Updates on the Management of Non-Melanoma Skin Cancer (NMSC)
Abstract
:1. Introduction
2. Brief Overview of Etiology, Risk Factors and Staging
2.1. Etiology and Risk Factors
2.2. Staging
3. Prevention of NMSC
4. Diagnosis and Types of Biopsy Techniques
4.1. Biopsy Techniques
4.2. Low-Risk versus High-Risk Lesions
4.3. The Role of Imaging
5. Treatment of NMSC: Overview of Surgical and Non-Surgical Treatment Modalities; NCCN Guidelines and Surgical Margins
5.1. Surgical Approach: Mohs Micrographic Surgery vs. Surgical Excision
5.2. Curettage and Electrodessication (C&E), Cryosurgery
5.3. Photodynamic Therapy (PDT)
5.4. Laser Therapy
5.5. Radiation Therapy
5.6. Chemotherapy and Immunotherapy
5.7. The Hedgehog Pathway Inhibitors
5.8. Topical Agents
6. Utility of Sentinel Lymph Node Biopsy (SLNB) and Regional Lymphadenectomy
7. Conclusions
Author Contributions
Conflicts of Interest
Financial Disclosure Statement
References
- Lomas, A.; Leonardi-Bee, J.; Bath-Hextall, F. A systematic review of worldwide incidence of nonmelanoma skin cancer. Br. J. Dermatol. 2012, 166, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.W.; Weinstock, M.A.; Harris, A.R.; Hinckley, M.R.; Feldman, S.R.; Fleischer, A.B.; Coldiron, B.M. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch. Dermatol. 2010, 146, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer. Adv. Exp. Med. Biol. 2014, 810, 120–140. [Google Scholar] [PubMed]
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Katalinic, A.; Kunze, U.; Schafer, T. Epidemiology of cutaneous melanoma and non-melanoma skin cancer in Schleswig-Holstein, Germany: Incidence, clinical subtypes, tumour stages and localization (epidemiology of skin cancer). Br. J. Dermatol. 2003, 149, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Losquadro, W. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer. Facial Plast. Surg. Clin. N. Am. 2017, 25, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Eide, M.J.; Weinstock, M.A. Epidemiology of skin cancer. In Cancer of the Skin, 2nd ed.; Rigel, D.S., Robinson, J.K., Ross, M., Friedman, R.J., Cockerell, C.J., Lim, H.W., Stockfleth, E., Kirkwood, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 44–55. [Google Scholar]
- Wollina, U. Carcinosarcoma of skin (sarcomatoid carcinoma)—A rare non-melanoma skin cancer (Case Review). Georgian Med. News 2017, 263, 7. [Google Scholar]
- Barton, V.; Armeson, K.; Hampras, S.; Ferris, L.K.; Visvanathan, K.; Rollison, D.; Alberg, A.J. Nonmelanoma skin cancer and risk of all-cause and cancer-related mortality: A systematic review. Arch. Dermatol. Res. 2017, 309, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.; Weinstock, M. Nonmelanoma Skin Cancer Mortality (1988–2000). Arch. Dermatol. 2004, 140, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Guy, G.; Machlin, S.; Ekwueme, D.; Yabroff, K. Prevalence and Costs of Skin Cancer Treatment in the U.S., 2002−2006 and 2007−2011. Am. J. Prev. Med. 2015, 48, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Urbach, F.; Forbes, P.D.; Davies, R.E.; Berger, D. Cutaneous photobiology: Past, present and future. J. Investig. Dermatol. 1976, 67, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Fears, T.; Scotto, J.; Schneiderman, M. Mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. Am. J. Epidemiol. 1977, 105, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Fears, T.; Scotto, J.; Schneiderman, M. The Authors Reply. Am. J. Epidemiol. 1978, 107, 260–262. [Google Scholar] [CrossRef]
- Armstrong, B.; Cust, A. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma. Cancer Epidemiol. 2017, 48, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Hampras, S.; Locke, F.; Chavez, J.; Patel, P.S.; Giuliano, A.R.; Miller, K.; Gheit, T.; Tommasino, M.; Rollison, D.E. Prevalence of cutaneous viral infections in incident cutaneous squamous cell carcinoma detected among chronic lymphocytic leukemia and hematopoietic stem cell transplant patients. Leuk. Lymphoma 2017, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hiesse, C.; Rieu, P.; Kriaa, F.; Larue, J.R.; Goupy, C.; Neyrat, N.; Charpentier, B. Malignancy after renal transplantation: Analysis of incidence and risk factors in 1700 patients followed during a 25-year period. Transplant. Proc. 1997, 29, 831–833. [Google Scholar] [CrossRef]
- Greenberg, J.N.; Zwald, F.O. Management of Skin Cancer in Solid-organ Transplant Recipients: A Multidisciplinary Approach. Dermatol. Clin. 2011, 29, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Penn, I. Post-transplant malignancy: The role of immunosuppression. Drug Saf. 2000, 23, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Pollard, J.D.; Hanasono, M.M.; Mikulec, A.A.; Le, Q.T.; Terris, D.J. Head and neck cancer in cardiothoracic transplant recipients. Laryngoscope 2000, 110, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Marzuka, A.G.; Book, S.E. Basal cell carcinoma: Pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J. Biol. Med. 2015, 88, 167–179. [Google Scholar] [PubMed]
- Fogel, A.; Sarin, K.; Teng, J. Genetic diseases associated with an increased risk of skin cancer development in childhood. Curr. Opin. Pediatr. 2017, 29, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Amaral, T.; Garbe, C. Non-melanoma skin cancer: New and future synthetic drug treatments. Exp. Opin. Pharmacother. 2017, 18, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Perkins, J.L.; Liu, Y.; Mitby, P.A.; Neglia, J.P.; Hammond, S.; Stovall, M.; Meadows, A.T.; Hutchinson, R.; Dreyer, Z.E.; Robinson, L.L.; Mertens, A.C. Nonmelanoma skin cancer in survivors of childhood and adolescent cancer: A report from the childhood cancer survivor study. J. Clin. Oncol. 2005, 23, 3733–3741. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Nelson, H.H.; Zens, M.S.; Linet, M.; Stukel, T.A.; Spencer, S.; Applebaum, K.M.; Mott, L.; Mabuchi, K. Squamous cell and basal cell carcinoma of the skin in relation to radiation therapy and potential modification of risk by sun exposure. Epidemiol. Camb. Mass 2007, 18, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Watt, T.C.; Inskip, P.D.; Stratton, K.; Smith, S.A.; Kry, S.F.; Sigurdson, A.L.; Stovall, M.; Leisenning, W.; Robison, L.L.; Mertens, A.C. Radiation-related risk of basal cell carcinoma: A report from the Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2012, 104, 1240–1250. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.L.; Kopecky, K.J.; Mathes, R.W.; Leisenring, W.M.; Friedman, D.L.; Deeg, H.J. Basal cell skin cancer after total-body irradiation and hematopoietic cell transplantation. Radiat. Res. 2009, 171, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Khalesi, M.; Whiteman, D.C.; Tran, B.; Kimlin, M.G.; Olsen, C.M.; Neale, R.E. A meta-analysis of pigmentary characteristics, sun sensitivity, freckling and melanocytic nevi and risk of basal cell carcinoma of the skin. Cancer Epidemiol. 2013, 37, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Bernat Garcia, J.; Morales Suarez-Varela, M.; Vilata, J.J.; Marguina, A.; Pallardo, L.; Crespo, J. Risk factors for non-melanoma skin cancer in kidney transplant patients in a Spanish population in the Mediterranean region. Acta Derm. Venereol. 2013, 93, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Zilinska, Z.; Sersenova, M.; Chrastina, M.; Breza, J., Sr.; Bena, L.; Baltesova, T.; Jurcina, A.; Roland, R.; Lackova, E.; Cellar, M.; Laca, L.; Dedinska, I. Occurrence of malignancies after kidney transplantation in adults: Slovak multicenter experience. Neoplasma 2017, 64, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Parren, L.J.; Frank, J. Hereditary tumour syndromes featuring basal cell carcinomas. Br. J. Dermatol. 2011, 165, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Nelson, H.H.; Sehr, P.; Waterboer, T.; Stukel, T.A.; Andrew, A.; Green, A.C.; Bavinck, J.N.; Perry, A.; Spencer, S.; et al. Human papillomavirus infection and incidence of squamous cell and basal cell carcinomas of the skin. J. Natl. Cancer Inst. 2006, 98, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.S.; Karagas, M.R.; Perry, A.E.; Nelson, H.H. Exposure profiles and human papillomavirus infection in skin cancer: An analysis of 25 genus beta-types in a population-based study. J. Investig. Dermatol. 2008, 128, 2888–2893. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, V.; Stratigos, A.J.; Tsao, H. Hereditary nonmelanoma skin cancer. Semin. Cutan. Med. Surg. 2012, 31, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Cerdan Santacruz, C.; Diaz del Arco, C.; Rubio Herrera, M.; Sanchez-Pernaute, A.; Torres Garcia, A. Squamous Cell Carcinoma of the Peristomal Skin of a Gastrostomy. J. Wound Ostomy Cont. Nurs. 2017, 44, 384–386. [Google Scholar] [CrossRef] [PubMed]
- Oh, P.; Gill, K.; Lynch, L.; Cowles, R. Primary squamous cell carcinoma arising at a gastrostomy tube site. J. Pediatr. Surg. 2011, 46, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Arons, M.S.; Lynch, J.R.; Lewis, S.R.; Blocker, T.G., Jr. Scar tissue carcinoma, part I: A clinical study with special reference to burn scar carcinoma. Ann. Surg. 1965, 161, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Ramanujam, P.; Venkatesh, K.S. An unusual case of squamous cell carcinoma arising at the stomal site: Case report and review of the literature. J. Gastrointest. Surg. 2002, 6, 630–631. [Google Scholar] [CrossRef]
- Losanoff, J.E.; Sochaki, P.; Khoury, N.; Levi, E.; Salwen, W.A.; Basson, M.D. Squamous cell carcinoma complicating chronic suppurative hydradenitis. Am. Surg. 2011, 77, 1449–1453. [Google Scholar] [PubMed]
- Lavogiez, C.; Delaporte, E.; Darras-Vercambre, S.; Martin De Lassalle, E.; Castillo, C.; Mirabel, X.; Laurent, F.; Patenotre, P.; Gheit, T.; Talmant, J.C.; et al. Clinicopathological study of 13 cases of squamous cell carcinoma complicating hidradenitis suppurativa. Dermatology 2010, 220, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Cruickshank, A.H.; Gaskell, E. Jean-Nicolas Marjolin: Destined to be forgotten? Med. Hist. 1963, 7, 383–384. [Google Scholar] [CrossRef] [PubMed]
- Metwally, I.; Roshdy, A.; Saleh, S.; Ezzat, M. Epidemiology and predictors of recurrence of Marjolin’s ulcer: Experience from Mansoura Universityxs. Ann. R. Coll. Surg. Engl. 2017, 99, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Bartos, V.; Kullova, M. Basal Cell Carcinoma Multiplicity–A Retrospective Analysis of 899 Biopsy-proven Patients from a Single Institute. Klinicka Onkol. 2017, 30, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Fryer, A.A.; Smith, A.; Lear, J.; Bowers, B.; Jones, P.W.; Strange, R.C. Cutaneous basal cell carcinomas: Distinct host factors are associated with the development of tumors on the trunk and on the head and neck. Cancer 2001, 92, 354–358. [Google Scholar] [CrossRef]
- Karagas, M.R.; Greenberg, E.R. Unresolved issues in the epidemiology of basal cell and squamous cell skin cancer. In Skin Cancer: Mechanisms and Human Relevance; Mukhtar, H., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 79–86. [Google Scholar]
- Kiiski, V.; de Vries, E.; Flohil, S.C.; Bill, M.J.; Hofman, A.; Stricker, B.H.; Nijsten, T. Risk factors for single and multiple basal cell carcinomas. Arch. Dermatol. 2010, 146, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Flohil, S.C.; Koljenovic, S.; de Haas, E.R.; Overbeek, L.I.; de Vries, E.; Nijsten, T. Cumulative risks and rates of subsequent basal cell carcinomas in Netherlands. Br. J. Dermatol. 2011, 165, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Lovatt, T.J.; Lear, J.T.; Bastrilles, J.; Wong, C.; Griffiths, C.E.; Samarasinghe, V.; Roebuck, J.; Ramachandran, S.; Smith, A.G.; Jones, P.W.; et al. Associations between ultraviolet radiation, basal cell carcinoma site and histology, host characteristics, and rate of development of further tumors. J. Am. Acad. Dermatol. 2005, 52, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Weistenhofer, W.; Hiller, J.; Drexler, H.; Kiesel, J. Retrospective evaluation of exposure to natural UV radiation: Experiences with the online UV history tool in a field study. JDDG J. Dtsch. Dermatol. Ges. 2017, 15, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Schaart, F.; Garbe, C.; Orfanos, C. Disappearance of the ozone layer and skin cancer: Attempt at risk assessment. Hautarzt 1993, 44, 63–68. [Google Scholar] [PubMed]
- Silverberg, M.J.; Leyden, W.; Warton, E.M.; Quesenberry, C.P., Jr.; Engels, E.A.; Asgari, M.M. HIV infection status, immunodeficiency, and the incidence of non-melanoma skin cancer. J. Natl. Cancer Inst. 2013, 105, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Asgari, M.; Ray, G.; Quesenberry, C.; Katz, K.; Silverberg, M. Association of Multiple Primary Skin Cancers with Human Immunodeficiency Virus Infection, CD4 Count, and Viral Load. JAMA Dermatol. 2017, 153, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Moloney, F.; Comber, H.; O’Lorcain, P.; O’Kelly, P.; Conlon, P.; Murphy, G. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br. J. Dermatol. 2006, 154, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Lindelof, B.; Sigurgeirsson, B.; Gabel, H.; Stern, R. Incidence of skin cancer in 5356 patients following organ transplantation. Br. J. Dermatol. 2000, 143, 513–519. [Google Scholar] [PubMed]
- Buell, J.; Trofe, J.; Hanaway, M.; Beebe, T.M.; Gross, T.G.; Alloway, R.R.; First, M.R.; Woodle, E.S. Immunosuppression and merkel cell cancer. Transpl. Proc. 2002, 34, 1780–1781. [Google Scholar] [CrossRef]
- Vakharia, P.; Nardone, B.; Schlosser, B.; Lee, D.; Serrano, L.; West, D. Chronic exposure to tetracyclines and subsequent diagnosis for non-melanoma skin cancer in a large Midwestern U.S. patient population. J. Eur. Acad. Dermatol. Venereol. 2017. [Google Scholar] [CrossRef] [PubMed]
- FDA. Tattoos & Permanent Makeup: Fact Sheet. Available online: https://www.fda.gov/cosmetics/productsingredients/products/ucm108530.htm (accessed on 24 July 2017).
- Junqueira, A.; Wanat, K.; Farah, R. Squamous neoplasms arising within tattoos: Clinical presentation, histopathology and management. Clin. Exp. Dermatol. 2017, 42, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Burton, K.; Ashack, K.; Khachemoune, A. Cutaneous Squamous Cell Carcinoma: A Review of High-Risk and Metastatic Disease. Am. J. Clin. Dermatol. 2016, 17, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Ting, P.T.; Kasper, R.; Arlette, J.P. Metastatic basal cell carcinoma: Report of two cases and literature review. J. Cutan. Med. Surg. 2005, 9, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Toll, A.; Margalef, P.; Masferrer, E.; Ferrandiz-Pulido, C.; Gimeno, J.; Pujol, R.M.; Bigas, A.; Espinosa, L. Active nuclear IKK correlates with metastatic risk in cutaneous squamous cell carcinoma. Arch. Dermatol. Res. 2015, 307, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Karia, P.; Jambusaria-Pahlajani, A.; Harrington, D.; Murphy, G.; Qureshi, A.; Schmults, C. Evaluation of American Joint Committee on Cancer, International Union Against Cancer, and Brigham and Women’s Hospital Tumor Staging for Cutaneous Squamous Cell Carcinoma. J. Clin. Oncol. 2014, 32, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Motaparthi, K.; Kapil, J.; Velazquez, E. Cutaneous Squamous Cell Carcinoma. Adv. Anatomic Pathol. 2017, 24, 171–194. [Google Scholar] [CrossRef] [PubMed]
- Edge, S.B.; Byrd, D.R.; Compton, C.C.; Fritz, A.G.; Greene, F.L.; Trotti, A. Cutaneous Squamous Cell Carcinoma and Other Cutaneous Carcinomas American Joint Committee on Cancer. In AJCC Cancer Staging Handbook, 7th ed.; Springer: New York, NY, USA, 2010; Chapter 29. [Google Scholar]
- Califano, J.A.; Lydiatt, W.M.; Nehal, K.S.; O’Sullivan, B.; Schmults, C.; Seethala, R.R.; Weber, R.S.; Shah, J.P. Chapter 15: Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017; pp. 171–181. [Google Scholar]
- McCormack, C. Differences in age and body site distribution of the histological subtypes of basal cell carcinoma. A possible indicator of differing causes. Arch. Dermatol. 1997, 133, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Muzic, J.; Schmitt, A.; Wright, A.; Alniemi, D.T.; Zubair, A.S.; Olazagasti Lourido, J.M.; Sosa Seda, I.M.; Weaver, A.L.; Baum, C.L. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma. Mayo Clin. Proc. 2017, 92, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Verkouteren, J.; Ramdas, K.; Wakkee, M.; Nijsten, T. Epidemiology of basal cell carcinoma: Scholarly review. Br. J. Dermatol. 2017, 177, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Olson, A.L.; Gaffney, C.A.; Starr, P.; Dietrich, A.J. The impact of an appearance-based educational intervention on adolescent intention to use sunscreen. Health Educ. Res. 2008, 23, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Reeder, A.I.; Jopson, J.A.; Gray, A. Sun protection policies and practices in New Zealand primary schools. N. Z. Med. J. 2012, 125, 70–82. [Google Scholar] [PubMed]
- Doran, C.M.; Ling, R.; Byrnes, J.; Crane, M.; Shakeshaft, A.P.; Searles, A.; Perez, D. Benefit Cost Analysis of Three Skin Cancer Public Education Mass-Media Campaigns Implemented in New South Wales, Australia. PLoS ONE 2016, 11, e0147665. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.K.; Mallett, K.A. The duty to inspect the skin and counsel those at risk to develop melanoma. JAMA 2009, 301, 1702–1704. [Google Scholar] [CrossRef] [PubMed]
- Reichrath, J.; Saternus, R.; Vogt, T. Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond. Mol. Cell. Endocrinol. 2017, 453, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Martin, A.; Choy, B.; Fernandez-Penas, P.; Dalziell, R.A.; McKenzie, C.A.; Scolyer, R.A.; Dhillon, H.M.; Vardy, J.L.; Kricker, A.; et al. A Phase 3 Randomized Trial of Nicotinamide for Skin-Cancer Chemoprevention. N. Engl. J. Med. 2015, 373, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Minocha, R.; Damian, D.; Halliday, G. Melanoma and non-melanoma skin cancer chemoprevention: A role for nicotinamide? Photodermatol. Photoimmunol. Photomed. 2017. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Ciccarese, G.; Cogorno, L.; Calvi, C.; Marsano, L.A.; Parodi, A. Prevention of non-melanoma skin cancers with nicotinamide in transplant recipients: A case-control study. Eur. J. Dermatol. 2017, 27, 382–385. [Google Scholar] [PubMed]
- Cummings, S.R.; Trip, M.K.; Herrmann, N.B. Approaches to the prevention and control of skin cancer. Cancer Metastasis Rev. 1997, 16, 309–327. [Google Scholar] [CrossRef]
- Malvehy, J.; Pellacani, G. Dermoscopy, Confocal Microscopy and other Non-invasive Tools for the Diagnosis of Non-Melanoma Skin Cancers and Other Skin Conditions. Acta Derm. Venereol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Werner, R.N.; Stockfleth, E.; Connolly, S.M.; Correia, O.; Erdmann, R.; Foley, P.; Gupta, A.K.; Jacobs, A.; Kerl, H.; Lim, H.W.; et al. Evidence- and consensus-based (S3) Guidelines for the treatment of actinic keratosis–International League of Dermatological Societies in cooperation with the European Dermatology Forum–short version. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Dourmishev, L.; Rusinova, D.; Botev, I. Clinical variants, stages, and management of basal cell carcinoma. Indian Dermatol. Online J. 2013, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Walling, H.; Fosko, S.; Geraminejad, P.; Whitaker, D.; Arpey, C. Aggressive basal cell carcinoma: Presentation, pathogenesis, and management. Cancer Metastasis Rev. 2004, 23, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Rubin, A.I.; Chen, E.H.; Ratner, D. Basal-cell carcinoma. N. Engl. J. Med. 2005, 353, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, B.; Duarte, C. A prospective evaluation of the candle wax sign: A visual clue to diagnose aggressive basal cell carcinoma. J. Am. Acad. Dermatol. 2017, 77, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Murzaku, E.; Hayan, S.; Rao, B. Methods and rates of dermoscopy usage: A cross-sectional survey of US dermatologists stratified by years in practice. J. Am. Acad. Dermatol. 2014, 71, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.J.; Oliviero, M.; Rabinovitz, H. Dermoscopy and its impact on skin cancer diagnostics. J. Drugs Dermatol. 2010, 9, 129–130. [Google Scholar] [PubMed]
- Felder, S.; Rabinovitz, H.; Oliviero, M.; Kopf, A. Dermoscopic differentiation of a superficial basal cell carcinoma and squamous cell carcinoma in situ. Dermatol. Surg. 2006, 32, 423–425. [Google Scholar]
- Amjadi, M.; Coventry, B.; Greenwood, A.M.J. Non-Invasive Tools for Improving Diagnosis of Non-Melanoma Skin Cancer: A Review. Int. J. Plast. Surg. 2010, 7, 1–5. [Google Scholar]
- Mu, E.; Lewin, J.; Stevenson, M.; Meehan, S.; Carucci, J.; Gareau, D. Use of Digitally Stained Multimodal Confocal Mosaic Images to Screen for Nonmelanoma Skin Cancer. JAMA Dermatol. 2016, 152, 1335. [Google Scholar] [CrossRef] [PubMed]
- Que, S.; Grant-Kels, J.; Longo, C.; Pellacani, G. Basics of Confocal Microscopy and the Complexity of Diagnosing Skin Tumors. Dermatol. Clin. 2016, 34, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.; Carrington, P.; Smoller, B. Basal cell carcinoma: A comparison of shave biopsy versus punch biopsy techniques in subtype diagnosis. J. Am. Acad. Dermatol. 1999, 41, 69–71. [Google Scholar] [CrossRef]
- Gurunluoglu, R.; Kubek, E.; Arton, J.; Olsen, A.; Bronsert, M. Nonpersistence of Basal Cell Carcinoma after Diagnostic Shave Biopsy. Ann. Plast. Surg. 2015, 74, 695–698. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, J.; Alkalay, R.; Hazaz, B. Residual skin cancer after preoperative biopsy: Evaluation by Mohs micrographic surgery. Int. J. Dermatol. 2004, 43, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, J.; Alkalay, R. Histological evaluation of residual basal cell carcinoma after shave biopsy prior to Mohs micrographic surgery. J. Eur. Acad. Dermatol. Venereol. 2010, 25, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Grelck, K.; Sukal, S.; Rosen, L.; Suciu, G. Incidence of Residual Nonmelanoma Skin Cancer in Excisions after Shave Biopsy. Dermatol. Surg. 2013, 39, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Kimyai-Asadi, A.; Goldberg, L.; Jih, M. Accuracy of serial transverse cross-sections in detecting residual basal cell carcinoma at the surgical margins of an elliptical excision specimen. J. Am. Acad. Dermatol. 2005, 53, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Roozeboom, M.; Mosterd, K.; Winnepenninckx, V.; Nelemans, P.; Kelleners-Smeets, N. Agreement between histological subtype on punch biopsy and surgical excision in primary basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2012, 27, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Schnebelen, A.; Gardner, J.; Shalin, S. Margin Status in Shave Biopsies of Nonmelanoma Skin Cancers: Is It Worth Reporting? Arch. Pathol. Lab. Med. 2016, 140, 678–681. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wu, A.; Huilgol, S.; Selva, D. Accuracy of Biopsy in Subtyping Periocular Basal Cell Carcinoma. Ophthalmic Plast. Reconstr. Surg. 2015, 31, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Kadouch, D.; Leeflang, M.; Elshot, Y.; Longo, C.; Ulrich, M.; van der Wal, A.C.; Wolkerstorfer, A.; Bekkenk, M.W.; de Rie, M.A. Diagnostic accuracy of confocal microscopy imaging versus punch biopsy for diagnosing and subtyping basal cell carcinoma. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- Que, S.; Grant-Kels, J.; Rabinovitz, H.; Oliviero, M.; Scope, A. Application of Handheld Confocal Microscopy for Skin Cancer Diagnosis. Dermatol. Clin. 2016, 34, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Cinotti, E.; Perrot, J.L.; Labeille, B.; Douchet, C.; Mottet, N.; Cambazard, F. Laser photodynamic treatment for in situ squamous cell carcinoma of the glans monitored by reflectance confocal microscopy. Australas. J. Dermatol. 2014, 55, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Kai, A.C.; Richards, T.; Coleman, A.; Mallipeddi, R.; Barlow, R.; Craythorne, E.E. Five-year recurrence rate of lentigo maligna after treatment with imiquimod. Br. J. Dermatol. 2016, 174, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Sierra, H.; Cordova, M.; Rajadhyaksha, M. Confocal microscopy-guided laser ablation for superficial and early nodular basal cell carcinoma: A promising surgical alternative for superficial skin cancers. JAMA Dermatol. 2014, 150, 994–998. [Google Scholar] [CrossRef] [PubMed]
- Phelps, R.; Lebwohl, M. Biopsy Techniques. JAMA Dermatol. 2014, 150, 12. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Dermatology|Association. Clinical Guidelines. Available online: https://www.aad.org/practicecenter/quality/clinical-guidelines#undefined (accessed on 20 July 2017).
- National Comprehensive Cancer Network. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nmsc_blocks.pdf (accessed on 18 July 2017).
- Humphreys, T.; Shah, K.; Wysong, A.; Lexa, F.; MacFarlane, D. The role of imaging in the management of patients with nonmelanoma skin cancer: When is Imaging Necessary? J. Am. Acad. Dermatol. 2017, 76, 591–607. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.; Shah, K.; Wysong, A.; Wortsman, X.; Humphreys, T. The role of imaging in the management of patients with nonmelanoma skin cancer: Diagnostic Modalities and Applications. J. Am. Acad. Dermatol. 2017, 76, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Sun, Q. A Network Meta-Analysis of Non-Melanoma Skin Cancer (NMSC) Treatments: Efficacy and Safety Assessment. J. Cell. Biochem. 2017, 118, 3686–3695. [Google Scholar] [CrossRef] [PubMed]
- Griffin, L.; Lear, J. Photodynamic Therapy and Non-Melanoma Skin Cancer. Cancers 2016, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Lee, P. Photodynamic Therapy for Non-Melanoma Skin Cancers. Cancers 2016, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, I.; Donnelly, R. Microneedle-assisted photodynamic therapy: Delivery of a NIR photosensitiser for the treatment of skin cancers. Photodiagnosis Photodyn. Ther. 2017, 17, A63. [Google Scholar] [CrossRef]
- Cheraghi, N.; Cognetta, A.; Goldberg, D. Radiation Therapy in Dermatology: Non-Melanoma Skin Cancer. J. Drugs Dermatol. 2017, 16, 464–469. [Google Scholar] [PubMed]
- Abramson, A.; Krasny, M.; Goldman, G. Tangential Shave Removal of Basal Cell Carcinoma. Dermatol. Surg. 2013, 39, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Taheri, A.; Mansoori, P.; Laffer, M.; Feldman, S. Tangential Shave Removal of Basal Cell Carcinoma. Dermatol. Surg. 2013, 39, 1945–1946. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Garlick, J.; Mcmullin, J.; Siddigi, F.; Crombie, C.; Rockwell, W.B.; Gociman, B. Surgical Excision of Non–Melanoma Skin Cancer in an Elderly Veteran’s Affairs Population. Plast. Reconstr. Surg. Glob. Open 2014, 2, e277. [Google Scholar] [CrossRef] [PubMed]
- Gracia-Cazana, T.; Gonzalez, S.; Gilaberte, Y. Resistance of Nonmelanoma Skin Cancer to Nonsurgical Treatments. Part I: Topical Treatments. Actas Dermo-Sifiliogr. 2016, 107, 730–739. [Google Scholar] [CrossRef]
- Gracia-Cazana, T.; Salazar, N.; Zamarron, A.; Mascaraque, M.; Lucena, S.; Juarranz, Á. Resistance of Nonmelanoma Skin Cancer to Nonsurgical Treatments. Part II: Photodynamic Therapy, Vismodegib, Cetuximab, Intralesional Methotrexate, and Radiotherapy. Actas Dermo-Sifiliogr. 2016, 107, 740–750. [Google Scholar] [CrossRef] [PubMed]
- Telfer, N.R.; Colver, G.B.; Morton, C.A. Guidelines for the management of basal cell carcinoma. Br. J. Dermatol. 2008, 159, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Motley, R.; Kersey, P.; Lawrence, C. Multiprofessional guidelines for the management of the patient with primary cutaneous squamous cell carcinoma. Br. J. Dermatol. 2002, 146, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bath-Hextall, F.J.; Perkins, W.; Bong, J.; Williams, H.C. Interventions for basal cell carcinoma of the skin. Cochrane Database Syst. Rev. 2007. [Google Scholar] [CrossRef]
- Smeets, N.W.; Krekels, G.A.; Ostertag, J.U.; Essers, B.A.; Dirksen, C.D.; Nieman, F.H.; Neuman, H.A. Surgical excision vs. Mohs’ micrographic surgery for basal-cell carcinoma of the face: Randomised controlled trial. Lancet 2004, 364, 1766–1772. [Google Scholar] [CrossRef]
- Lansbury, L.; Bath-Hextall, F.; Perkins, W.; Stanton, W.; Leonardi-Bee, J. Interventions for nonmetastatic squamous cell carcinoma of the skin: Systematic review and pooled analysis of observational studies. BMJ 2013, 347, f6153. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, E.; Dulmage, B.; Vargo, J.; Balasubramani, G.; Beriwal, S. Underutilization of Mohs Micrographic Surgery for Less Common Cutaneous Malignancies in the United States. Dermatol. Surg. 2016, 42, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Moncrieff, M.; Shah, A.; Igali, L.; Garioch, J. False-negative rate of intraoperative frozen section margin analysis for complex head and neck nonmelanoma skin cancer excisions. Clin. Exp. Dermatol. 2015, 40, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.; Mann, M.; Honda, K.; Vidimos, A.; Schluchter, M.D.; Straight, B.; Bogyo, M.; Popkin, D.; Basilion, J.P. Rapid visualization of nonmelanoma skin cancer. J. Am. Acad. Dermatol. 2017, 76, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Schell, A.; Russell, M.; Park, S. Suggested Excisional Margins for Cutaneous Malignant Lesions Based on Mohs Micrographic Surgery. JAMA Facial Plast. Surg. 2013, 15, 337. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, W.E. Therapy for basal cell epitheliomas by curettage only: Further study. Arch. Dermatol. 1983, 119, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Reymann, F. 15 years’ experience with treatment of basal cell carcinomas of the skin with curettage. Acta Derm. Venereol. Suppl. Stockh 1985, 120, 56–59. [Google Scholar] [PubMed]
- Barlow, J.O.; Zalla, M.J.; Kyle, A.; DiCaudo, D.J.; Lim, K.K.; Yiannias, J.A. Treatment of basal cell carcinoma with curettage alone. J. Am. Acad. Dermatol. 2006, 54, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Kauvar, A.; Cronin, T., Jr.; Roenigk, R.; Hruza, G.; Bennett, R. Consensus for Nonmelanoma Skin Cancer Treatment; basal cell carcinoma, including a cost analysis of treatment methods. Dermatol. Surg. 2015, 41, 550–571. [Google Scholar] [CrossRef] [PubMed]
- Kauvar, A.; Arpey, C.; Hruza, G.; Olbricht, S.; Bennett, R. Consensus for Nonmelanoma Skin Cancer Treatment, Part II; Squamous Cell Carcinoma, Including a Cost Analysis of Treatment Methods. Dermatol. Surg. 2015, 41, 1214–1240. [Google Scholar] [CrossRef] [PubMed]
- Blixt, E.; Nelsen, D.; Stratman, E. Recurrence rates of aggressive histologic types of basal cell carcinoma after treatment with electrodesiccation and curettage alone. Dermatol. Surg. 2013, 39, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.K.; Kopf, A.W.; Grin, C.M.; Bart, R.S.; Levenstein, M.J. Recurrence rates of treated basal cell carcinomas. Part 2: Curettage-electrodesiccation. J. Dermatol. Surg. Oncol. 1991, 17, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.E.; Carroll, R.J.; Day, C.L., Jr. Mohs surgery is the treatment of choice for recurrent (previously treated) basal cell carcinoma. J. Dermatol. Surg. Oncol. 1989, 15, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.E.; Carroll, R.J.; Day, C.L., Jr. Long-term recurrence rates in previously untreated (primary) basal cell carcinoma: Implications for patient follow-up. J. Dermatol. Surg. Oncol. 1989, 15, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.C.; Pottier, R.H.; Pross, D.C. Photodynamic therapy with endogenous protoporphyrin IX: Basic principles and present clinical experience. J. Photochem. Photobiol. B Biol. 1990, 6, 143–148. [Google Scholar] [CrossRef]
- Grant, W.E.; Hopper, C.; Speight, P.M.; Macrobert, A.J.; Brown, S.G. Photodynamic therapy of malignant and premalignant lesions in patients with ‘field cancerization’ of the oral cavity. J. Laryngol. Otol. 1993, 107, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.E.; Speight, P.M.; Hopper, C.; Brown, S.G. Photodynamic therapy: An effective, but non-selective treatment for superficial cancers of the oral cavity. Int. J. Cancer 1997, 71, 937–942. [Google Scholar] [CrossRef]
- Lou, P.J.; Jager, H.R.; Jones, L.; Theodossy, T.; Brown, S.G.; Hopper, C. Interstitial photodynamic therapy as salvage treatment for recurrent head and neck cancer. Br. J. Cancer 2004, 91, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Jager, H.R.; Taylor, M.N.; Theodossy, T.; Hopper, C. MR imaging-guided interstitial photodynamic laser therapy for advanced head and neck tumors. AJNR Am. J. Neuroradiol. 2005, 26, 1193–1200. [Google Scholar] [PubMed]
- Jerjes, W.; Upile, T.; Betz, C.S.; el Maaytah, M.; Abbas, S.; Wright, A.; Hopper, C. The application of photodynamic therapy in the head and neck. Dent. Update Lond. 2007, 34, 478. [Google Scholar] [CrossRef]
- Wennberg, A.M.; Keohane, S.; Lear, J.T.; Jemec, G.; Mørk, C.; Christensen, E.; Kapp, A.; Sølvsten, H.; Talm, T.; Berne, B.; et al. Results from a 15-month update of a multicentre study of methyl aminolaevulinate photodynamic therapy in immunocompromised organ transplant recipients with nonmelanoma skin cancer. Br. J. Dermatol. 2006, 155, 57. [Google Scholar]
- Jain, A.; Lee, C.; Gill, H. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release 2016, 239, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Valladares, M.; Rodriguez-Prieto, M.; Serra-Llusa, R. Penetration of 630 nm laser and 5-aminolevulinic acid in tissue with intralesional photodynamic therapy. Photodiagnosis Photodyn. Ther. 2016, 16, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Rollakanti, K.; Brankov, N.; Brash, D.; Hasan, T.; Maytin, E. Fluorouracil Enhances Photodynamic Therapy of Squamous Cell Carcinoma via a p53-Independent Mechanism that Increases Protoporphyrin IX levels and Tumor Cell Death. Mol. Cancer Ther. 2017, 16, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Feng, W.; Luo, X.; Wang, T.; Xiang, W.; Dai, Y.; Zhu, J.; Zheng, J. A Clinical Trial Using Attrition Combined with 5-Aminolevulinic Acids Based Photodynamic Therapy in Treating Squamous Cell Carcinoma. Med. Sci. Monit. 2017, 23, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Pera, P.; Joshi, P.; Dukh, M.; Tabaczynski, W.A.; Siters, K.E.; Kryman, M.; Cheruku, R.R.; Durrani, F.; Missert, J.R.; et al. Highly Effective Dual-Function Near-Infrared (NIR) Photosensitizer for Fluorescence Imaging and Photodynamic Therapy (PDT) of Cancer. J. Med. Chem. 2016, 59, 9774–9787. [Google Scholar] [CrossRef] [PubMed]
- Sotiriou, E.; Apalla, Z.; Vrani, F.; Lazaridou, E.; Vakirlis, E.; Lallas, A.; Ionnides, D. Daylight photodynamic therapy vs. Conventional photodynamic therapy as skin cancer preventive treatment in patients with faces and scalp cancerization: An intra-individual comparison study. J. Eur. Acad. Dermatol. Venereol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Sotiriou, E.; Chovarda, E.; Lefaki, I.; Devliotou-Panagiotidou, D.; Ioannides, D. Skin cancer: Preventive photodynamic therapy in patients with face and scalp cancerization. A randomized placebo-controlled study. Br. J. Dermatol. 2010, 162, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Grigalavicius, M.; Juraleviciute, M.; Kwitniewski, M.; Juzeniene, A. The influence of photodynamic therapy with 5-aminolevulinic acid on senescent skin cancer cells. Photodiagnosis Photodyn. Ther. 2017, 17, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Orbuch, D.E.; Penn, L.; Bloom, B.S.; Brauer, J.A.; Shin, D.B.; Greenbaum, J.; Bernstein, L.J.; Weiss, E.T.; Anolik, R.T.; Geronemus, R.G. The Photodynamic Therapy Experience of a High Volume Laser and Dermatologic Surgery Center. J. Drugs Dermatol. 2016, 15, 1420–1426. [Google Scholar] [PubMed]
- Blanco, K.C.; Inada, N.M.; Silva, A.P.; Stringasci, M.D.; Buzza, H.H.; Ramirez, D.P.; Salvio, A.G.; Moriyama, L.T.; Kurachi, C.; Bagnato, V.S. A Multicenter Clinical Study of Expected and Unexpected Side Reactions during and after Skin Cancer Treatment by Photodynamic Therapy. Skinmed 2017, 15, 113–118. [Google Scholar] [PubMed]
- Anderson, R. Lasers for Dermatology and Skin Biology. J. Investig. Dermatol. 2013, 133, E21–E23. [Google Scholar] [CrossRef] [PubMed]
- Jalian, H.; Avram, M.; Stankiewicz, K.; Shofner, J.; Tannous, Z. Combined 585 nm pulsed-dye and 1064 nm Nd:YAG lasers for the treatment of basal cell carcinoma. Lasers Surg. Med. 2013, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.R.; Parrish, J.A. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation. Science 1983, 220, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.; Khatri, K. The use of lasers in the treatment of skin cancer: A review. J. Cosmet. Laser Ther. 2017. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, T.; Abrouk, M.; Kelly, K. An Analysis of Laser Therapy for the Treatment of Nonmelanoma Skin Cancer. Dermatol. Surg. 2017, 43, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Zachary, C.B.; Rofagha, R. Laser therapy. In Dermatology, 3rd ed.; Bolognia, J.L., Jorizzo, J.L., Schaffer, J.V., Eds.; Mosby: London, UK, 2012. [Google Scholar]
- Omi, T.; Numano, K. The role of the CO2 laser and fractional CO2 laser in dermatology. Laser Ther. 2014, 23, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, T.R.; Malhotra, R.; Scharf, M.J.; Marcus, S.M.; Starkus, L.; Calegari, K. Treatment of superficial basal cell carcinoma and squamous cell carcinoma in situ with a high-energy pulsed carbon dioxide laser. Arch. Dermatol. 1998, 134, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Trelles, M.; David, L.; Rigau, J. Penetration depth of ultrapulsed carbon dioxide laser in human skin. Dermatol. Surg. 1996, 22, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.L.; Price, N.M. Treatment of basal-cell carcinomas with a carbon-dioxide laser. J. Dermatol. Surg. Oncol. 1979, 5, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.C.; Pozo, J.D.; Paradela, S.; Fernández-Jorge, B.; Fernández-Torres, R.; Fonseca, E. Bowen’s disease treated by carbon dioxide laser. A series of 44 patients. J. Dermatol. Treat. 2008, 19, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kim, K.; Song, K. Effect of Methyl Aminolevulinate Photodynamic Therapy With and Without Ablative Fractional Laser Treatment in Patients with Microinvasive Squamous Cell Carcinoma. JAMA Dermatol. 2017, 153, 289. [Google Scholar] [CrossRef] [PubMed]
- Smucler, R.; Vlk, M. Combination of Er:YAG laser and photodynamic therapy in the treatment of nodular basal cell carcinoma. Lasers Surg. Med. 2008, 40, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.Y.; Kim, K.H.; Song, K.H. A randomized trial comparing methyl aminolaevulinate photodynamic therapy with and without Er:YAG ablative fractional laser treatment in Asian patients with lower extremity Bowen disease: Results from a 12-month follow-up. Br. J. Dermatol. 2014, 170, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Smucler, R.; Kriz, M.; Lippert, J.; Vlk, M. Ultrasound guided ablative-laser assisted photodynamic therapy of basal cell carcinoma (US-aL-PDT). Photomed. Laser Surg. 2012, 30, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Kim, K.H.; Song, K.H. Er:YAG ablative fractional laser-primed photodynamic therapy with methyl aminolevulinate as an alternative treatment option for patients with thin nodular basal cell carcinoma: 12-month follow-up results of a randomized, prospective, comparative trial. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Carija, A.; Puizina-Ivic, N.; Vukovic, D.; Miric Kovacevic, L.; Capkun, V. Single treatment of low-risk basal cell carcinomas with pulsed dye laser-mediated photodynamic therapy (PDL-PDT) compared with photodynamic therapy (PDT): A controlled, investigator-blinded, intra-individual prospective study. Photodiagnosis Photodyn. Ther. 2016, 16, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Kwan, W.; Wilson, D.; Moravan, V. Radiotherapy for locally advanced basal cell and squamous cell carcinomas of the skin. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 406e411. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.; Karimpour, S.; Young, G.; Lockett, M.A.; Perez, C.A. Radiotherapy for epithelial skin cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 748–755. [Google Scholar] [CrossRef]
- Schulte, K.W.; Lippold, A.; Auras, C.; Bramkamp, G.; Breitkopf, C.; Elsmann, H.J.; Habenicht, E.M.; Jasnoch, V.; Muller-Pannes, H.; Rupprecht, R.; et al. Soft X-ray therapy for cutaneous basal cell and squamous cell carcinomas. J. Am. Acad. Dermatol. 2005, 53, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Van Hezewijk, M.; Creutzberg, C.L.; Putter, H.; Chin, A.; Schneider, I.; Hoogeveen, M.; Willemze, R.; Marijnen, C.A. Efficacy of a hypofractionated schedule in electron beam radiotherapy for epithelial skin cancer: Analysis of 434 cases. Radiother. Oncol. 2010, 95, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Guix, B.; Finestres, F.; Tello, J.; Palma, C.; Martinez, A.; Guix, J.; Guix, R. Treatment of skin carcinomas of the face by high-dose-rate brachytherapy and custom-made surface molds. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 95–102. [Google Scholar] [CrossRef]
- Likhacheva, A.; Devlin, P.; Shirvani, S.; Barker, C.A.; Beron, P.; Bhatnagar, A.; Doggett, S.W.; Hochman, L.; Hsu, C.; Kasper, M.; et al. Skin surface brachytherapy: A survey of contemporary practice patterns. Brachytherapy 2017, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Goyal, U.; Kim, Y.; Tiwari, H.; Witte, R.; Stea, B. A pilot study of ultrasound-guided electronic brachytherapy for skin cancer. J. Contemp. Brachyther. 2015, 5, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Mendenhall, W.M.; Amdur, R.J.; Hinerman, R.W.; Cognetta, A.B.; Mendenhall, N. Radiotherapy for cutaneous squamous and basal cell carcinomas of the head and neck. Laryngoscope 2009, 119, 1994–1999. [Google Scholar] [CrossRef] [PubMed]
- Lovett, R.D.; Perez, C.A.; Shapiro, S.J.; Garcia, D.M. External Irradiation of epithelial skin cancer. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 235–242. [Google Scholar] [CrossRef]
- Cognetta, A.B.; Howard, B.M.; Heaton, H.P.; Stoddard, E.R.; Hong, H.G.; Green, H.W. Superficial X-ray in the treatment of basal and squamous cell carcinomas: A viable option in select patients. J. Am. Acad. Dermatol. 2012, 67, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.A.; Spittle, M.F. Electron beam therapy for difficult cutaneous basal and squamous cell carcinoma. Br. J. Dermatol. 1982, 106, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Mareco, V.; Bujor, L.; Abrunhosa-Branquinho, A.N.; Ferreira, M.R.; Ribeiro, T.; Vasconcelos, A.L.; Ferreira, C.R.; Jorge, M. Interstitial high-dose-rate brachytherapy in eyelid cancer. Brachytherapy 2015, 14, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.; Gordon, L.; Remblelak, A.; Woo, T.C. Utility of radiotherapy for treatment of basal cell carcinoma: A review. Br. J. Dermatol. 2014, 171, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, P.; Hansen, O.; Rose, C. Systemic cytotoxic therapy of basal cell carcinoma. A review of the literature. Eur. J. Cancer 1990, 26, 73–77. [Google Scholar] [CrossRef]
- Carneiro, B.A.; Watkin, W.G.; Mehta, U.K.; Brockstein, B.E. Metastatic basal cell carcinoma: Complete response to chemotherapy and associated pure red cell aplasia. Cancer Investig. 2006, 24, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Khandekar, J.D. Complete response of metastatic basal cell carcinoma to cisplatin chemotherapy: A report on two patients. Arch. Dermatol. 1990, 126, 1660. [Google Scholar] [CrossRef] [PubMed]
- Wysong, A.; Aasi, S.Z.; Tang, J.Y. Update on metastatic basal cell carcinoma: A summary of published cases from 1981 through 2011. JAMA Dermatol. 2013, 149, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Espeli, V.; Ruegg, E.; Hottinger, A.F.; Modarressi, A.; Dietrich, P.Y. Weekly multi-agent chemotherapy (CMF-b) for advanced non-melanoma skin cancer. Anticancer Res. 2016, 36, 2359–2364. [Google Scholar] [PubMed]
- Sadek, H.; Azli, N.; Wendling, J.L.; Cvitkovic, E.; Rahal, M.; Mamelle, G.; Guillaume, J.C.; Armand, J.P.; Avril, M.F. Treatment of advanced squamous cell carcinoma of the skin with cisplatin, 5-fluorouracil, and bleomycin. Cancer 1990, 66, 1692–1696. [Google Scholar] [CrossRef]
- Krahn, G.; Leiter, U.; Kaskel, P.; Udart, M.; Utikal, J.; Bezold, G.; Peter, R.U. Coexpression patterns of EGFR, HER2, HER3 and HER4 in non-melanoma skin cancer. Eur. J. Cancer 2001, 37, 251–259. [Google Scholar] [CrossRef]
- Maubec, E.; Petrow, P.; Scheer-Senyarich, I.; Duvillard, P.; Lacroix, L.; Gelly, J.; Certain, A.; Duval, X.; Crickx, B.; Buffard, V.; et al. Phase II study of cetuximab as first-line single-drug therapy in patients with unresectable squamous cell carcinoma of the skin. J. Clin. Oncol. 2011, 29, 3419–3426. [Google Scholar] [CrossRef] [PubMed]
- Reigneau, M.; Robert, C.; Routier, E.; Mamelle, G.; Moya-Plana, A.; Tomasic, G.; Mateus, C. Efficacy of neoadjuvant cetuximab alone or with platinum salt for the treatment of unresectable advanced nonmetastatic cutaneous squamous cell carcinomas. Br. J. Dermatol. 2015, 173, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Mesia, R.; Henke, M.; Fortin, A.; Minn, H.; Yunes Ancona, A.C.; Cmelak, A.; Markowitz, A.B.; Hotte, S.J.; Singh, S.; Chan, A.T.; et al. Chemoradiotherapy with or without panitumumab in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-1): A randomised, controlled, open-label phase 2 trial. Lancet Oncol. 2015, 16, 208–220. [Google Scholar] [CrossRef]
- Giralt, J.; Trigo, J.; Nuyts, S.; Ozsahin, M.; Skladowski, K.; Hatoum, G.; Daisne, J.F.; Yunes Ancona, A.C.; Cmelak, A.; Mesia, R.; et al. Panitumumab plus radiotherapy versus chemoradiotherapy in patients with unresected, locally advanced squamous-cell carcinoma of the head and neck (CONCERT-2): A randomized, controlled, open-label phase 2 trial. Lancet Oncol. 2015, 16, 221–232. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, J.; Spaunhurst, K.; Montoya, J.; Khodosh, R.; Chandra, K.; Fu, T.; Gilliam, A.; Molgo, M.; Beachy, P.A.; et al. Open-label, exploratory Phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J. Clin. Oncol. 2014, 32, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, A.; Chaudhary, S.; Rana, M.; Elmets, C.; Athar, M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol. Carcinog. 2017. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, I.; Pasquali, P.; Malvehy, J.; Puig, S. Tumor regrowth and development of keratinocytic neoplasms in patients under smoothened inhibition: In vivo assessment with reflectance confocal microscopy. Skin Res. Technol. 2016, 23, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Gjersvik, P. Study on the risk of cutaneous squamous cell carcinoma after vismodegib therapy for Basal cell carcinoma. JAMA Dermatol. 2016, 152, 1172. [Google Scholar] [CrossRef] [PubMed]
- Zargari, O.; Azimi, S.; Geranmayeh, S. Inoperable infiltrative basal cell carcinoma successfully treated with vismodegib. Dermatol. Ther. 2017, 30, e12509. [Google Scholar] [CrossRef] [PubMed]
- Odom, D.; Mladsi, D.; Purser, M.; Kaye, J.A.; Palaka, E.; Charter, A.; Jensen, J.A.; Sellami, D. A Matching-Adjusted Indirect Comparison of Sonidegib and Vismodegib in Advanced Basal Cell Carcinoma. J. Skin Cancer 2017, 2017, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Micali, G.; Lacarrubba, F.; Nasca, M.R.; Ferraro, S.; Schwartz, R.A. Topical pharmacotherapy for skin cancer: Part II. Clinical applications. J. Am. Acad. Dermatol. 2014, 70, 979.e1–979.e12. [Google Scholar] [CrossRef] [PubMed]
- Micali, G.; Lacarrubba, F.; Nasca, M.R.; Schwartz, R.A. Topical pharmacotherapy for skin cancer: Part I. Pharmacology. J. Am. Acad. Dermatol. 2014, 70, 965.e1–965.e12. [Google Scholar] [CrossRef] [PubMed]
- Bargman, H.; Hochman, J. Topical treatment of Bowen’s disease with 5-fluorouracil. J. Cutan. Med. Surg. 2003, 7, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Salim, A.; Leman, J.A.; McColl, J.H.; Chapman, R.; Morton, C.A. Randomized comparison of photodynamic therapy with topical 5-fluorouracil in Bowen’s disease. Br. J. Dermatol. 2003, 148, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Gross, K.; Kircik, L.; Ricorian, K.G. 5% 5-Fluorouracil cream for the treatment of small superficial basal cell carcinoma: Efficacy, tolerability, cosmetic outcome, and patient satisfaction. Dermatol. Surg. 2007, 33, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Ishioka, P.; Maia, M.; Rodrigues, S.B.; Marta, A.C.; Hirata, S.H. Evaluation of the therapeutic results of actinic keratosis treated with topical 5% fluorouracil by reflectance confocal laser microscopy: Preliminary study. An. Bras Dermatol. 2015, 90, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Dong, Z.M.; Wu, P.C. Sentinel lymph node biopsy for high-risk cutaneous squamous cell carcinoma: Clinical experience and review of literature. World J. Surg. Oncol. 2011, 9, 80. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Ratner, D. Cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2001, 344, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.S.; Schmults, C.D. Sentinel lymph node biopsy in cutaneous squamous cell carcinoma: A systematic review of the English literature. Dermatol. Surg. 2006, 32, 1309–1321. [Google Scholar] [CrossRef] [PubMed]
- Dona, E.; Veness, M.J.; Cakir, B.; Morgan, G.J. Metastatic cutaneous squamous cell carcinoma to the parotid: The role of surgery and adjuvant radiotherapy to achieve best outcome. ANZ J. Surg. 2003, 73, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Reschly, M.J.; Messina, J.L.; Zaulyanov, L.L.; Cruse, W.; Fenske, N.A. Utility of sentinel lymphadenectomy in the management of patients with high-risk cutaneous squamous cell carcinoma. Dermatol. Surg. 2003, 29, 135–140. [Google Scholar] [PubMed]
- Martinez, J.C.; Cook, J.L. High-risk cutaneous squamous cell carcinoma without palpable lymphadenopathy: Is there a therapeutic role for elective neck dissection. Dermatol. Surg. 2007, 33, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Zuazaga, J.; Olbricht, S.M. Cutaneous squamous cell carcinoma. Adv. Dermatol. 2008, 24, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Kyrgidis, A.; Tzellos, T.G.; Kechagias, N.; Patrikidou, A.; Xirou, P.; Kitikidou, K.; Bourlidou, E.; Vahtsevanos, K.; Antoniades, K. Cutaneous squamous cell carcinoma (SCC) of the head and neck: Risk factors of overall and recurrence-free survival. Eur. J. Cancer 2010, 46, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Samsanavicius, D.; Kaikaris, V.; Norvydas, S.; Liubauskas, R.; Valiukeviciene, S.; Makstiene, J.; Maslauskas, K.; Rimdeika, R. Sentinel lymph node biopsy for high-risk cutaneous squamous cell carcinoma: Analysis of recurrence-free survival. Medicina 2016, 52, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Durham, A.B.; Lowe, L.; Malloy, K.M.; McHugh, J.B.; Bradford, C.R.; Chubb, H.; Johnson, T.M.; McLean, S.A. Sentinel Lymph Node Biopsy for Cutaneous Squamous Cell Carcinoma on the Head and Neck. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Ahadiat, O.; Higgins, S.; Sutton, A.; Ly, A.; Wysong, A. SLNB in cutaneous SCC: A review of the current state of literature and the direction for the future. J. Surg. Oncol. 2017, 116, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Navarrete-Dechent, C.; Veness, M.; Droppelmann, N.; Uribe, P. High-risk cutaneous squamous cell carcinoma and the emerging role of sentinel lymph node biopsy: A literature review. J. Am. Acad. Dermatol. 2015, 73, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Gore, S.; Shaw, D.; Martin, R.; Kelder, W.; Roth, K.; Uren, R.; Gao, K.; Davies, S.; Ashford, B.G.; Ngo, Q.; et al. Prospective study of sentinel node biopsy for high-risk cutaneous squamous cell carcinoma of the head and neck. Head Neck 2015, 38, E884–E889. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Tanaka, R.; Fujisawa, Y.; Nakamura, Y.; Ito, S.; Fujimoto, M. Availability of sentinel lymph node biopsy for cutaneous squamous cell carcinoma. J. Dermatol. 2016, 44, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Silberstein, E.; Sofrin, E.; Bogdanov-Berezovsky, A.; Nash, M.; Segal, N. Lymph Node Metastasis in Cutaneous Head and Neck Squamous Cell Carcinoma. Dermatol. Surg. 2015, 41, 1126–1129. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Cook, J. High-Risk Cutaneous Squamous Cell Carcinoma without Palpable Lymphadenopathy: Is There a Therapeutic Role for Elective Neck Dissection? Dermatol. Surg. 2007, 33, 410–420. [Google Scholar] [CrossRef] [PubMed]
SCC | |
---|---|
TX | Primary tumor cannot be assessed |
T0 | No evidence of primary tumor |
Tis | Carcinoma in Situ |
T1 | Tumor < 2 cm in greatest dimension |
T2 | Tumor ≥ 2 cm and <4 cm in greatest dimension |
T3 | Tumor ≥ 4 cm in greatest dimension and/or perineal invasion and/or deep invasion and/or minor bone erosion |
T4a | Tumor with gross cortical bone/marrow invasion |
T4b | Tumor with skull base invasion and/or skull base foramen involvement |
SCC | |
---|---|
Clinical N (cN) | |
NX | Regional lymph nodes cannot be assessed |
N0 | No regional lymph node metastasis |
N1 | Metastasis in single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE (−) |
N2a | Metastasis in single ipsilateral lymph node, >3 cm but not >6 cm in greatest dimension and ENE (−) |
N2b | Metastasis in multiple ipsilateral lymph node, none >6 cm in greatest dimension and ENE (−) |
N2c | Metastasis in bilateral or contralateral lymph nodes, none >6 cm in greatest dimension and ENE (−) |
N3a | Metastasis in a lymph node >6 cm in greatest dimension and ENE (−) |
N3b | Metastasis in any node (s) and clinically overt ENE (+) |
Pathologic N (pN) | |
NX | Regional lymph nodes cannot be assessed |
N0 | No regional lymph node metastasis |
N1 | Metastasis in single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE (−) |
N2a | Metastasis in single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE (+), or in single ipsilateral lymph node, >3 cm but not >6 cm in greatest dimension and ENE (−) |
N2b | Metastasis in multiple ipsilateral lymph nodes, none >6 cm in greatest dimension and ENE (−) |
N2c | Metastasis in bilateral or contralateral lymph, node (s), none >6 cm in greatest dimension and ENE (−) |
N3a | Metastasis in a lymph node >6 cm in greatest dimension and ENE (−) |
N3b | Metastasis in a single ipsilateral node >3 cm in greatest dimension and ENE (+); or multiple ipsilateral, contralateral, or bilateral nodes, any with ENE (+); or a single contralateral node ≤ 3 cm and ENE (+) |
SCC | |
---|---|
MX | Distant metastasis cannot be assessed |
M0 | No distant metastasis |
M1 | Distant metastasis |
SCC | |||
---|---|---|---|
Stage | T | N | M |
0 | Tis | N0 | M0 |
I | T1 | N0 | M0 |
II | T2 | N0 | M0 |
III | T3 | N0 or N1 | M0 |
IV | T1 or T2 | N1 | M0 |
T1, T2 or T3 | N2 | M0 | |
Any T | N3 | M0 | |
T4 | Any N | M0 | |
Any T | Any N | M1 |
Low-Risk | High-Risk | |
---|---|---|
BCC | ||
Location/size | L < 20 mm M < 10 mm | L > 20 mm M ≥ 10 mm H |
Borders | Well Defined | Poorly Defined |
Primary vs. Recurrent | Primary | Recurrent |
Immunosuppression | (−) | (+) |
Site of Prior RT | (−) | (+) |
Pathology Subtype Perineural Involvement | Nodular Superficial (−) | Aggressive Growth Pattern (+) |
SCC | ||
Location/size | L < 20 mm M < 10 mm | L > 20 mm M ≥ 10 mm H |
Borders | Well Defined | Poorly Defined |
Primary vs. Recurrent | Primary | Recurrent |
Immunosuppression | (−) | (+) |
Site of Prior RT or Chronic Inflammatory Process | (−) | (+) |
Rapidly Growing Tumor | (−) | (+) |
Neurologic Symptoms | (−) | (+) |
Pathology Degree of Differentiation Adenoid, Adenosquamous, Desmoplastic, Metaplastic | Well or Moderately Differentiated (−) | Poorly Differentiated (+) |
Depth, Thickness or Clark Level | <2 mm or I, II, III | ≥2 mm or IV, V |
Perineural, Lymphatic, or Vascular Involvement | (−) | (+) |
Possible Bony Invasions | CT * |
---|---|
Possible Orbit Invasions | CT-bony invasion, MRI **-soft tissue |
Assessment the extent of Tumor Invasion in Soft Tissue | MRI |
Staging of Lymph Nodes and Metastatic Disease | CT or MRI or PET ***(PET-CT) |
Evaluation for Potential Perineural Spread | MRI |
Post-operative Surveillance for Recurrent Disease | PET-CT |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahradyan, A.; Howell, A.C.; Wolfswinkel, E.M.; Tsuha, M.; Sheth, P.; Wong, A.K. Updates on the Management of Non-Melanoma Skin Cancer (NMSC). Healthcare 2017, 5, 82. https://doi.org/10.3390/healthcare5040082
Fahradyan A, Howell AC, Wolfswinkel EM, Tsuha M, Sheth P, Wong AK. Updates on the Management of Non-Melanoma Skin Cancer (NMSC). Healthcare. 2017; 5(4):82. https://doi.org/10.3390/healthcare5040082
Chicago/Turabian StyleFahradyan, Artur, Anna C. Howell, Erik M. Wolfswinkel, Michaela Tsuha, Parthiv Sheth, and Alex K. Wong. 2017. "Updates on the Management of Non-Melanoma Skin Cancer (NMSC)" Healthcare 5, no. 4: 82. https://doi.org/10.3390/healthcare5040082
APA StyleFahradyan, A., Howell, A. C., Wolfswinkel, E. M., Tsuha, M., Sheth, P., & Wong, A. K. (2017). Updates on the Management of Non-Melanoma Skin Cancer (NMSC). Healthcare, 5(4), 82. https://doi.org/10.3390/healthcare5040082