Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometrics and Blood Pressure
2.3. Blood Sample Collection
2.4. Plasma Lipids and Glucose
2.5. Statistical Analysis
3. Results
Age, Plasma Lipids, Plasma Glucose, Anthropometrics and Blood Pressure
4. Discussion
5. Limitations
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BMI | body mass index |
BP | blood pressure |
FBG | fasting blood glucose |
FFA | free fatty acids |
HDL | high density lipoprotein |
HDL-C | HDL cholesterol |
LDL-C | LDL cholesterol |
MetS | metabolic syndrome |
RTC | reverse cholesterol transport |
TG | triglycerides |
VAT | visceral adipose tissue |
WC | waist circumference |
References
- Goodman, N.F.; Cobin, R.H.; Ginzburg, S.B.; Katz, I.A.; Woode, D.E. AACE medical guidelines for clinical practice for the diagnosis and treatment of menopause. Endocr. Pract. 2011, 17, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Weismiller, D.G. Menopause. Prim. Care Clin. Off. Pract. 2009, 36, 199–226. [Google Scholar] [CrossRef] [PubMed]
- Al-Safi, Z.A.; Polotsky, A.J. Obesity and menopause. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.; Rymer, J. Symptoms of the menopause. Best Pract. Res. Clin. Obstet. Gynaecol. 2009, 23, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Dubnov, G.; Brzezinski, A.; Berry, E.M. Weight control and the management of obesity after menopause: The role of physical activity. Maturitas 2003, 44, 89–101. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Raison, J.; Ruiz, J.C.; Guy-Grand, B.; Basdevant, A. Weight gain at the time of menopause. Hum. Reprod. 1997, 12, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R.; Castelo-Branco, C.; Chedraui, P.; Lumsden, M.A.; Nappi, R.E.; Shah, D.; Villaseca, P. Understanding weight gain at menopause. Climacteric 2012, 15, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Polotsky, H.N.; Polotsky, A.J. Metabolic implications of menopause. Semin. Reprod. Med. 2010, 28, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Ley, C.J.; Belinda Lees, B.; Stevenson, J.C. Sex- and menopause-associated in body-fat distribution. Am. J. Clin. Nutr. 1992, 55, 950–954. [Google Scholar] [PubMed]
- Toth, M.J.; Tchernof, A.; Sites, C.K.; Poehlman, E.T. Menopause-related changes in body fat distribution. Ann. N. Y. Acad. Sci. 2000, 904, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.M.; Ploutz-Snyder, L.; Kanaley, J.A. Longitudinal changes in abdominal fat distribution with menopause. Metabolism 2009, 58, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, Y.; Nakagawa, T.; Yamamoto, S.; Kato, T.; Ouchi, T.; Kikuchi, N.; Takahashi, Y.; Yokoyama, T.; Mizoue, T.; Noda, M. Adiponectin and visceral fat associate with cardiovascular risk factors. Obesity 2014, 22, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Després, J.P. Body fat distribution and risk of cardiovascular disease: An update. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.C. The emergence of the metabolic syndrome with menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Calton, E.K.; Miller, V.S.; Soares, M.J. Factors determining the risk of the metabolic syndrome: Is there a central role for adiponectin? Eur. J. Clin. Nutr. 2013, 67, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Sanchez, H.; Harhay, M.; Harhay, M.; McElligott, S. Prevalence and trends of metabolic sydrome in the adult US population, 1999–2010. J. Am. Coll. Cardiol. 2014, 62, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Jouyandeh, Z.; Nayebzadeh, F.; Qorbani, M.; Asadi, M. Metabolic syndrome and menopause. J. Diabetes Metab. Disord. 2013. [Google Scholar] [CrossRef] [PubMed]
- Carmena, R. Atherogenic lipoprotein particles in atherosclerosis. Circulation 2004. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Stevenson, J.C.; Crook, D.; Johnston, D.G.; Godsland, I.F. Effects of menopause, gender and age on lipids and high-density lipoprotein cholesterol subfractions. Maturitas 2015, 81, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Badimon, J.J.; Rosenson, R.S. Beginning to understand high-density lipoproteins. Endocrinol. Metab. Clin. N. Am. 2014, 43, 913–947. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Badimón, J.J. High-density lipoprotein and cardiovascular risk reduction: Promises and realities. Rev. Esp. Cardiol. 2012, 65, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Assmann, G.; Gotto, A.M. HDL cholesterol and protective factors in atherosclerosis. Circulation 2004, 109, III8–III14. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J.; Fernandez, M.L. Dietary approaches to improving atheroprotective HDL functions. Food Funct. 2013, 4, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.M.; Wonnerth, A.; Huber, K.; Wojta, J. Cardiovascular disease risk reduction by raising HDL cholesterol—Current therapies and future opportunities. Br. J. Pharmacol. 2012, 167, 1177–1194. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-L.; Lin, S.-Q.; Shen, Y.; Chen, Y.; Zhang, Y.; Chen, F.-L. Serum lipid profile changes during the menopausal transition in Chinese women: a community-based cohort study. Menopause 2010, 17, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.J.; Kim, T.H.; Ryu, W.S.; Ryoo, U.H. Influence of menopause on high density lipoprotein-cholesterol and lipids. J. Korean Med. Sci. 2000, 15, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Derby, C.A.; Crawford, S.L.; Pasternak, R.C.; Sowers, M.; Sternfeld, B.; Matthews, K.A. Lipid changes during the menopause transition in relation to age and weight. Am. J. Epidemiol. 2009, 169, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Blesso, C.N.; Andersen, C.J.; Barona, J.; Volek, J.S.; Fernandez, M.L. Whole egg consumption improves lipoprotein profiles and insulin sensitivity to a greater extent than yolk-free egg substitute in individuals with metabolic syndrome. Metabolism 2013, 62, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Fernandez, M.L.; McIntosh, M.S.; Najm, W.; Calle, M.C.; Kalynych, C.; Vukich, C.; Barona, J.; Ackermann, D.; Kim, J.E.; et al. A Mediterranean-style low-glycemic-load diet improves variables of metabolic syndrome in women, and addition of a phytochemical-rich medical food enhances benefits on lipoprotein metabolism. J. Clin. Lipidol. 2011, 5, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Al-Sarraj, T.; Saadi, H.; Calle, M.C.; Volek, J.S.; Fernandez, M.L. Carbohydrate restriction, as a first-line dietary intervention, effectively reduces biomarkers of metabolic syndrome in Emirati adults. J. Nutr. 2009, 139, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Dugan, C.E.; Barona, J.; Fernandez, M.L. Increased dairy consumption differentially improves metabolic syndrome markers in male and female adults. Metab. Syndr. Relat. Disord. 2014, 12, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [PubMed]
- Poehlman, E.T. Menopause, energy expenditure, and body composition. Acta Obstet. Gynecol. Scand. 2002, 81, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Izumi, Y.; Matsumoto, K.; Ozawa, Y.; Kasamaki, Y.; Shinndo, A.; Ohta, M.; Jumabay, M.; Nakayama, T.; Yokoyama, E.; Shimabukuro, H.; et al. Effect of age at menopause on blood pressure in postmenopausal women. Am. J. Hypertens. 2007, 20, 1045–1050. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Kim, T.-H.; Lee, H.-H.; Lee, S.H.; Wang, T. Postmenopausal hypertension and sodium sensitivity. J. Menopausal. Med. 2014, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Stachowiak, G.; Pertynnski, T.; Pertynska-Marczewska, M. Metabolic disorders in menopause. Prz. Menopauzalny 2015, 14, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Sites, C.K.; Toth, M.J.; Cushman, M.; L’Hommedieu, G.D.; Tchernof, A.; Tracy, R.P.; Poehlman, E.T. Menopause-related differences in inflammation markers and their relationship to body fat distribution and insulin-stimulated glucose disposal. Fertil. Steril. 2002, 77, 128–135. [Google Scholar] [CrossRef]
- Ford, E.S.; Giles, W.H.; Dietz, W.H. Prevalence of the metabolic syndrome among US adults. J. Am. Med. Assoc. 2002, 287, 356–359. [Google Scholar] [CrossRef]
- Lobo, R.A. Metabolic syndrome after menopause and the role of hormones. Maturitas 2008, 60, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.C.; Crook, D.; Godsland, I.F. Influence of age and menopause on serum lipids and lipoproteins in healthy women. Atherosclerosis 1993, 98, 83–90. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497.
- Ebron, K.; Andersen, C.J.; Aguilar, D.; Blesso, C.N.; Barona, J.; Dugan, C.E.; Jones, J.L.; Al-Sarraj, T.; Fernandez, M.L. A Larger body mass index is associated with increased atherogenic dyslipidemia, insulin resistance, and low-grade inflammation in individuals with metabolic syndrome. Metab. Syndr. Relat. Disord. 2015, 83, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, B.; Penninx, B.; Ryan, A.; Berman, D.; Lynch, N.; Dennis, K. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care 2003, 26, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Arimura, S.T.; Moura, B.M.; Pimentel, G.D.; Silva, M.E.R.; Sousa, M.V. Circunferencia de la cintura es mejor asociado con lipoproteinas de alta densidad (LAD-C) que con el indice de masa corporal (IMC) en adultos con sindrome metabolico. Nutr. Hosp. 2011, 26, 1328–1332. [Google Scholar] [PubMed]
- Özkaya, İ.; Bavunoglu, I.; Tunçkale, A. Body mass index and waist circumference affect lipid parameters negatively in Turkish women. Am. J. Public Health Res. 2014, 2, 226–231. [Google Scholar] [CrossRef]
- Ebbert, J.O.; Jensen, M.D. Fat depots, free fatty acids, and dyslipidemia. Nutrients 2013, 5, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Thuren, T. Hepatic lipase and HDL metabolism. Curr. Opin. Lipidol. 2000, 11, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, C.; Sparks, D.L. Hepatic lipase, high density lipoproteins, and hypertriglyceridemia. Am. J. Pathol. 2011, 178, 1429–1433. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, N.; Holmes, J.; Hockey, A.; Kumar, S. How strong is the association between abdominal obesity and the incidence of type 2 diabetes? Int. J. Clin. Pract. 2008, 62, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Casanueva, F.F.; Moreno, B.; Rodriguez-Azeredo, R.; Massien, C.; Conthe, P.; Formiguera, X.; Barrios, V.; Balkau, B. Relationship of abdominal obesity with cardiovascular disease, diabetes and hyperlipidaemia in Spain. Clin. Endocrinol. Oxf. 2010, 73, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, J.; Champagne, C.; De Jonge, L.; Smith, S. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 2008, 31, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. Inflammation and Atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Tall, A.R.; Yvan-charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015, 15, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Murillo, A.G.; Fernandez, M.-L. Lycopene and lutein and the prevention of atherosclerosis: Is supplementation necessary? EC Nutr. 2015, 465–473. [Google Scholar]
- Kaliora, A.C.; Dedoussis, G.V.Z.; Schmidt, H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 2006, 187, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.; González-Díez, M.; Badimon, L.; Martínez-González, J. Sphingosine-I-phosphate: A bioactive lipid that confers high-density lipoprotein with vasculoprotection mediated by nitric oxide and prostacyclin. Thromb. Haemost. 2009, 101, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Kuklina, E.V.; Yoon, P.W.; Keenan, N.L. Trends in high levels of low-density lipoprotein cholesterol in the United States. JAMA 2009, 310, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Santos-Gallego, C.G.; Giannarelli, C.; Badimón, J.J. Experimental models for the investigation of high-density lipoprotein-mediated cholesterol efflux. Curr. Atheroscler. Rep. 2011, 13, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Auro, K.; Joensuu, A.; Fischer, K.; Kettunen, J.; Salo, P.; Mattsson, H.; Niironen, M.; Kaprio, J.; Eriksson, J.G.; Lehtimäki, T.; et al. A metabolic view on menopause and ageing. Nat. Commun. 2014. [Google Scholar] [CrossRef] [PubMed]
- Ansell, B.J.; Watson, K.E.; Fogelman, A.M.; Navab, M.; Fonarow, G.C. High-density lipoprotein function: Recent advances. J. Am. Coll. Cardiol. 2005, 46, 1792–1798. [Google Scholar] [CrossRef] [PubMed]
- Angelica, M.D.; Fong, Y. HDL function, dysfunction, and reverse cholesterol transport. Atheroscler. Thromb. Vasc. Biol. 2008, 141, 520–529. [Google Scholar]
- Mascarenhas-Melo, F.; Sereno, J.; Teixeira-Lemos, E.; Ribeiro, S.; Rocha-Pereira, P.; Cotterill, E.; Teixeira, F.; Reis, F. Markers of increased cardiovascular risk in postmenopausal women: Focus on oxidized-LDL and HDL subpopulations. Dis. Markers 2013, 35, 19–30. [Google Scholar] [CrossRef] [PubMed]
Parameter | Premenopausal Women (n = 100) | Postmenopausal Women (n = 88) | p Value |
---|---|---|---|
Age (years) | 40.7 ± 7.9 | 57.4 ± 5.8 | p < 0.001 |
Number of MetS Parameters | 3.4 ± 0.6 | 3.3 ± 0.6 | NS 2 |
Body Weight (kg) | 90.0 ± 13.5 | 88.4 ± 17.5 | NS |
BMI (kg/m2) | 34.0 ± 5.3 | 33.0 ± 6.1 | NS |
WC 3 (cm) | 105.6 ± 10.7 | 107.6 ± 12.0 | NS |
Systolic BP 4 (mm Hg) | 128.2 ± 15.6 | 125.6 ± 15.2 | NS |
Diastolic BP (mm Hg) | 81.3 ± 9.7 | 81.7 ± 8.5 | NS |
TC 5 (mg/dL) | 216.6 ± 34.4 | 216.1 ± 37.7 | NS |
LDL-C (mg/dL) | 136.9 ± 33.3 | 134.6 ± 35.2 | NS |
HDL-C (mg/dL) | 46.7 ± 10.7 | 51.7 ± 14.9 | p < 0.01 |
TG 6 (mg/dL) | 163.9 ± 62.5 | 167.5 ± 67.0 | NS |
Glucose (mg/dL) | 96.5 ± 12.3 | 99.4 ± 13.7 | NS |
Low HDL 7 (%) | 67% | 46.5% | p < 0.01 |
Pre-Menopausal Women | Post-Menopausal Women | p Value | ||||
---|---|---|---|---|---|---|
Parameter | Low HDL (n = 67) | High HDL (n = 33) | Low HDL (n = 41) | High HDL (n = 47) | Meno-Pause Effect | Low HDL Effect |
Age (years) | 39.8 ± 7.3 | 42.6 ± 8.7 | 57.1 ± 5.7 | 57.7 ± 5.9 | <0.001 | 0.05 |
Body Weight (kg) | 89.7 ± 12.9 | 91.0 ± 15.1 | 89.1 ± 17.4 | 87.8 ± 17.7 | NS 2 | NS |
BMI (kg/m2) | 34.3 ± 5.4 | 33.6 ± 6.2 | 33.7 ± 6.2 | 32.3 ± 6.0 | NS | NS |
WC 3 (cm) | 105 ± 10 | 107 ± 12 | 109 ± 12 a | 106 ± 12 b | NS | 0.01 |
Systolic BP 4 (mm Hg) | 130 ± 15 | 126 ± 16 | 126 ± 16 | 126 ± 15 | NS | NS |
Diastolic BP (mm Hg) | 81.4 ± 10.3 | 81.7 ± 8.5 | 81.4 ± 9.7 | 82.9 ± 8.7 | NS | NS |
TC 5 (mg/dL) | 216 ± 33 | 220 ± 32 | 217 ± 37 | 218 ± 36 | NS | NS |
LDL-C (mg/dL) | 142 ± 33 a | 126 ± 3 b | 140 ± 39 a | 130 ± 32 b | NS | 0.01 |
HDL-C (mg/dL) | 42.7 ± 5.6 a | 58.9 ± 7.1 b | 40.3 ± 6.2 a | 61.7 ±13.0 b | NS | <0.001 |
TG 6 (mg/dL) | 167 ± 63 a | 171 ± 49 a | 202 ± 67 a | 138 ± 52 b | NS | <0.001 |
Glucose (mg/dL) | 97± 11 | 96 ± 14 | 101 ± 16 | 99 ± 11 | NS | NS |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandez, M.L.; Murillo, A.G. Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome. Healthcare 2016, 4, 20. https://doi.org/10.3390/healthcare4010020
Fernandez ML, Murillo AG. Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome. Healthcare. 2016; 4(1):20. https://doi.org/10.3390/healthcare4010020
Chicago/Turabian StyleFernandez, Maria Luz, and Ana Gabriela Murillo. 2016. "Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome" Healthcare 4, no. 1: 20. https://doi.org/10.3390/healthcare4010020
APA StyleFernandez, M. L., & Murillo, A. G. (2016). Postmenopausal Women Have Higher HDL and Decreased Incidence of Low HDL than Premenopausal Women with Metabolic Syndrome. Healthcare, 4(1), 20. https://doi.org/10.3390/healthcare4010020