StyleOnetiu, F., Bratu, M. L., Folescu, R., Bratosin, F., & Bratu, T. (2025). Assessing Medical Students’ Perceptions of AI-Integrated Telemedicine: A Cross-Sectional Study in Romania. Healthcare, 13(9), 990. https://doi.org/10.3390/healthcare13090990