Strategies for Pain Management in Hepatocellular Carcinoma Patients Undergoing Transarterial Chemoembolisation: A Scoping Review of Current Evidence
Abstract
:1. Introduction
- Systematically map the range of pain management strategies reported in the literature for HCC patients undergoing TACE;
- Evaluate the reported effectiveness of these strategies in pain management;
- Identify the commonly used questionnaires or tools in evaluating pain for HCC patients undergoing TACE.
2. Materials and Methods
2.1. Identifying the Research Question
2.2. Identifying the Relevant Studies
2.3. Study Selection
2.4. Charting Data
2.5. Collating, Summarising, and Reporting Results
3. Results
3.1. Characteristics of Studies
3.2. Pain Assessment Tools
Scale | Score Range | Authors |
---|---|---|
CTCAEV5.0 (n = 3 studies) | Grade 1–5 | Nitipon et al., 2023 [32]; Lu et al., 2021 [33]; Xu et al., 2019 [34] |
SWOG toxicity coding (n = 2 studies) | 0–4 per symptom | Nitipon et al., 2023 [32]; Panot et al., 2021 [35] |
Self-developed scale (n = 1 study) | Wassana et al., 2022 [36] | |
VAS (n = 10 studies) | 0–10 | Lu et al., 2023 [14]; Sang et al., 2001 [35]; Zeng et al., 2014 [16]; Guo et al., 2018 [17]; Wang et al., 2021 [18]; Yang et al., 2017 [19]; Mohammad et al., 2014 [20]; Zhou et al., 2016 [21]; Quentin et al., 2023 [22]; Yu et al., 2020 [23] |
NRS (n = 9 studies) | 0–10 | Kenji et al., 2019 [24]; Zhou et al., 2012 [25]; Wang et al., 2018 [26]; Ning et al., 2016 [27]; Ning et al., 2022 [10]; Gao et al., 2024 [28]; Wang et al., 2008 [29]; Lin et al., 2022 [30]; Chang et al., 2020 [31] |
MDASI-GI (n = 1 study) | 0–10 | Xu et al., 2016 [37] |
3.3. Pharmacological Interventions
3.4. Psychological Interventions
3.5. Physical Interventions
3.6. Others (Music Therapy, Health Education, and Comprehensive Nursing)
4. Discussion
4.1. Pain Assessment Tools
4.2. Pharmacological Interventions
4.3. Non-Pharmacological Interventions
4.4. Implications for Clinical Practice
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIHAHL | Cumulative Index of Nursing and Allied Health |
CTCAEV | Common terminology criteria for adverse events |
HCC | Hepatocellular carcinoma |
JPLQ | Jian pi li qi |
MDASI-GI | MD Anderson Symptom Inventory–Gastrointestinal module |
MOR | Oral morphine sulphate |
NRS | Numeric rating scale |
NSAIDs | Non-steroidal anti-inflammatory drugs |
PCA | Patient-controlled analgesia |
PRISMA-ScR | Preferred Reporting Items for Systematic Reviews and Meta-analyses |
RAP | Reinforced analgesic protocol |
RCTs | Randomised controlled trials |
SAP | Sever periprocedural abdominal pain |
SWOG toxicity coding | Southwest oncology group toxicity coding score |
TACE | Transarterial chemoembolisation |
VAS | Visual analogue scale |
WAA | Wrist-ankle acupuncture |
References
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of hepatocellular carcinoma. Hepatology 2021, 73, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, Z.; Yan, L.; Liu, Y.; Yang, H.; Li, H. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990–2019. J. Hematol. Oncol. 2021, 14, 197. [Google Scholar] [CrossRef]
- Vitale, A.; Trevisani, F.; Farinati, F.; Cillo, U. Treatment of hepatocellular carcinoma in the precision medicine era: From treatment stage migration to therapeutic hierarchy. Hepatology 2020, 72, 2206–2218. [Google Scholar] [CrossRef]
- Labgaa, I.; Taffe, P.; Martin, D.; Clerc, D.; Schwartz, M.; Kokudo, N.; Denys, A.; Halkic, N.; Demartines, N.; Melloul, E. Comparison of partial hepatectomy and transarterial chemoembolization in intermediate-stage hepatocellular carcinoma: A systematic review and meta-analysis. Liver Cancer 2020, 9, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.F.; Zhao, X.H.; Gao, B.L.; Zhang, S.; Ge, G.M.; Zhan, D.D.; Ye, T.T.; Zheng, Y. Predictive model for acute abdominal pain after transarterial chemoembolization for liver cancer. World J. Gastroenterol. 2020, 26, 4442–4452. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Jeong, S.W.; Young Jang, J.; Jae Kim, Y. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma. Int. J. Mol. Sci. 2020, 21, 8165. [Google Scholar] [CrossRef]
- Makary, M.S.; Khandpur, U.; Cloyd, J.M.; Mumtaz, K.; Dowell, J.D. Locoregional therapy approaches for hepatocellular carcinoma: Recent advances and management strategies. Cancers 2020, 12, 1914. [Google Scholar] [CrossRef]
- Kim, M.S.; Yoo, S. Correlations among perceived symptoms and interferences, barriers to symptom management, and comfort care in nurses caring for chemotherapy and transarterial chemoembolization patients. Cancer Nurs. 2024, 47, E245–E254. [Google Scholar] [CrossRef]
- Du, Q.; Liang, M.; Jiang, B.; Zhang, M.; Yu, X.; Li, X.; Hao, J. Incidence and predictors of abdominal pain after transarterial chemoembolization of hepatocellular carcinoma: A single-center retrospective study. Eur. J. Oncol. Nurs. 2023, 66, 102355. [Google Scholar] [CrossRef]
- Lyu, N.; Kong, Y.; Li, X.; Guo, N.; Lai, J.; Li, J.; Zhao, M. Effect and safety of prophylactic parecoxib for pain control of transarterial chemoembolization in liver cancer: A single-center, parallel-group, randomized trial. J. Am. Coll. Radiol. 2022, 19, 61–70. [Google Scholar] [CrossRef]
- Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zheng, C.; Liang, B.; Xia, X. Efficacy and safety analysis of dexamethasone + palonosetron in prevention of post-embolization syndrome after D-TACE: A retrospective study. Medicine 2023, 102, e35433. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Hahn, S.T.; Park, S.H. Intraarterial lidocaine administration for relief of pain resulting from transarterial chemoembolization of hepatocellular carcinoma: Its effectiveness and optimal timing of administration. Cardiovasc. Interv. Radiol. 2001, 24, 368–371. [Google Scholar] [CrossRef]
- Zeng, K.; Dong, H.J.; Chen, H.Y.; Chen, Z.; Li, B.; Zhou, Q.H. Wrist-ankle acupuncture for pain after transcatheter arterial chemoembolization in patients with liver cancer: A randomized controlled trial. Am. J. Chin. Med. 2014, 42, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.G.; Zhao, L.P.; Rao, Y.F.; Gao, Y.P.; Guo, X.J.; Zhou, T.Y.; Feng, Z.Y.; Sun, J.H.; Lu, X.Y. Novel multimodal analgesia regimen improves post-TACE pain in patients with hepatocellular carcinoma. HBPD Int. 2018, 17, 510–516. [Google Scholar] [CrossRef]
- Wang, L.Z.; Hu, X.X.; Shen, X.C.; Wang, T.C.; Zhou, S. Intraarterial Lidocaine Administration for Pain Control by Water-in-Oil Technique in Transarterial Chemoembolization: In vivo and Randomized Clinical Trial. J. Hepatocell. Carcinoma 2021, 8, 1221–1232. [Google Scholar] [CrossRef]
- Yang, H.; Seon, J.; Sung, P.S.; Oh, J.S.; Lee, H.L.; Jang, B.; Chun, H.J.; Jang, J.W.; Bae, S.H.; Choi, J.Y.; et al. Dexamethasone Prophylaxis to Alleviate Postembolization Syndrome After Transarterial Chemoembolization for Hepatocellular Carcinoma: A Randomized, Double-Blinded, Placebo-Controlled Study. J. Vasc. Interv. Radiol. 2017, 28, 1503–1511.e2. [Google Scholar] [CrossRef]
- Abusedera, M.A.; Arafa, U.A.; Ali, E.M. Transcatheter administration of buffered Lidocaine for pain relief due to transarterial chemoembolization for HCC. Egypt. J. Radiol. Nucl. Med. 2014, 45, 403–408. [Google Scholar] [CrossRef]
- Zhou, Z.G.; Chen, J.B.; Qiu, H.B.; Wang, R.J.; Chen, J.C.; Xu, L.; Chen, M.S.; Zhang, Y.J. Parecoxib prevents complications in hepatocellular carcinoma patients receiving hepatic transarterial chemoembolization: A prospective score-matched cohort study. Oncotarget 2016, 7, 27938–27945. [Google Scholar] [CrossRef] [PubMed]
- Vanderbecq, Q.; Grégory, J.; Dana, J.; Dioguardi Burgio, M.; Garzelli, L.; Raynaud, L.; Frémy, S.; Paulatto, L.; Bouattour, M.; Kavafyan-Lasserre, J.; et al. Improving pain control during transarterial chemoembolization for hepatocellular carcinoma performed under local anesthesia with multimodal analgesia. Diagn. Interv. Imaging 2023, 104, 123–132. [Google Scholar] [CrossRef]
- Yu, J.M.; Sun, P.; Li, Y.; Lei, C.B. Comprehensive nursing reduces postoperative adverse emotions and complications of advanced liver cancer patients undergoing transcatheter arterial chemoembolization. Int. J. Clin. Exp. Med. 2020, 13, 1687–1695. [Google Scholar]
- Kuwaki, K.; Nouso, K.; Miyashita, M.; Makino, Y.; Hagihara, H.; Moriya, A.; Adachi, T.; Wada, N.; Yasunaka, Y.; Yasunaka, T.; et al. The Efficacy and Safety of Steroids for Preventing Postembolization Syndrome After Transcatheter Arterial Chemoembolization of Hepatocellular Carcinoma. Acta Medica Okayama 2019, 73, 333–339. [Google Scholar] [PubMed]
- Zhou, B.; Wang, J.; Yan, Z.; Shi, P.; Kan, Z. Liver cancer: Effects, safety, and cost-effectiveness of controlled-release oxycodone for pain control after TACE. Radiology 2012, 262, 1014–1021. [Google Scholar] [CrossRef]
- Wang, Z.X.; Li, L.; Tao, F.Y. Health education helps to relieve postembolization pain during hepatic arterial chemoembolization therapy. J. Pain Res. 2018, 11, 2115–2121. [Google Scholar] [CrossRef]
- Lv, N.; Kong, Y.; Mu, L.; Pan, T.; Xie, Q.; Zhao, M. Effect of perioperative parecoxib sodium on postoperative pain control for transcatheter arterial chemoembolization for inoperable hepatocellular carcinoma: A prospective randomized trial. Eur. Radiol. 2016, 26, 3492–3499. [Google Scholar] [CrossRef]
- Gao, L.; Chen, W.; Qin, S.; Yang, X. The impact of preoperative interview and prospective nursing on perioperative psychological stress and postoperative complications in patients undergoing TACE intervention for hepatocellular carcinoma. Medicine 2024, 103, e35929. [Google Scholar] [CrossRef]
- Wang, Z.X.; Liu, S.L.; Sun, C.H.; Wang, Q. Psychological intervention reduces postembolization pain during hepatic arterial chemoembolization therapy: A complementary approach to drug analgesia. World J. Gastroenterol. 2008, 14, 931–935. [Google Scholar] [CrossRef]
- Lin, Z.G.; Su, S.X.; Xie, X.L.; Yang, Y.F.; Dong, Q.L. Influence of buccal acupuncture on analgesic effect, immune indicators, and expression of Survivin and Livin proteins in patients with advanced-stage primary liver cancer. J. Acupunct. Tuina Sci. 2022, 20, 383–391. [Google Scholar] [CrossRef]
- Chang, K.; Liu, C.; Tsai, H.; Hsu, T.; Chen, P.; Hu, S.H. Effects and safety of body positioning on back pain after transcatheter arterial chemoembolization in people with hepatocellular carcinoma: A randomized controlled study. Int. J. Nurs. Stud. 2020, 109, 103641. [Google Scholar] [CrossRef]
- Simasingha, N.; Tanasoontrarat, W.; Claimon, T.; Sethasine, S. Efficacy of dexamethasone and N-acetylcysteine combination in preventing post-embolization syndrome after transarterial chemoembolization in hepatocellular carcinoma. World J. Gastroenterol. 2023, 29, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zheng, C.; Liang, B.; Xiong, B. Efficacy and safety analysis of dexamethasone-lipiodol emulsion in prevention of post-embolization syndrome after TACE: A retrospective analysis. BMC Gastroenterol. 2021, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Deng, Y.; Zhou, Z.; Huang, Y. Chinese Herbal Medicine (Chaihu-Huaji Decoction) Alleviates Postembolization Syndrome following Transcatheter Arterial Chemoembolization and Improves Survival in Unresectable Hepatocellular Cancer: A Retrospective Study. Evid. Based Complement. Altern. Med. 2019, 2019, 6269518. [Google Scholar] [CrossRef]
- Sainamthip, P.; Kongphanich, C.; Prasongsook, N.; Chirapongsathorn, S. Single dose dexamethasone prophylaxis of postembolisation syndrome after chemoembolisation in hepatocellular carcinoma patient: A randomised, double-blind, placebo-controlled study. World J. Clin. Cases 2021, 9, 9059–9069. [Google Scholar] [CrossRef]
- Khuntee, W.; Hanprasitkam, K.; Sumdaengrit, B. Effect of music therapy on postembolization syndrome in Thai patients with hepatocellular carcinoma: A quasi-experimental crossover study. Belitung Nurs. J. 2022, 8, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, S.; Zhuang, L.; Lin, J.; Chen, H.; Zhu, X.; Bei, W.; Zhao, Q.; Wu, H.; Meng, Z. Jian Pi Li Qi Decoction Alleviated Postembolization Syndrome Following Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma: A Randomized, Double-Blind, Placebo-Controlled Trial. Integr. Cancer Ther. 2016, 15, 349–357. [Google Scholar] [CrossRef]
- Yinglu, F.; Changquan, L.; Xiaofeng, Z.; Bai, L.; Dezeng, Z.; Zhe, C. A new way: Alleviating postembolization syndrome following transcatheter arterial chemoembolization. J. Altern. Complement. Med. 2009, 15, 175–181. [Google Scholar] [CrossRef]
- Kogut, M.J.; Chewning, R.H.; Harris, W.P.; Hippe, D.S.; Padia, S.A. Postembolization syndrome after hepatic transarterial chemoembolization: Effect of prophylactic steroids on postprocedure medication requirements. J. Vasc. Interv. Radiol. 2013, 24, 326–331. [Google Scholar] [CrossRef]
- Hartnell, G.G.; Gates, J.; Stuart, K.; Underhill, J.; Brophy, D.P. Hepatic chemoembolization: Effect of intraarterial lidocaine on pain and postprocedure recovery. Cardiovasc. Interv. Radiol. 1999, 22, 293–297. [Google Scholar] [CrossRef]
- Molgaard, C.P.; Teitelbaum, G.P.; Pentecost, M.J.; Finck, E.J.; Davis, S.H.; Dziubinski, J.E.; Daniels, J.R. Intraarterial administration of lidocaine for analgesia in hepatic chemoembolization. J. Vasc. Interv. Radiol. 1990, 1, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Green, S.; Weiss, G.R. Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Investig. New Drugs 1992, 10, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Velikova, G.; Absolom, K.; Hewison, J.; Holch, P.; Warrington, L.; Avery, K.; Richards, H.; Blazeby, J.; Dawkins, B.; Hulme, C. Electronic self-reporting of adverse events for patients undergoing cancer treatment: The eRAPID research programme including two RCTs. Programme Grants Appl. Res. 2022, 10, 1–110. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wahner-Roedler, D.L.; Zhou, X.; Johnson, L.A.; Do, A.; Pachman, D.R.; Chon, T.Y.; Salinas, M.; Millstine, D.; Bauer, B.A. Acupuncture for palliative cancer pain management: Systematic review. BMJ Support. Palliat. Care 2021, 11, 264. [Google Scholar] [CrossRef]
- Lin, J.; Kotha, P.; Chen, Y. Understandings of acupuncture application and mechanisms. Am. J. Transl. Res. 2022, 14, 1469. [Google Scholar]
- Francisco, A.S.P.G.; Montemezzo, D.; Ribeiro, S.N.d.S.; Frata, B.; Menegol, N.A.; Okubo, R.; Sonza, A.; Sanada, L.S. Positioning Effects for Procedural Pain Relief in NICU: Systematic Review. Pain Manag. Nurs. 2021, 22, 121–132. [Google Scholar] [CrossRef]
- Tang, H.; Chen, L.; Wang, Y.; Zhang, Y.; Yang, N.; Yang, N. The efficacy of music therapy to relieve pain, anxiety, and promote sleep quality, in patients with small cell lung cancer receiving platinum-based chemotherapy. Support. Care Cancer 2021, 29, 7299–7306. [Google Scholar] [CrossRef]
- Liang, J.; Tian, X.; Yang, W. Application of music therapy in general surgical treatment. Biomed Res. Int. 2021, 2021, 6169183. [Google Scholar] [CrossRef]
- Sinatti, P.; Sánchez Romero, E.A.; Martínez-Pozas, O.; Villafañe, J.H. Effects of patient education on pain and function and its impact on conservative treatment in elderly patients with pain related to hip and knee osteoarthritis: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 6194. [Google Scholar] [CrossRef]
- Alruwaili, M.O.S.; Alruwaili, F.O.S.; Mohammed, S.H.M.A.T.; Alruwaili, H.; Alanazi, A.M.S.; Alruwaili, A.R.Q. Pain Management in Nursing Care: Effective Strategies and Techniques. Gland Surg. 2024, 9, 316–323. [Google Scholar]
- Turk, D.C.; Okifuji, A. Psychological factors in chronic pain: Evolution and revolution. J. Consult. Clin. Psychol. 2002, 70, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Niyonkuru, E.; Iqbal, M.A.; Zhang, X.; Ma, P. Complementary Approaches to Postoperative Pain Management: A Review of Non-pharmacological Interventions. Pain Ther. 2025, 14, 121–144. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.J.; Edwards, Z.; Boland, J.W.; Maddocks, M.; Fettes, L.; Malia, C.; Mulvey, M.R.; Bennett, M.I. Practice review: Evidence-based and effective management of pain in patients with advanced cancer. Palliat. Med. 2020, 34, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, A.; Frazier, A.; Khan, T.W.; Young, E. Understanding the psychological, physiological, and genetic factors affecting precision pain medicine: A narrative review. J. Pain Res. 2021, 14, 3145–3161. [Google Scholar] [CrossRef]
- Ruano, A.; García-Torres, F.; Gálvez-Lara, M.; Moriana, J.A. Psychological and non-pharmacologic treatments for pain in cancer patients: A systematic review and meta-analysis. J. Pain Symptom Manag. 2022, 63, e505–e520. [Google Scholar] [CrossRef]
- Varsi, C.; Ledel Solem, I.K.; Eide, H.; Børøsund, E.; Kristjansdottir, O.B.; Heldal, K.; Waxenberg, L.B.; Weiss, K.E.; Schreurs, K.M.G.; Morrison, E.J. Health care providers’ experiences of pain management and attitudes towards digitally supported self-management interventions for chronic pain: A qualitative study. BMC Health Serv. Res. 2021, 21, 275. [Google Scholar] [CrossRef]
- Nielsen, A.; Dusek, J.A.; Taylor-Swanson, L.; Tick, H. Acupuncture therapy as an evidence-based nonpharmacologic strategy for comprehensive acute pain care: The academic consortium pain task force white paper update. Pain Med. 2022, 23, 1582–1612. [Google Scholar] [CrossRef]
- Wally, M.K.; Hsu, J.R.; Seymour, R.B. Musculoskeletal pain management and patient mental health and well-being. J. Orthop. Trauma 2022, 36, S19–S24. [Google Scholar] [CrossRef]
Design | N (%) |
---|---|
Cohort study | 16 (55%) |
Quasi-experimental crossover study | 1 (3%) |
Randomised controlled trial | 12 (41%) |
Category of intervention | |
Pharmacological | 21 (72%) |
Physical | 3 (10%) |
Psychological | 2 (7%) |
Others | 3 (10%) |
Intervention | N (%) |
---|---|
Medication | |
Dexamethasone | 8 (28.0%) |
Lidocaine | 5 (17.2%) |
Chinese medicine | 2 (6.9%) |
Patients control analgesia | 2 (6.9%) |
Oxycodone | 1 (3.4%) |
Parecoxib sodium | 3 (10.3%) |
Psychological | |
Preoperative interview and prospective nursing | 1 (3.4%) |
Psychological intervention | 1 (3.4%) |
Physical | |
Acupuncture | 2 (6.9%) |
Body positing | 1 (3.4%) |
Others | |
Music therapy | 1 (3.4%) |
Health education | 1 (3.4%) |
Comprehensive nursing | 1 (3.4%) |
Author(s) | Country | Year | Study Design | Medication | Pain Description (Intervention vs. Control) | Main Findings |
---|---|---|---|---|---|---|
Nitipon et al. [32] | Thailand | 2023 | RCT | Dexamethasone and N-acetylcysteine | I: 1% C: 18% | Intravenous dexamethasone and N-acetylcysteine combination ameliorated the occurrence of pain after cTACE in patients with intermediate-stage HCC. |
Lu et al. [33] | China | 2021 | Cohort Study | Dexamethasone | I: 44 (36.1%) C: 74 (55.6%) | TACE-only group vs. TACE + intravenous dexamethasone group: incidence of abdominal pain—74 patients (55.6%) vs. 44 patients (36.1%), p = 0.002. |
Panot et al. [35] | Thailand | 2021 | RCT | Dexamethasone | I: 36% C: 56% | Pain levels were reduced in the intravenous dexamethasone group compared to the placebo group (p = 0.16), with an incidence of 56% versus 36%. |
Lu et al. [14] | China | 2023 | Cohort Study | Dexamethasone and palonosetron | I: 40.6% C: 56.6% | The combined use of intravenous dexamethasone and palonosetron before D-TACE can effectively reduce the incidence of pain. |
Feng et al. [38] | China | 2009 | RCT | Dexamethasone and ginsenosides | I: 20% C: 80% | A combination of oral intake dexamethasone and ginsenosides can control pain for patients following TACE. |
Yang et al. [19] | South Korea | 2017 | RCT | Dexamethasone | I: 2.2 ± 2.52 C: 3.5 ± 3.22 | The prophylactic administration of intravenous dexamethasone before chemoembolisation is an effective way to reduce patients’ pain. |
Kenji et al. [24] | Japan | 2019 | Cohort study | Steroids | I: 5.8 ± 7.3 C: 5.8 ± 8.7 | This study demonstrates that steroids were ineffective at preventing pain following TACE in patients with HCC. |
Matthew et al. [39] | USA | 2013 | Cohort study | Steroids | I: 2.4 ± 2.6 C: 2.4 ± 2.2 | The use of steroids did not affect analgesic agent use |
Author(s) | Country | Year | Study Design | Main Findings |
---|---|---|---|---|
Sang et al. [15] | South Korea | 2001 | RCT | Administering lidocaine intra-arterially before TACE is significantly more effective than post-TACE administration in lowering both the occurrence and intensity of post-procedural pain. |
Molgaard et al. [41] | USA | 1990 | Cohort Study | Significant decreases in the use of narcotic analgesics during HCE procedures can be safely accomplished through the administration of intra-arterial lidocaine. |
Wang et al. [18] | China | 2021 | RCT | Intra-arterial lidocaine via the water-in-oil technique is a safe and effective treatment of both intra-procedural and post-TACE pain. |
Hartnell et al. [40] | USA | 1999 | Cohort Study | Lidocaine administered intra-arterially during chemoembolisation decreases the intensity and duration of pain following the procedure. |
Mohammad et al. [20] | Egypt | 2014 | RCT | Intra-arterial administration of buffered lidocaine before infusing the embolisation particle of TACE is safe and effective in doses as low as 50 mg for reducing peri- and post-procedural pain and dosage of narcotic analgesics in patients with HCC. |
Name | Author(s) | Country | Year | Study Design | Main Findings |
---|---|---|---|---|---|
Chinese medicine (n = 2) | Xu et al. [37] | China | 2016 | RCT | JPLQ decoction may be an effective modality to relieve pain after TACE. |
Xu et al. [34] | China | 2019 | Cohort study | Chaihuhuaji decoction can reduce patients’ pain after TACE. | |
Parecoxib (n = 3) | Ning et al. [27] | China | 2016 | RCT | Using parecoxib in the perioperative phase dramatically improved its ability to suppress pain following TACE, making it a better treatment for post-procedural pain. |
Ning et al. [10] | China | 2022 | RCT | Compared to oxycodone and celecoxib, parecoxib provides better pain management along with a lower adverse effect profile. | |
Zhou et al. [21] | China | 2016 | Cohort study | There were no differences in pain scores. | |
Oxycodone (n = 1) | Zhou et al. [25] | China | 2012 | RCT | Controlled-release oxycodone appears to present a secure, efficient, and inexpensive alternative to control postoperative pain following TACE in patients with unresectable liver cancer. |
Author(s) | Country | Year | Study Design | Main Findings |
---|---|---|---|---|
Guo et al. [17] | China | 2018 | Cohort study | It has been demonstrated that a multimodal analgesia approach involving pre-emptive sufentanil and parecoxib is a safe, efficacious, and cost-effective strategy for the management of postoperative pain in HCC patients undergoing TACE. |
Quentin et al. [22] | France | 2023 | Cohort study | Effective use of both opioid and non-opioid analgesics combined with enhancing existing pain management protocol thoroughly decreases perioperative pain in patients undergoing HCC who underwent conventional TACE. |
Author(s) | Country | Year | Combined with Medication | Study Design | Main Findings |
---|---|---|---|---|---|
Gao et al. [28] | China | 2024 | No | RCT | Preoperative visits and prospective nursing interventions can effectively relieve patients’ pain. |
Wang et al. [29] | China | 2008 | Yes (specific medication is not mentioned) | RCT | Psychological treatments used in combination with standard medications reduce pain during hepatic arterial chemoembolisation procedures and should be integrated as part of pain care strategies. |
Author(s) | Country | Year | Study Design | Main Findings |
---|---|---|---|---|
Zeng et al. [16] | China | 2014 | RCT | Wrist–ankle acupuncture has an analgesic effect equal to or greater than oral morphine sulphate in HCC patients with moderate to severe post-TACE pain. |
Lin et al. [30] | China | 2022 | Cohort study | Buccal acupuncture can reduce the degree of pain and liver function damage in patients with advanced-stage primary liver cancer. |
Chang et al. [31] | Taiwan, China | 2020 | RCT | Changing patients’ body positions in bed after transcatheter arterial chemoembolisation is a safe and effective method of decreasing back pain. Clinicians should change the positions of people with hepatocellular carcinoma 2 h after they receive transcatheter arterial chemoembolisation. |
Author(s) | Country | Year | Study Design | Main Findings |
---|---|---|---|---|
Wassana et al. [36] | Thailand | 2022 | Quasi-experimental crossover study | Music therapy effectively reduces mild pain among patients with primary liver cancer undergoing TACE. |
Wang et al. [26] | China | 2018 | RCT | Health education in HCC patients before TACE improves pain management during the procedure. |
Yu et al. [23] | China | 2020 | Cohort study | Comprehensive nursing can reduce postoperative pain. |
Author and Year (Country) | Study Design | Sample Size | Tool | Pain Results (Mean ± SD) (Control vs. Intervention) |
---|---|---|---|---|
Nitipon et al., 2023 (Thailand) [32] | RCT | 100 | SWOG | 4.04 ± 2.2 vs. 0.38 ± 1.1 |
Lu et al., 2021 (China) [33] | Cohort study | 255 | CTCAEV5.0 | 55.6% vs. 36.1% |
Panot et al., 2021 (Thailand) [35] | RCT | 100 | SWOG | 3.71 vs. 2.14 |
Wassana et al., 2022 (Thailand) [36] | Quasi-experimental crossover study | 30 | Self-developed the severity of the PES symptom scale | 2.93 ± 1.36 vs. 2.00 ± 1.08 |
Lu et al., 2023 (China) [14] | Cohort study | 278 | VAS | 3.2 ± 1.1 vs. 2.9 ± 0.8 |
Kenji et al., 2019 (Japan) [24] | Cohort study | 144 | NRS | 5.8 ± 8.7 vs. 5.8 ± 7.3 |
Sang et al., 2001 (South Korea) [15] | RCT | 113 | VAS | 4.9 ± 2.0 vs. 3.1 ± 2.8 |
Feng et al., 2009 (China) [38] | RCT | 120 | Incidence of pain | 80% vs. 20% |
Xu et al., 2016 (China) [37] | RCT | 150 | MDASI-GI | 37% vs. 7% |
Zeng et al., 2014 (China) [16] | RCT | 60 | VAS | NA |
Guo et al., 2018 (China) [17] | Cohort study | 84 | VAS | NA |
Zhou et al., 2012 (China) [25] | RCT | 210 | NRS | 4.8 ± 1.2 |
Molgaard et al., 1990 (USA) [41] | Cohort study | 45 | Need for analgesics | 11.7 ± 4.4 vs. 0.13 ± 0.89 |
Wang et al., 2021 (China) [18] | RCT | 70 | VAS | NA |
Hartnell et al., 1999 (USA) [40] | Cohort study | 56 | Need for analgesics | 69% vs. 19% |
Wang et al., 2018 (China) [26] | RCT | 115 | NRS | NA |
Ning et al., 2016 (China) [27] | RCT | 120 | NRS | 3.1 ± 1.2 vs. 1.1 ± 0.8 |
Ning et al., 2022 (China) [10] | RCT | 312 | VAS | 4.40 ± 2.85 vs. 1.26 ± 1.73 |
Yang et al., 2017 (South Korea) [19] | RCT | 88 | VAS | 3.5 ± 3.22 vs. 2.2 ± 2.52 |
Matthew et al., 2013 (USA) [39] | Cohort study | 125 | Need for analgesics | 2.4 ± 2.5 vs. 2.0 ± 2.2 |
Mohammad et al., 2014 (Egypt) [20] | RCT | 39 | VAS | 7.4 ± 1.2 vs. 3.2 ± 1.1 |
Gao et al., 2024 (China) [28] | RCT | 86 | NRS | NA |
Wang et al., 2008 (China) [29] | RCT | 262 | NRS | 1.64 ± 1.53 vs. 0.29 ± 0.21 |
Zhou et al., 2016 (China) [21] | Cohort study | 242 | VAS | 0.83 ± 1.58 vs. 0.69 ± 1.66 |
Lin et al., 2022 (China) [30] | Cohort study | 80 | NRS | 2.52 ± 0.38 vs. 1.68 ± 0.27 |
Quentin et al., 2023 (France) [22] | Cohort study | 83 | VAS | 7 ± 16 vs. 3 ± 12 |
Chang et al., 2020 (Taiwan, China) [31] | RCT | 78 | NRS | 2.97 ±2.22 vs. 0.97 ±1.42 |
Yu et al., 2020 (China) [23] | Cohort study | 160 | VAS | 5.86 ± 0.78 vs. 5.57 ± 0.82 |
Xu et al., 2019 (China) [34] | Cohort study | 125 | CTCAEV5.0 | 34% vs. 29% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.-Z.; Chin, K.-Y.; Zakaria, R.; Hassan, N.H. Strategies for Pain Management in Hepatocellular Carcinoma Patients Undergoing Transarterial Chemoembolisation: A Scoping Review of Current Evidence. Healthcare 2025, 13, 994. https://doi.org/10.3390/healthcare13090994
Zhang W-Z, Chin K-Y, Zakaria R, Hassan NH. Strategies for Pain Management in Hepatocellular Carcinoma Patients Undergoing Transarterial Chemoembolisation: A Scoping Review of Current Evidence. Healthcare. 2025; 13(9):994. https://doi.org/10.3390/healthcare13090994
Chicago/Turabian StyleZhang, Wei-Zheng, Kok-Yong Chin, Roshaya Zakaria, and Nor Haty Hassan. 2025. "Strategies for Pain Management in Hepatocellular Carcinoma Patients Undergoing Transarterial Chemoembolisation: A Scoping Review of Current Evidence" Healthcare 13, no. 9: 994. https://doi.org/10.3390/healthcare13090994
APA StyleZhang, W.-Z., Chin, K.-Y., Zakaria, R., & Hassan, N. H. (2025). Strategies for Pain Management in Hepatocellular Carcinoma Patients Undergoing Transarterial Chemoembolisation: A Scoping Review of Current Evidence. Healthcare, 13(9), 994. https://doi.org/10.3390/healthcare13090994