Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia
Abstract
:1. Introduction
2. Methods
2.1. Participants and Specimen Collection
2.2. Sample Size and Statistical Power
2.3. Collection of Cervical Specimens for the HPV DNA Load
2.4. Measurement
2.5. Assessment of Leisure-Time Physical Activity in MET-h/Week
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjose, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, N.; Bosch, F.X.; de Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 2003, 348, 518–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plummer, M.; Herrero, R.; Franceschi, S.; Meijer, C.J.L.M.; Snijders, P.; Bosch, F.X.; de Sanjosé, S.; Muñoz, N. Smoking and cervical cancer: Pooled analysis of the IARC multi-centric case–control study. Cancer Causes Control. 2003, 14, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.T.; Wu, C.H.; Lai, H.L.; Li, R.N.; Tung, Y.C.; Chuang, H.Y.; Wu, T.N.; Lin, L.J.; Ho, C.K.; Liu, H.W.; et al. Association between quantitative high-risk human papillomavirus DNA load and cervical intraepithelial neoplasm risk. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cospons. Am. Soc. Prev. Oncol. 2005, 14, 2544–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, H.T.; Tsai, Y.M.; Yang, S.F.; Wu, K.Y.; Chuang, H.Y.; Wu, T.N.; Ho, C.K.; Lin, C.C.; Kuo, Y.S.; Wu, M.T. Lifetime cigarette smoke and second-hand smoke and cervical intraepithelial neoplasm—A community-based case-control study. Gynecol. Oncol. 2007, 105, 181–188. [Google Scholar] [CrossRef]
- Su, B.; Qin, W.; Xue, F.; Wei, X.; Guan, Q.; Jiang, W.; Wang, S.; Xu, M.; Yu, S. The relation of passive smoking with cervical cancer: A systematic review and meta-analysis. Medicine 2018, 97, e13061. [Google Scholar] [CrossRef]
- Krishnan, V.; Schaar, B.; Tallapragada, S.; Dorigo, O. Tumor associated macrophages in gynecologic cancers. Gynecol. Oncol. 2018, 149, 205–213. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Zhang, S. Associations between intratumoral and peritumoral M2 macrophage counts and cervical squamous cell carcinoma invasion patterns. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2017, 139, 346–351. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Jenab, M.; Leitzmann, M.; Bueno-de-Mesquita, B.; Kaaks, R.; Trichopoulou, A.; Bamia, C.; Lagiou, P.; Rinaldi, S.; Freisling, H.; et al. Physical activity, mediating factors and risk of colon cancer: Insights into adiposity and circulating biomarkers from the EPIC cohort. Int. J. Epidemiol. 2017, 46, 1823–1835. [Google Scholar] [CrossRef]
- Matthews, C.E.; Moore, S.C.; Arem, H.; Cook, M.B.; Trabert, B.; Hakansson, N.; Larsson, S.C.; Wolk, A.; Gapstur, S.M.; Lynch, B.M.; et al. Amount and Intensity of Leisure-Time Physical Activity and Lower Cancer Risk. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 686–697. [Google Scholar] [CrossRef]
- Thomson, C.A.; McCullough, M.L.; Wertheim, B.C.; Chlebowski, R.T.; Martinez, M.E.; Stefanick, M.L.; Rohan, T.E.; Manson, J.E.; Tindle, H.A.; Ockene, J.; et al. Nutrition and physical activity cancer prevention guidelines, cancer risk, and mortality in the women’s health initiative. Cancer Prev. Res. (Philadelphia, PA) 2014, 7, 42–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.A.; Jones, L.W.; Antonelli, J.A.; Gerber, L.; Calloway, E.E.; Shuler, K.H.; Freedland, S.J.; Grant, D.J.; Hoyo, C.; Banez, L.L. Association between exercise and primary incidence of prostate cancer: Does race matter? Cancer 2013, 119, 1338–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Q.; Cui, G.; Chen, J.; Gao, H.; Wei, Y.; Uede, T.; Chen, Z.; Diao, H. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2015, 37, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Koelwyn, G.J.; Quail, D.F.; Zhang, X.; White, R.M.; Jones, L.W. Exercise-dependent regulation of the tumour microenvironment. Nat. Rev. Cancer 2017, 17, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Friedenreich, C.M.; Cook, L.S.; Magliocco, A.M.; Duggan, M.A.; Courneya, K.S. Case-control study of lifetime total physical activity and endometrial cancer risk. Cancer Causes Control CCC 2010, 21, 1105–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conroy, M.B.; Sattelmair, J.R.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Lee, I.M. Physical activity, adiposity, and risk of endometrial cancer. Cancer Causes Control CCC 2009, 20, 1107–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kats, D.; Evenson, K.R.; Zeng, D.; Avery, C.L.; Palta, P.; Kritchevsky, S.B.; Heiss, G. Leisure-time physical activity volume, intensity, and duration from mid- to late-life in U.S. subpopulations by race and sex. The Atherosclerosis Risk In Communities (ARIC) Study. Aging 2020, 12, 4592–4602. [Google Scholar] [CrossRef]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet (London, England) 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Szender, J.B.; Cannioto, R.; Gulati, N.R.; Schmitt, K.L.; Friel, G.; Minlikeeva, A.; Platek, A.; Gower, E.H.; Nagy, R.; Khachatryan, E.; et al. Impact of Physical Inactivity on Risk of Developing Cancer of the Uterine Cervix: A Case-Control Study. J. Low. Genit. Tract Dis. 2016, 20, 230–233. [Google Scholar] [CrossRef] [Green Version]
- Chih, H.; Lee, A.H.; Colville, L.; Xu, D.; Binns, C.W. Sitting time, physical activity and cervical intraepithelial neoplasia in Australian women: A preliminary investigation. Health. J. Aust. Off. J. Aust. Assoc. Health Promot. Prof. 2013, 24, 219–223. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; So, K.A.; Piyathilake, C.J.; Kim, M.K. Mild obesity, physical activity, calorie intake, and the risks of cervical intraepithelial neoplasia and cervical cancer. PLoS ONE 2013, 8, e66555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rias, Y.A.; Kurniasari, M.D.; Traynor, V.; Niu, S.F.; Wiratama, B.S.; Ching Wen Chang, C.W.; Tsai, H.T. Synergistic Effect of Low Neutrophil–Lymphocyte Ratio With Physical Activity on Quality of Life in Type 2 Diabetes Mellitus: A Community-Based Study. Biol. Res. Nurs. 2020, 22, 378–387. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, J.; Gao, Y.; Wu, C.; Yi, L.; Li, G.; Qi, Y. The dual effects of a novel peptibody on angiogenesis inhibition and M2 macrophage polarization on sarcoma. Cancer Lett. 2018, 416, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Petrillo, M.; Zannoni, G.F.; Martinelli, E.; Pedone Anchora, L.; Ferrandina, G.; Tropeano, G.; Fagotti, A.; Scambia, G. Polarisation of Tumor-Associated Macrophages toward M2 Phenotype Correlates with Poor Response to Chemoradiation and Reduced Survival in Patients with Locally Advanced Cervical Cancer. PLoS ONE 2015, 10, e0136654. [Google Scholar] [CrossRef] [PubMed]
- Negahdaripour, M.; Nezafat, N.; Heidari, R.; Erfani, N.; Hajighahramani, N.; Ghoshoon, M.B.; Shoolian, E.; Rahbar, M.R.; Najafipour, S.; Dehshahri, A.; et al. Production and Preliminary in vivo Evaluations of a Novel in silico-Designed L2-based Potential HPV Vaccine. Curr. Pharmaceut. Biotechnol. 2020, 21, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.; Kirk, E.A.; Lee, S.X.; Ladiges, W.C. Exercise, physical activity and breast cancer: The role of tumor-associated macrophages. Exerc. Immunol. Rev. 2012, 18, 158–176. [Google Scholar] [PubMed]
- Verma, V.K.; Singh, V.; Singh, M.P.; Singh, S.M. Effect of physical exercise on tumor growth regulating factors of tumor microenvironment: Implications in exercise-dependent tumor growth retardation. Immunopharmacol. Immunotoxicol. 2009, 31, 274–282. [Google Scholar] [CrossRef]
- Terra, R.; Alves, P.J.F.; Lima, A.K.C.; Gomes, S.M.R.; Rodrigues, L.S.; Salerno, V.P.; Da-Silva, S.A.G.; Dutra, P.M.L. Immunomodulation From Moderate Exercise Promotes Control of Experimental Cutaneous Leishmaniasis. Front. Cell. Inf. Microbiol. 2019, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, R.; Raina, P.; Shinde, K.; Mansara, P.; Karandikar, M.; Kaul-Ghanekar, R. Flax seed oil reduced tumor growth, modulated immune responses and decreased HPV E6 and E7 oncoprotein expression in a murine model of ectopic cervical cancer. Prostaglandins Other Lipid Mediat. 2019, 143, 106332. [Google Scholar] [CrossRef]
- Lu, H.; Gu, X. MicroRNA-221 inhibits human papillomavirus 16 E1-E2 mediated DNA replication through activating SOCS1/Type I IFN signaling pathway. Int. J. Clin. Exp. Pathol. 2019, 12, 1518–1528. [Google Scholar]
- Munoz, J.P.; Carrillo-Beltran, D.; Aedo-Aguilera, V.; Calaf, G.M.; Leon, O.; Maldonado, E.; Tapia, J.C.; Boccardo, E.; Ozbun, M.A.; Aguayo, F. Tobacco Exposure Enhances Human Papillomavirus 16 Oncogene Expression via EGFR/PI3K/Akt/c-Jun Signaling Pathway in Cervical Cancer Cells. Front. Microbiol. 2018, 9, 3022. [Google Scholar] [CrossRef] [PubMed]
- Guleria, C.; Suri, V.; Kapoor, R.; Minz, R.W.; Aggarwal, R. Human papillomavirus 16 infection alters the Toll-like receptors and downstream signaling cascade: A plausible early event in cervical squamous cell carcinoma development. Gynecol. Oncol. 2019, 155, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Liang, C.L.; Liu, H.; Zeng, Y.Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melinceanu, L.; Sarafoleanu, C.; Lerescu, L.; Tucureanu, C.; Caras, I.; Salageanu, A. Impact of smoking on the immunological profile of patients with laryngeal carcinoma. J. Med. Life 2009, 2, 211–218. [Google Scholar]
- Bermudez-Morales, V.H.; Peralta-Zaragoza, O.; Alcocer-Gonzalez, J.M.; Moreno, J.; Madrid-Marina, V. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. Mol. Med. Rep. 2011, 4, 369–375. [Google Scholar]
- Feng, Q.; Wei, H.; Morihara, J.; Stern, J.; Yu, M.; Kiviat, N.; Hellstrom, I.; Hellstrom, K.E. Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma. Gynecol. Oncol. 2012, 127, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Hajizadeh Maleki, B.; Tartibian, B.; Mooren, F.C.; FitzGerald, L.Z.; Kruger, K.; Chehrazi, M.; Malandish, A. Low-to-moderate intensity aerobic exercise training modulates irritable bowel syndrome through antioxidative and inflammatory mechanisms in women: Results of a randomized controlled trial. Cytokine 2018, 102, 18–25. [Google Scholar] [CrossRef]
- Freitas, D.A.; Rocha-Vieira, E.; Soares, B.A.; Nonato, L.F.; Fonseca, S.R.; Martins, J.B.; Mendonca, V.A.; Lacerda, A.C.; Massensini, A.R.; Poortamns, J.R.; et al. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiol. Behav. 2018, 184, 6–11. [Google Scholar] [CrossRef]
- Stanley, M.A.; Sterling, J.C. Host responses to infection with human papillomavirus. Curr. Probl. Dermatol. 2014, 45, 58–74. [Google Scholar]
- Bolpetti, A.; Silva, J.S.; Villa, L.L.; Lepique, A.P. Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth. BMC Immunol. 2010, 11, 27. [Google Scholar] [CrossRef] [Green Version]
Variable | Healthy Controls | ≥CIN 1 | p-Value |
---|---|---|---|
(N = 307) n (%) | (N = 126) n (%) | ||
Age (years) | |||
<41 | 182 (59.3) | 64 (50.8) | p = 0.01 |
≥41 | 125 (40.7) | 62 (49.2) | |
Educational level | |||
<College | 66 (21.5) | 48 (38.1) | p = 0.0004 |
≥College | 241 (78.5) | 78 (61.9) | |
Smoking status | |||
Non-smoker | 225 (73.3) | 78 (61.9) | p = 0.03 |
Exposed to secondhand smoke | 46 (15.0) | 22 (17.5) | |
Smoker | 36 (11.7) | 26 (20.6) | |
HPV infection | |||
No | 228 (74.3) | 46 (36.5) | p < 0.0001 |
Yes | 79 (25.7) | 80 (63.5) | |
Family history of cervical cancer | |||
No | 305 (99.3) | 122 (96.8) | p = 0.06 |
Yes | 2 (0.7) | 4 (3.2) | |
Average MET-h/week within the past one year | Mean ± SE | Mean ± SE | p = 0.0001 # |
7.7 ± 0.81 | 3.67 ± 0.78 | ||
Lifetime leisure-time physical activity (MET-h/week–year) | Mean ± SE | Mean ± SE | p = 0.001 # |
41.62 ± 6.17 | 25.28 ± 9.19 |
Variable | Healthy Controls (N = 307) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
---|---|---|---|---|
(N = 126) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 140 (45.6) | 90 (71.4) | 1.00 | 1.00 |
3.75–7.5 | 56 (18.2) | 14 (11.1) | 0.38 (0.20–0.74), p = 0.004 | 0.42 (0.21–0.85), p = 0.01 |
≥7.5 | 111 (36.2) | 22 (17.5) | 0.30 (0.18–0.52), p < 0.0001 | 0.27 (0.15–0.49), p < 0.0001 |
MET-h/week within the past 1 year | ||||
<3.75 | 161 (52.4) | 95 (75.4) | 1.00 | 1.00 |
3.75–7.5 | 52 (17.0) | 12 (9.5) | 0.39 (0.19–0.77), p = 0.0066 | 0.41 (0.19–0.86), p = 0.01 |
≥7.5 | 94 (30.6) | 19 (15.1) | 0.34 (0.19–0.59), p = 0.0002 | 0.27 (0.14–0.50), p < 0.0001 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 90 (29.3) | 80 (63.5) | 1.00 | 1.00 |
≥0.12~<13.2 | 98 (31.9) | 21 (16.7) | 0.24 (0.13–0.42), p < 0.0001 | 0.23 (0.12–0.44), p < 0.0001 |
≥13.2 | 119 (38.8) | 25 (19.8) | 0.23 (0.14–0.40), p < 0.0001 | 0.18 (0.10–0.32), p < 0.0001 |
Without HPV Infection (N = 274) | ||||
Variable | Healthy Controls (N = 228) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 46) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 102 (44.7) | 37 (80.4) | 1.00 | 1.00 |
3.75–7.5 | 46 (20.2) | 2 (4.4) | 0.12 (0.02–0.51), p = 0.004 | 0.12 (0.02–0.55), p = 0.006 |
≥7.5 | 80 (35.1) | 7 (15.2) | 0.24 (0.10–0.57), p = 0.001 | 0.25 (0.10–0.60), p = 0.002 |
MET-h/week within the past 1 year | ||||
<3.75 | 119 (52.2) | 39 (84.8) | 1.00 | 1.00 |
3.75–7.5 | 43 (18.9) | 2 (4.3) | 0.14 (0.03–0.61), p = 0.008 | 0.14 (0.03–0.64), p = 0.01 |
≥7.5 | 66 (28.9) | 5 (10.9) | 0.23 (0.08–0.61), p = 0.003 | 0.23 (0.08–0.63), p = 0.004 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 68 (29.8) | 36 (78.3) | 1.00 | 1.00 |
≥0.12~<13.2 | 75 (32.9) | 4 (8.7) | 0.10 (0.03–0.29), p < 0.0001 | 0.12 (0.03–0.45), p = 0.001 |
≥13.2 | 85 (37.3) | 6 (13.0) | 0.13 (0.05–0.33), p < 0.0001 | 0.13 (0.04–0.40), p = 0.0004 |
With HPV Infection (N = 159) | ||||
Variable | Healthy Controls (N = 79) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 80) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 38 (48.1) | 53 (66.3) | 1.00 | 1.00 |
3.75–7.5 | 10 (12. 7) | 12 (15.0) | 0.86 (0.33–2.19), p = 0.75 | 0.94 (0.35–2.48), p = 0.90 |
≥7.5 | 31 (39.2) | 15 (18.7) | 0.34 (0.16–0.73), p = 0.005 | 0.30 (0.13–0.68), p = 0.003 |
MET-h/week within the past 1 year | ||||
<3.75 | 42 (53.2) | 56 (70.0) | 1.00 | 1.00 |
3.75–7.5 | 9 (11.4) | 10 (12.5) | 0.83 (0.31–2.23), p = 0.71 | 0.85 (0.31–2.37), p = 0.76 |
≥7.5 | 28 (35.4) | 14 (17.5) | 0.37 (0.17–0.79), p = 0.01 | 0.31 (0.13–0.71), p = 0.005 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 22 (27.9) | 44 (55.0) | 1.00 | 1.00 |
≥0.12~<13.2 | 23 (29.1) | 17 (21.3) | 0.37 (0.16–0.83), p = 0.01 | 0.68 (0.24–1.92), p = 0.46 |
≥13.2 | 34 (43.0) | 19 (23.7) | 0.27 (0.13–0.59), p = 0.001 | 0.23 (0.08–0.65), p = 0.005 |
Non-Smokers (N = 303) | ||||
Variable | Healthy Controls (N = 225) n (%) | ≥CIN 1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 78) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 97 (43.1) | 55 (70.5) | 1.00 | 1.00 |
3.75–7.5 | 45 (20.0) | 9 (11.5) | 0.35 (0.16–0.77), p = 0.009 | 0.42 (0.18–0.99), p = 0.04 |
≥7.5 | 83 (36.9) | 14 (18.0) | 0.29 (0.15–0.57), p = 0.0003 | 0.23 (0.11–0.48), p < 0.0001 |
MET-h/week within the past 1 year | ||||
<3.75 | 115 (51.1) | 58 (74.4) | 1.00 | 1.00 |
3.75–7.5 | 40 (17.8) | 7 (8.9) | 0.34 (0.14–0.82), p = 0.01 | 0.36 (0.15–0.86), p = 0.02 |
≥7.5 | 70 (31.1) | 13 (16.7) | 0.36 (0.18–0.72), p = 0.003 | 0.32 (0.16–0.65), p = 0.001 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 65 (28.9) | 49 (62.8) | 1.00 | 1.00 |
≥0.12~<13.2 | 69 (30.7) | 15 (19.2) | 0.28 (0.14–0.56), p = 0.0003 | 0.31 (0.15–0.65), p = 0.001 |
≥13.2 | 91 (40.4) | 14 (18.0) | 0.20 (0.10–0.40), p < 0.0001 | 0.16 (0.07–0.34), p < 0.0001 |
Active smokers or people exposed to secondhand smoke (N = 130) | ||||
Variable | Healthy Controls (N = 82) n (%) | ≥CIN1 | OR (95% CI), p-Value | AOR (95% CI), p-Value |
(N = 48) n (%) | ||||
MET-h/week within the past 6 months | ||||
<3.75 | 43 (52.4) | 35 (72.9) | 1.00 | 1.00 |
3.75–7.5 | 11 (13.4) | 5 (10.4) | 0.55 (0.17–1.75), p = 0.31 | 0.42 (0.12–1.45), p = 0.17 |
≥7.5 | 28 (34.2) | 8 (16.7) | 0.35 (0.14–0.86), p = 0.02 | 0.35 (0.13–0.92), p = 0.03 |
MET-h/week within the past 1 year | ||||
<3.75 | 46 (56.1) | 37 (77.1) | 1.00 | 1.00 |
3.75–7.5 | 12 (14.6) | 5 (10.4) | 0.51 (0.16–1.60), p = 0.32 | 0.55 (0.17–1.80), p = 0.33 |
≥7.5 | 24 (29.3) | 6 (12.5) | 0.31 (0.11–0.84), p = 0.02 | 0.32 (0.11–0.90), p = 0.03 |
Lifetime leisure-time physical activity (MET-h/week–year) | ||||
0~<0.12 | 25 (30.5) | 31 (64.6) | 1.00 | 1.00 |
≥0.12~<13.2 | 29 (35.4) | 6 (12.5) | 0.16 (0.06–0.46), p = 0.0006 | 0.13 (0.04–0.42), p = 0.0007 |
≥13.2 | 28 (34.1) | 11 (22.9) | 0.31 (0.13–0.75), p = 0.01 | 0.20 (0.07–0.58), p = 0.002 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.W.; Yang, S.-F.; Gordon, C.J.; Liao, W.C.; Niu, S.F.; Wang, C.W.; Tsai, H.T. Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia. Healthcare 2020, 8, 260. https://doi.org/10.3390/healthcare8030260
Chang CW, Yang S-F, Gordon CJ, Liao WC, Niu SF, Wang CW, Tsai HT. Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia. Healthcare. 2020; 8(3):260. https://doi.org/10.3390/healthcare8030260
Chicago/Turabian StyleChang, Ching Wen, Shun-Fa Yang, Christopher J. Gordon, Wen Chun Liao, Shu Fen Niu, Cheng Wei Wang, and Hsiu Ting Tsai. 2020. "Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia" Healthcare 8, no. 3: 260. https://doi.org/10.3390/healthcare8030260
APA StyleChang, C. W., Yang, S.-F., Gordon, C. J., Liao, W. C., Niu, S. F., Wang, C. W., & Tsai, H. T. (2020). Physical Activity of ≥7.5 MET-h/Week Is Significantly Associated with a Decreased Risk of Cervical Neoplasia. Healthcare, 8(3), 260. https://doi.org/10.3390/healthcare8030260