Established and Emerging Biomarkers in Cutaneous Malignant Melanoma
Abstract
:1. Introduction
2. Established Biomarkers in Melanoma
2.1. Breslow Thickness
2.2. Tumour Ulceration
2.3. Mitotic Count
3. Serological Biomarkers
LDH
4. Emerging Biomarkers in Melanoma
4.1. Serological Biomarkers
4.2. Circulating Tumour Cells
4.3. Melanoma Initiating Cells
5. Other Selected Biomarkers in Melanoma
Biomarker | Methods | Outcome | Reference |
---|---|---|---|
MITF | 63 FFPE intermediate thickness melanomas stained by ICH and correlated with 50 month follow up | MTIF expression associated with longer DFS compared to no expression (187.90 +/− 13.41 months vs. 80.89 +/− 17.98 months) | Salti et al. [50] |
Hsp90 | Tissue microarrays of 414 nevi, 198 primary and 270 metastatic melanomas. Used automated quantitative analysis (AQUA) method of in situ Hsp 90 protein measurement | Although higher expression in metastatic compared to primary lesions (p < 0.0001), no association between high HSP90 and survival in the primary specimen cohort (p = 0.39) | McCarthy et al. [51] |
CXCR4 | Immunohistochemical expression of CXCR4 in 71 specimens of primary cutaneous melanoma with Breslow thickness of >1 mm | CXCR4 expression was correlated with an unfavorable prognosis with a median disease-free and overall survival of 22 and 35 months, respectively | Scala et al. [52] |
HIF2α | Immunohistochemical expression in 46 nodular malignant melanomas | ~175-month disease-specific survival HIF2α low: 87%; HIF2α high: 30% | Giatromanolaki et al. [53] |
Nestin | Immunohistochemical study for nestin in 130 primary tumours and 32 nodal metastasis biopsy specimens | Nestin expression was associated with poor survival (log-rank test, p = 0.037), | Piras et al. [54] |
HMGA2 | Transcriptome profiling of 46 primary melanomas, 12 melanoma metastases, and 16 normal skin | HMGA2 expression is associated with disease-free survival (p = 0.004), overall survival (p = 0.008), and distant metastases-free survival | Raskin et al. [55] |
Neuropilin-2 | Immunohistochemical analysis in tissue microarray and histologic sections from samples of 42 primary melanomas, 30 metastatic melanomas, and 30 naevi | Expresision correlated with metastatic and primary melanoma compared to naevi (p < 0.0001) | Rushing et al. [56] |
Metallothioneins (MT) | Immunohistochemical analysis of 1,270 primary and metastatic melanoma tissue | Overexpression of MT associated with higher risk for progression (117 of 167; 70.1%) and reduced survival (80 of 110; 72.7%) | Weinlich et al. [43] |
NCOA3 | Immunohistochemical analysis of tissue microarray in 343 primary cutanoues melanomas | High NCOA3 expression was associated with increased risk of death due to melanoma (31.9% vs. 18.5%;) and reduced DSS by (p < 0.030, log-rank test | Rangel et al. [57] |
bFGF | Immunohistochemical analysis of 202 vertical growth phase cutaneous melanomas | bFGF +ve had a 59% 10-year survival, compared with 35% for patients with bFGF –ve vascular phenotype | Straume et al. [58] |
6. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gogas, H.; Eggermont, A.M.M.; Hauschild, A.; Hersey, P.; Mohr, P.; Schadendorf, D.; Spatz, A.; Dummer, R. Biomarkers in melanoma. Ann. Oncol. 2009, 20, 8–13. [Google Scholar]
- McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. Statistics subcommittee of the NCI-EORTC working group on cancer diagnostics. Reporting recommendations for tumor marker prognostic studies (REMARK). J. Natl. Cancer Inst. 2005, 97, 1180–1184. [Google Scholar] [CrossRef]
- Gould Rothberg, B.E.; Rimm, D.L. Biomarkers: The useful and not so useful—An assessment of molecular prognostic markers for cutaneous melanoma. J. Invest. Dermatol. 2010, 130, 1971–1987. [Google Scholar] [CrossRef]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larkin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011, 364, 2507–2516. [Google Scholar] [CrossRef]
- Ellerhorst, J.A.; Greene, V.R.; Ekmekcioglu, S.; Warneke, C.L.; Johnson, M.M.; Cooke, C.P.; Wang, L.E.; Prieto, V.G.; Gershenwald, J.E.; Wei, Q.; Grimm, E.A. Clinical correlates of NRAS and BRAF mutations in primary human melanoma. Clin. Cancer Res. 2011, 17, 229–235. [Google Scholar] [CrossRef]
- Gould Rothbeg, B.E.; Bracken, M.B.; Rimm, D.L. Tissue biomarkers for prognosis in cutaneous melanoma: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2009, 101, 452–474. [Google Scholar] [CrossRef]
- Alonzo, T.A. Standards for reporting prognostic tumor marker studies. J. Clin. Oncol. 2005, 23, 9053–9054. [Google Scholar] [CrossRef]
- Spatz, A.; Stock, N.; Batist, G.; van Kempen, L.C. The biology of melanoma prognostic factors. Discov. Med. 2010, 10, 87–93. [Google Scholar]
- Breslow, A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann. Surg. 1970, 172, 902–908. [Google Scholar] [CrossRef]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S.; et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin. Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef]
- Eggermont, A.M.; Suciu, S.; Testori, A.; Santinami, M.; Kruit, W.H.; Marsden, J.; Punt, C.J.; Salès, F.; Dummer, R.; Robert, C.; et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b vs. observation in resected stage III melanoma. J. Clin. Oncol. 2012, 30, 3810–3818. [Google Scholar] [CrossRef]
- Eggermont, A.M.; Suciu, S.; Testori, A.; Patel, P.; Spatz, A. Ulceration of primary melanoma and responsiveness to adjuvant interferon therapy: Analysis of the adjuvant trials EORTC18952 and EORTC18991 in 2,644 patients. J. Clin. Oncol. 2009, 27, 462. [Google Scholar]
- Kesmodel, S.B.; Karakousis, G.C.; Botbyl, J.D.; Canter, R.J.; Lewis, R.T.; Wahl, P.M.; Terhune, K.P.; Alavi, A.; Elder, D.E.; Ming, M.E.; et al. Mitotic rate as a predictor of sentinel lymph node positivity in patients with thin melanomas. Ann. Surg. Oncol. 2005, 12, 449–458. [Google Scholar] [CrossRef]
- Francken, A.B.; Shaw, H.M.; Thompson, J.F. The prognostic importance of tumor mitotic rate confirmed in 1,317 patients with primary cutaneous melanoma and long follow-up. Ann. Surg. Oncol. 2004, 11, 426–433. [Google Scholar] [CrossRef]
- Jennings, L.; Murphy, G.M. Predicting outcome in melanoma: Where are we now? Br. J. Dermatol. 2009, 161, 496–503. [Google Scholar] [CrossRef]
- Sirott, M.; Bajorin, D.; Wong, G.; Tao, Y.; Chapman, P.; Templeton, M.A.; Houghton, A. Prognostic factors in patients with metastatic malignant melanoma. A multivariate analysis. Cancer 1993, 72, 3091–3098. [Google Scholar] [CrossRef]
- Sullivan, R. The challenge of developing useful blood-based biomarkers in melanoma. Br. J. Dermatol. 2013, 168, 3–4. [Google Scholar] [CrossRef]
- Cho, K.H.; Hashimoto, K.; Taniguchi, Y. Immunohistochemical study of melanocytic naevus and malignant melanoma with monoclonal antibodies against S-100 subunits. Cancer 1990, 66, 765–771. [Google Scholar] [CrossRef]
- Hauschild, A.; Engel, G.; Brennerm, W.; Glaeser, R.; Moenig, H.; Henze, E.; Christophers, E. Predictive value of serum S100B for monitoring patients with metastatic melanoma during chemotherapy and/or immunotherapy. Br. J. Dermatol. 1999, 40, 1065–1071. [Google Scholar]
- Bosserhoff, A.K.; Moser, M.; Hein, R.; Landthaler, M.; Buettner, R. In situ expression patterns of melanoma-inhibiting activity (MIA) in melanomas and breast cancers. J. Pathol. 1999, 187, 446–454. [Google Scholar] [CrossRef]
- Bosserhoff, A.K.; Kaufmann, M.; Kaluza, B. Melanoma-inhibitory activity, a novel serum marker for progression of malignant melanoma. Cancer Res. 1997, 57, 3149–3153. [Google Scholar]
- Gabrilovich, D.I.; Chen, H.L.; Girgis, K.R. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 1996, 2, 1096–1103. [Google Scholar] [CrossRef]
- Ugurel, S.; Rappl, G.; Tilgen, W.; Reinhold, U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J. Clin. Oncol. 2001, 19, 577–583. [Google Scholar]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Friedman, E.B.; Shang, S.; de Miera, E.V.; Fog, J.U.; Teilum, M.W.; Ma, M.W.; Berman, R.S.; Shapiro, R.L.; Pavlick, A.C.; Hernando, E.; et al. Serum microRNAs as biomarkers for recurrence in melanoma. J. Transl. Med. 2012, 10, 155. [Google Scholar] [CrossRef]
- Saldanha, G.; Potter, L.; Shendge, P.; Osborne, J.; Nicholson, S.; Yii, N.W.; Varma, S.; Aslam, M.I.; Elshaw, S.; Papadogeorgakis, E.; et al. Plasma MicroRNA-21 is associated with tumor burden in cutaneous melanoma. J. Invest. Dermatol. 2013, 133, 1381–1384. [Google Scholar] [CrossRef]
- Smith, B.; Selby, P.; Southgate, J. Detection of melanoma cells in peripheral blood by means of reverse transcriptase and polymerase chain reaction. Lancet 1991, 338, 1227–1229. [Google Scholar] [CrossRef]
- Nezos, A.; Lembessis, P.; Sourla, A. Molecular markers detecting circulating melanoma cells by reverse transcription polymerase chain reaction: Methodological pitfalls and clinical relevance. Clin. Chem. Lab. Med. 2009, 47, 1–11. [Google Scholar] [CrossRef]
- Khoja, L.; Lorigan, P.; Zhou, C.; Lancashire, M.; Booth, J.; Cummings, J.; Califano, R.; Clack, G.; Hughes, A.; Dive, C. Biomarker utility of circulating tumor cells in metastatic cutaneous melanoma. J. Invest. Dermatol. 2013, 133, 1582–1590. [Google Scholar] [CrossRef]
- Karakousis, G.; Yang, R.; Xu, X. Circulating melanoma cells as a predictive biomarker. J. Invest. Dermatol. 2013, 133, 1460–1462. [Google Scholar] [CrossRef]
- Reid, A.L.; Millward, M.; Pearce, R.; Lee, M.; Frank, M.H.; Ireland, A.; Monshizadeh, L.; Rai, T.; Heenan, P.; Medic, S.; et al. Markers of circulating tumour cells in the peripheral blood of patients with melanoma correlate with disease recurrence and progression. Br. J. Dermatol. 2013, 168, 85–92. [Google Scholar] [CrossRef]
- Shakhova, O.; Sommer, L. Testing the cancer stem cell hypothesis in melanoma: The clinics will tell. Cancer Lett. 2013, 338, 74–81. [Google Scholar] [CrossRef]
- Girouard, S.D.; Murphy, G.F. Melanoma stem cells: Not rare, but well done. Lab. Invest. 2011, 91, 647–664. [Google Scholar] [CrossRef]
- Fang, D.; Nguyen, T.K.; Leishear, K.; Finko, R.; Kulp, A.N.; Hotz, S.; van Belle, P.A.; Xu, X.; Elder, D.E.; Herlyn, M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005, 65, 9328–9337. [Google Scholar] [CrossRef]
- Monzani, E.; Facchetti, F.; Galmozzi, E.; Corsini, E.; Benetti, A.; Cavazzin, C.; Gritti, A.; Piccinini, A.; Porro, D.; Antinami, M.; et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumorigenic potential. Eur. J. Cancer 2007, 43, 935–946. [Google Scholar] [CrossRef]
- Schatton, T.; Murphy, G.F.; Frank, N.Y.; Yamaura, K.; Waaga-Gasser, A.M.; Gasser, M.; Zhan, Q.; Jordan, S.; Duncan, L.M.; Weishaupt, C.; et al. Identification of cells initiating human melanomas. Nature 2008, 451, 345–349. [Google Scholar] [CrossRef]
- La Porta, C. Cancer Stem cells: A lesson from melanoma. Stem Cell Rev. 2009, 5, 61–65. [Google Scholar] [CrossRef]
- Klein, W.M.; Wu, B.P.; Zhao, S.; Wu, H.; Klein-Szanto, A.J.; Tahan, S.R. Increased expression of stem cell markers in malignant melanoma. Modern Pathol. 2007, 20, 102–107. [Google Scholar] [CrossRef]
- Taghizadeh, R.; Noh, M.; Huh, Y.H.; Ciusani, E.; Sigalotti, L.; Maio, M.; Arosio, B.; Nicotra, M.R.; Natali, P.G.; Sherley, J.L.; et al. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells. PLoS One 2010, 5, e15183. [Google Scholar] [CrossRef]
- Kumar, S.M.; Liu, S.; Lu, H.; Zhang, H.; Zhang, P.J.; Gimotty, P.A.; Guerra, M.; Guo, W.; Xu, X. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene 2012, 31, 4898–4911. [Google Scholar] [CrossRef]
- Bachmann, I.M. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 2006, 24, 268–273. [Google Scholar] [CrossRef]
- Winnepenninckx, V.; Lazar, V.; Michiels, S.; Dessen, P.; Stas, M.; Alonso, S.R.; Avril, M.F.; Ortiz Romero, P.L.; Robert, T.; Balacescu, O.; et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J. Natl. Cancer Inst. 2006, 98, 472–482. [Google Scholar] [CrossRef]
- Weinlich, G.; Eisendle, K.; Hassler, E.; Baltaci, M.; Fritsch, P.O.; Zelger, B. Metallothionein—Overexpression as a highly significant prognostic factor in melanoma: A prospective study on 1,270 patients. Br. J. Cancer 2006, 94, 835–841. [Google Scholar] [CrossRef]
- Dadras, S.S.; Paul, T.; Bertoncini, J.; Brown, L.F.; Muzikansky, A.; Jackson, D.G.; Ellwanger, U.; Garbe, C.; Mihm, M.C.; Detmar, M. Tumor lymphangiogenesis, a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am. J. Pathol. 2003, 162, 1951–1960. [Google Scholar] [CrossRef]
- Doeden, K.; Ma, Z.; Narasimhan, B.; Swetter, S.M.; Detmar, M.; Dadras, S.S. Lymphatic invasion in cutaneous melanoma is associated with sentinel lymph node metastasis. J Cutan. Pathol. 2009, 36, 772–780. [Google Scholar] [CrossRef]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Glud, M.; Klausen, M.; Gniadecki, R.; Rossing, M.; Hastrup, N.; Nielsen, F.C.; Drzewiecki, K.T. MicroRNA expression in melanocytic nevi: The usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling. J. Invest. Dermatol. 2009, 129, 1219–1224. [Google Scholar] [CrossRef]
- Hanna, J.A.; Hahn, L.; Agarwal, S.; Rimm, D.L. In situ measurement of miR-205 in malignant melanoma tissue supports its role as a tumor suppressor MicroRNA. Lab. Invest. 2012, 92, 1390–1397. [Google Scholar] [CrossRef]
- Kozubek, J.; Ma, Z.; Fleming, E.; Duggan, T.; Wu, R.; Shin, D.; Dadras, S.S. In-depth characterization of microRNA transcriptome in melanoma. PLoS One 2013, 8, e72699. [Google Scholar]
- Salti, G.I.; Manougian, T.; Farolan, M.; Shilkaitis, A.; Majumdar, D.; Das Gupta, T.K. Micropthalmia transcription factor: A new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 2000, 60, 5012–5016. [Google Scholar]
- McCarthy, M.M.; Pick, E.; Kluger, Y.; Gould-Rothberg, B.; Lazova, R.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. HSP90 as a marker of progression in melanoma. Ann. Oncol. 2008, 19, 590–594. [Google Scholar]
- Scala, S.; Ottaiano, A.; Ascierto, P.A.; Cavalli, M.; Simeone, E.; Giuliano, P.; Napolitano, M.; Franco, R.; Botti, G.; Castello, G. Castello expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin. Cancer Res. 2005, 11, 1835–1841. [Google Scholar] [CrossRef]
- Giatromanolaki, A.; Sivridis, E.; Kouskoukis, C.; Gatter, K.C.; Harris, A.L.; Koukourakis, M.I. Hypoxia-inducible factors 1α and 2α are related to vascular endothelial growth factor expression and a poor prognosis in nodular malignant melanomas of the skin. Melanoma Res. 2003, 13, 493–501. [Google Scholar] [CrossRef]
- Piras, F.; Perra, M.T.; Murtas, D.; Minerba, L.; Floris, C.; Maxia, C.; Demurtas, P.; Ugalde, J.; Ribatti, D.; Sirigu, P. The stem cell marker nestin predicts poor prognosis in human melanoma. Oncol. Rep. 2010, 23, 17–24. [Google Scholar]
- Raskin, L.; Fullen, D.R.; Giordano, T.J.; Thomas, D.G.; Frohm, M.L.; Cha, K.B.; Ahn, J.; Mukherjee, B.; Johnson, T.M.; Gruber, S.B. Transcriptome profiling identifies HMGA2 as a biomarker of melanoma progression and prognosis. J. Invest. Dermatol. 2013, 133, 2585–2592. [Google Scholar] [CrossRef]
- Rushing, E.C.; Stine, M.J.; Hahn, S.J.; Shea, S.; Eller, M.E.; Naif, A.; Khanna, S.; Westra, W.H.; Jungbluth, A.A.; Busam, K.J.; et al. Neuropilin-2: A novel biomarker for malignant melanoma? Hum. Pathol. 2012, 43, 381–389. [Google Scholar] [CrossRef]
- Rangel, J.; Torabian, I.; Shaikh, L.; Nosrati, M.; Baehner, F.L.; Haqq, C.; Leong, S.P.L.; Miller, L.R.; Sagebiel, R.W.; Kashani-Sabet, M. Prognostic significance of nuclear receptor coactivator-3 overexpression in primary cutaneous melanoma. J. Clin. Oncol. 2006, 24, 4565–4569. [Google Scholar] [CrossRef]
- Straume, O.; Akslen, L.A. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angiogenic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. Am. J. Pathol. 2002, 160, 1009–1019. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Verykiou, S.; Ellis, R.A.; Lovat, P.E. Established and Emerging Biomarkers in Cutaneous Malignant Melanoma. Healthcare 2014, 2, 60-73. https://doi.org/10.3390/healthcare2010060
Verykiou S, Ellis RA, Lovat PE. Established and Emerging Biomarkers in Cutaneous Malignant Melanoma. Healthcare. 2014; 2(1):60-73. https://doi.org/10.3390/healthcare2010060
Chicago/Turabian StyleVerykiou, Stamatina, Robert A Ellis, and Penny E Lovat. 2014. "Established and Emerging Biomarkers in Cutaneous Malignant Melanoma" Healthcare 2, no. 1: 60-73. https://doi.org/10.3390/healthcare2010060
APA StyleVerykiou, S., Ellis, R. A., & Lovat, P. E. (2014). Established and Emerging Biomarkers in Cutaneous Malignant Melanoma. Healthcare, 2(1), 60-73. https://doi.org/10.3390/healthcare2010060