Comparing the Convergent and Concurrent Validity of the Dynamic Gait Index with the Berg Balance Scale in People with Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Measures and Procedures
2.2.1. SF-36
2.2.2. Timed Up and Go (TUG)
2.2.3. Timed 25-Foot Walk (T25FW)
2.2.4. Dynamic Gait Index (DGI)
2.2.5. Berg Balance Scale (BBS)
2.2.6. Six-Minute Walk Test (6MWT)
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Multiple Sclerosis International Federation. Atlas of MS 2013: Mapping Multiple Sclerosis around the World; Multiple Sclerosis International Federation: London, UK, 2013; pp. 1–28. [Google Scholar]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Larocca, N.G. Impact of walking impairment in multiple sclerosis: Perspectives of patients and care partners. Patient 2011, 4, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Heesen, C.; Bohm, J.; Reich, C.; Kasper, J.; Goebel, M.; Gold, S.M. Patient perception of bodily functions in multiple sclerosis: Gait and visual function are the most valuable. Mult. Scler. 2008, 14, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W. Benefits, safety, and prescription of exercise in persons with multiple sclerosis. Expert Rev. Neurother. 2014, 14, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Sosnoff, J.J.; Socie, M.J.; Boes, M.K.; Sandroff, B.M.; Pula, J.H.; Suh, Y.; Weikert, M.; Balantrapu, S.; Morrison, S.; Motl, R.W. Mobility, Balance and Falls in Persons with Multiple Sclerosis. PLoS ONE 2011, 6, e28021. [Google Scholar] [CrossRef] [PubMed]
- Filli, L.; Sutter, T.; Easthope, C.S.; Killeen, T.; Meyer, C.; Reuter, K.; Lörincz, L.; Bolliger, M.; Weller, M.; Curt, A.; et al. Profiling walking dysfunction in multiple sclerosis: Characterisation, classification and progression over time. Sci. Rep. 2018, 8, 4984. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.P.; Cofre Lizama, L.E.; Butzkueven, H.; Kilpatrick, T.J. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores ≤ 3.0. NeuroRehabilitation 2017, 40, 277–284. [Google Scholar] [CrossRef]
- Bertoni, R.; Jonsdottir, J.; Feys, P.; Lamers, I.; Cattaneo, D. Modified Functional Walking Categories and participation in people with multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 26, 11–18. [Google Scholar] [CrossRef]
- Nilsagård, Y.; Gunn, H.; Freeman, J.; Hoang, P.; Lord, S.; Mazumder, R.; Cameron, M. Falls in people with MS—An individual data meta-analysis from studies from Australia, Sweden, United Kingdom and the United States. Mult. Scler. 2015, 21, 92–100. [Google Scholar] [CrossRef]
- Gunn, H.J.; Newell, P.; Haas, B.; Marsden, J.F.; Freeman, J.A. Identification of risk factors for falls in multiple sclerosis: A systematic review and meta-analysis. Phys. Ther. 2013, 93, 504–513. [Google Scholar] [CrossRef]
- Moore, J.L.; Potter, K.; Blankshain, K.; Kaplan, S.L.; O’Dwyer, L.C.; Sullivan, J.E. A Core Set of Outcome Measures for Adults with Neurologic Conditions Undergoing Rehabilitation: A Clinical Practice Guideline. J. Neurol. Phys. Ther. 2018, 42, 174–220. [Google Scholar] [CrossRef]
- Berg, K.O.; Wood-Dauphinee, S.L.; Williams, J.I.; Maki, B. Measuring Balance in the Elderly: Validation of an Instrument. Can. J. Public Health 1992, 83, S7–S11. [Google Scholar] [PubMed]
- Downs, S.; Marquez, J.; Chiarelli, P. The Berg Balance Scale has high intra-and inter-rater reliability but absolute reliability varies across the scale: A systematic review. J. Physiother. 2013, 59, 93–99. [Google Scholar] [CrossRef]
- Forsberg, A.; Andreasson, M.; Nilsagård, Y.E. Validity of the dynamic gait index in people with multiple sclerosis. Phys. Ther. 2013, 93, 1369–1376. [Google Scholar] [CrossRef]
- McConvey, J.; Bennett, S.E. Reliability of the Dynamic Gait Index in individuals with multiple sclerosis. Arch. Phys. Med. Rehabil. 2005, 86, 130–133. [Google Scholar] [CrossRef]
- Cattaneo, D.; Jonsdottir, J.; Repetti, S. Reliability of four scales on balance disorders in persons with multiple sclerosis. Disabil. Rehabil. 2007, 29, 1920–1925. [Google Scholar] [CrossRef] [PubMed]
- Patla, A.E.; Shumway-Cook, A. Dimensions of mobility: Defining the complexity and difficulty associated with community mobility. J. Aging Phys. Act. 1999, 7, 7–19. [Google Scholar] [CrossRef]
- Cattaneo, D.; Regola, A.; Meotti, M. Validity of six balance disorders scales in persons with multiple sclerosis. Disabil. Rehabil. 2006, 28, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Rimmer, J.H.; Thirumalai, M.; Young, H.J.; Pekmezi, D.; Tracy, T.; Riser, E.; Mehta, T. Rationale and design of the tele-exercise and multiple sclerosis (TEAMS) study: A comparative effectiveness trial between a clinic- and home-based telerehabilitation intervention for adults with multiple sclerosis (MS) living in the deep south. Contemp. Clin. Trials 2018, 71, 186–193. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Motl, R.W.; Sandroff, B.M.; Pula, J.H.; Cadavid, D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 2013, 13, 37. [Google Scholar] [CrossRef]
- Hohol, M.J.; Orav, E.J.; Weiner, H.L. Disease steps in multiple sclerosis: A longitudinal study comparing Disease Steps and EDSS to evaluate disease progression. Mult. Scler. 1999, 5, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Hohol, M.J.; Orav, E.J.; Weiner, H.L. Disease Steps in multiple sclerosis: A simple approach to evaluate disease progression. Neurology 1995, 45, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Amireault, S.; Godin, G.; Lacombe, J.; Sabiston, C.M. The use of the Godin-Shephard Leisure-Time Physical Activity Questionnaire in oncology research: A systematic review. BMC Med. Res. Methodol. 2015, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Godin, G. The Godin-Shephard Leisure-Time Physical Activity Questionnaire. Health Fit. J. Can. 2011, 4, 18–22. [Google Scholar]
- Teare, M.D.; Dimairo, M.; Shephard, N.; Hayman, A.; Whitehead, A.; Walters, S.J. Sample size requirements to estimate key design parameters from external pilot randomised controlled trials: A simulation study. Trials 2014, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.A.; Hadjimichael, O.C.; Preiningerova, J.; Vollmer, T.L. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult. Scler. 2004, 10, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.S. The MOS 36-Item Short form Health Survey: A Conceptual Analysis. Eval. Health Prof. 1997, 20, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, E.; Sandroff, B.M.; Learmonth, Y.C.; Motl, R.W. Validity of the Timed Up and Go Test as a Measure of Functional Mobility in Persons With Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2016, 97, 1072–1077. [Google Scholar] [CrossRef]
- Polman, C.H.; Rudick, R.A. The Multiple Sclerosis Functional Composite. Neurology 2010, 74, S8–S15. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Woollacott, M. Assessment and treatment of the patient with mobility disorders. In Motor Control: Theory and Practical Applications, 1st ed.; Williams & Wilkins: Baltimore, MD, USA, 1995; pp. 315–354. [Google Scholar]
- Berg, K.; Wood-Dauphine, S.; Williams, J.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Paul, L.; McFadyen, A.K.; Mattison, P.; Miller, L. Reliability and clinical significance of mobility and balance assessments in multiple sclerosis. Int. J. Rehabil. Res. 2012, 35, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.Y. Toward using confidence intervals to compare correlations. Psychol. Methods 2007, 12, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Diedenhofen, B.; Musch, J. Cocor: A comprehensive solution for the statistical comparison of correlations. PLoS ONE 2015, 10, e0121945. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.L.; Rosenthal, R.; Rubin, D.B. Comparing correlated correlation coefficients. Psychol. Bull. 1992, 111, 172–175. [Google Scholar] [CrossRef]
- Blakesley, R.E.; Mazumdar, S.; Dew, M.A.; Houck, P.R.; Tang, G.; Reynolds, C.F.; Butters, M.A. Comparisons of methods for multiple hypothesis testing in neuropsychological research. Neuropsychology 2009, 23, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.E.; Bromley, L.E.; Fisher, N.M.; Tomita, M.R.; Niewczyk, P. Validity and Reliability of Four Clinical Gait Measures in Patients with Multiple Sclerosis. Int. J. MS Care 2017, 19, 247–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhurandhar, E.J.; Vazquez, A.I.; Argyropoulos, G.A.; Allison, D.B. Even modest prediction accuracy of genomic models can have large clinical utility. Front. Genet. 2014, 5, 417. [Google Scholar] [CrossRef] [PubMed]
Variable | Descriptive Statistic |
---|---|
Age (years) | 49.81 (10.27) |
BMI (kg/m2) | 30.94 (7.56) |
Sex (n, % female) | 68, 90.7% |
Race (n, %) | |
White | 61, 81.3% |
Not White | 14, 18.6% |
MS Type (n, %) | |
Progressive | 5, 6.7% |
Relapsing-Remitting | 58, 77.3% |
Unknown | 9, 12.0% |
Not Reported | 3, 4% |
PDDS (n, %) | |
0 = normal | 15, 20.0% |
1 = mild disability | 12, 16.0% |
2 = moderate disability | 15, 20.0% |
3 = gait disability | 12, 16.0% |
4 = early cane | 9, 12.0% |
5 = late cane | 7, 9.3% |
6 = bilateral support | 4, 5.3% |
7 = wheelchair/scooter | 1, 1.3% |
Variable | Mean (SD) | Minimum | Median (IQR) | Maximum |
---|---|---|---|---|
DGI | 17.92 (5.74) | 1.00 | 20.00 (8.00) | 24.00 |
DGI % Ceiling | 22.67% (N = 17, 17/75) | |||
DGI % Flooring | 1.33% (N = 1, 1/75) | |||
BBS | 47.55 (11.34) | 10.00 | 51.00 (10.00) | 56.00 |
BBS % Ceiling | 12.00% (N = 9, 9/75) | |||
BBS % Flooring | 2.66% (N = 2, 2/75) | |||
TUG (s) | 12.02 (9.50) | 5.4 | 9.20 (4.90) | 140 |
6MWT (m) | 322.16 (125.37) | 13.41 | 317.60 (165.20) | 641.30 |
T25FW (s) | 7.37 (5.01) | 3.6 | 5.95 (3.35) | 150 |
SF-36 Physical functioning | 48.69 (20.95) | 0.00 | 45.00 (45.00) | 100.00 |
SF-36 General health | 45.20 (22.64) | 10.00 | 40.00 (30.00) | 100.00 |
Overall | ||||
---|---|---|---|---|
Measures | DGI | BBS | Meng’s Test p-Value for DGI—BBS Raw p-Value, Hommel’s Adjusted p-Value | Zhou’s 95% CI for DGI—BBS |
TUG | −0.703 | −0.774 | 0.109, 0.791 | −0.175, 0.0161 |
(−0.800, −0.563) | (−0.850, −0.660) | |||
6MWT | 0.763 | 0.709 | 0.226, 0.791 | −0.155, 0.035 |
(0.645, 0.842) | (0.571, 0.805) | |||
T25FW | −0.708 | −0.755 | 0.296, 0.791 | −0.148, 0.043 |
(−0.804, −0.570) | (−0.837, −0.634) | |||
SF-36 Physical function | 0.570 | 0.597 | 0.625, 0.791 | −0.086, 0.144 |
(0.390, 0.704) | (0.425, 0.724) | |||
SF-36 | 0.182 | 0.109 | 0.290, 0.791 | −0.206, 0.061 |
General health | (−0.0482, 0.392) | (−0.121, 0.327) | ||
PDDS ≤ 2 | ||||
* TUG | −0.745 | −0.868 | 0.031, 0.465 | −0.280, −0.012 |
(−0.853, −0.565) | (−0.926, −0.762) | |||
6MWT | 0.592 | 0.483 | 0.241, 0.791 | −0.313, 0.075 |
(0.345, 0.756) | (0.204, 0.683) | |||
T25FT | −0.693 | −0.773 | 0.259, 0.791 | −0.249, 0.061 |
(−0.821, 0.487) | (−0.870, −0.608) | |||
SF-36 Physical function | 0.258 | 0.403 | 0.172, 0.791 | −0.062, 0.357 |
(−0.052, 0.519) | (0.109, 0.627) | |||
SF-36 | −0.015 | 0.015 | 0.791, 0.791 | −0.186, 0.244 |
General health | (−0.318, 0.290) | (−0.290, 0.317) | ||
PDDS > 2 | ||||
TUG | −0.553 | −0.587 | 0.687, 0.791 | −0.227, 0.148 |
(−0.750, −0.251) | (−0.770, −0.296) | |||
6MWT | 0.813 | 0.760 | 0.377, 0.791 | −0.209, 0.073 |
(0.645, 0.902) | (0.557, 0.873) | |||
T25FW | −0.621 | −0.651 | 0.702, 0.791 | −0.214, 0.142 |
(−0.791, −0.344) | (−0.809, −0.388) | |||
SF-36 Physical function | 0.454 | 0.490 | 0.694, 0.791 | −0.156, 0.235 |
(0.123, 0.686) | (0.169, 0.710) | |||
SF-36 | −0.083 | −0.205 | 0.240, 0.791 | −0.317, 0.077 |
General health | (−0.414, 0.269) | (−0.510, 0.152) |
Measures | Adjusted R2 for Model with BBS Only | Differences in Adjusted R2 |
---|---|---|
TUG | 0.281 | 0.009 (−0.009, 0.199) |
6MWT | 0.574 | 0.078 (0.003, 0.152) |
T25FW | 0.385 | 0.004 (−0.008, 0.191) |
SF-36 Physical function | 0.433 | 0.007 (−0.008, 0.075) |
SF-36 General health | 0.153 | 0.012 (−0.012, 0.108) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, T.; Young, H.-J.; Lai, B.; Wang, F.; Kim, Y.; Thirumalai, M.; Tracy, T.; Motl, R.W.; Rimmer, J.H. Comparing the Convergent and Concurrent Validity of the Dynamic Gait Index with the Berg Balance Scale in People with Multiple Sclerosis. Healthcare 2019, 7, 27. https://doi.org/10.3390/healthcare7010027
Mehta T, Young H-J, Lai B, Wang F, Kim Y, Thirumalai M, Tracy T, Motl RW, Rimmer JH. Comparing the Convergent and Concurrent Validity of the Dynamic Gait Index with the Berg Balance Scale in People with Multiple Sclerosis. Healthcare. 2019; 7(1):27. https://doi.org/10.3390/healthcare7010027
Chicago/Turabian StyleMehta, Tapan, Hui-Ju Young, Byron Lai, Fuchenchu Wang, Yumi Kim, Mohan Thirumalai, Tracy Tracy, Robert W. Motl, and James H. Rimmer. 2019. "Comparing the Convergent and Concurrent Validity of the Dynamic Gait Index with the Berg Balance Scale in People with Multiple Sclerosis" Healthcare 7, no. 1: 27. https://doi.org/10.3390/healthcare7010027
APA StyleMehta, T., Young, H. -J., Lai, B., Wang, F., Kim, Y., Thirumalai, M., Tracy, T., Motl, R. W., & Rimmer, J. H. (2019). Comparing the Convergent and Concurrent Validity of the Dynamic Gait Index with the Berg Balance Scale in People with Multiple Sclerosis. Healthcare, 7(1), 27. https://doi.org/10.3390/healthcare7010027