The Use of Therapeutic Music Training to Remediate Cognitive Impairment Following an Acquired Brain Injury: The Theoretical Basis and a Case Study
Abstract
:1. Introduction
1.1. The Role of the Prefrontal Cortex in Cognitive Rehabilitation
1.2. The Role of Attention in Cognitive Rehabilitation
1.3. TMT Engages the PFC and Attentional Processes
- The intervention is designed to stimulate top-down processing to engage the PFC.
- Detection and response to a target stimulus to place demands on attentional processing and to engage cognitive control networks
- Goal-directed behavior
- Effortful processing
- The intervention places demands on working memory.
- The intervention is designed to target a specific aspect of cognition informed by models of attention identified by Sohlberg and Mateer [63]. These include focused, sustained, selective, and alternating attention.
- Interventions are administered following the hierarchy of attention and cognition, beginning with the level appropriate to the client.
- The interventions are varied, highlighting melody, rhythm, or harmony and focusing on various senses such as sight, hearing, and motor to continue to engage and drive attention processes and prevent the acquisition of a “trained task” within a specific activity type, and thereby reducing the requirement for attentional effort.
- Interventions are administered with consideration to the intensity and frequency of treatment, recognizing that a neuroplastic response is stimulated through experience.
1.4. Previous Investigations into Music-Based Cognitive Rehabilitation
2. Case Study
2.1. Client Background
2.2. Methodology
2.3. Pre–Post Tests
2.3.1. Trail Making Test
2.3.2. Digit Symbol Test
2.3.3. Brown–Peterson Task
2.4. Results
2.4.1. Trail Making A and B
2.4.2. Digit Symbol Test
2.4.3. Brown–Peterson Task
2.5. Anecdotal Evidence
3. Discussion
3.1. Results Support the Theory for the Efficacy of TMT
3.1.1. Trail Making A and B
3.1.2. Digit Symbol
3.1.3. Brown–Peterson Task
3.2. This Case Study’s Results Support Other Findings
4. Limitations
4.1. Single Subject Study Design
4.2. Length of Treatment Period
5. Future Research Directions
Funding
Acknowledgments
Conflicts of Interest
Ethical Statement
References
- Dikmen, S.S.; Machamer, J.E.; Winn, H.R.; Temkin, N.R. Neuropsychological outcome at 1-year post head injury. Neuropsychology 1995, 9, 80–90. [Google Scholar] [CrossRef]
- Goldstein, F.C.; Levin, H.S. Post-traumatic and anterograde amnesia following closed head injury. In Handbook of Memory Disorders; Baddeley, A.D., Wilson, B.A., Watts, F.N., Eds.; Wiley: Chichester, UK, 1996; pp. 187–209. [Google Scholar]
- Gronwall, D. Advances in the assessment of attention and information processing after head injury. In Neurobehavioural Recovery from Head Injury; Levin, H.S., Grafman, J., Eisenberg, H.M., Eds.; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Van Zomeren, A.H.; Brouwer, W.H. Clinical Neuropsychology of Attention; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Beers, S.R. Cognitive effects of mild head injury in children and adolescents. Neuropsychol. Rev. 1987, 1992, 3–281. [Google Scholar] [CrossRef] [PubMed]
- Donders, J. Memory functioning after traumatic brain injury in children. Brain Injury 1993, 7, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, P.M.; Fletcher, J.M.; Levin, H.S.; Miner, M.E. Attentional disturbance after pediatric closed head injury. J. Child Neurol. 1993, 8, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Whyte, E.; Skidmore, E.; Aizenstein, H.; Richer, J.; Butters, M. Cognitive impairment in acquired brain injury: A predictor of rehabilitation outcomes and an opportunity for novel interventions. Am. Acad. Phys. Med. Rehabil. 2011, 3, S45–S51. [Google Scholar] [CrossRef] [Green Version]
- Ballard, C.; Stephens, S.; Keeny, R.; Kalaria, R.; Tovee, M.; O’Brien, J. Profile of neuropsychological deficits in older stroke survivors without dementia. Dement. Geriatr. Cogn. Disorder. 2003, 16, 52–56. [Google Scholar] [CrossRef]
- Jaillard, A.; Naegele, B.; trabucco-Miguel, S.; LeBas, J.; Hommel, M. Hidden dysfunctioning in subacute stroke. Stroke 2009, 40, 2473–3479. [Google Scholar] [CrossRef] [Green Version]
- Michel, J.A.; Mateer, C.A. Attention rehabilitation following stroke and traumatic brain injury. Eur. Medicophys. 2006, 42, 59–67. [Google Scholar]
- Brooks, N.; McKinlay, W.; Symington, C.; Beattie, A.; Campsie, L. Return to work within the first seven years of injury. Brain Inj. 1987, 1, 5–19. [Google Scholar] [CrossRef]
- Kinsella, G.I.; Prior, M.; Sawyer, M.; Ong, B.; Murtagh, D.; Eisenmajor, R.; Bryan, D.; Anderson, B.; Klug, G. Predictors and indicators of academic outcome in children 2 years following traumatic brain injury. J. Int. Neuropsychol. Soc. 1997, 3, 608–616. [Google Scholar] [CrossRef]
- Van Zomeren, A.H.; Van Den Burg, W. Residual complaints of patients two years after severe head injury. J. Neurol. Neurosurg. Psychiatry 1985, 48, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dege, F.; Kubicek, C.; Schwarezer, G. Music lessons and intelligence: A relation mediated by executive functions. Music Percept. 2011, 29, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Wong, P.C.; Skoe, E.; Russo, N.M.; Dees, T.; Kraus, N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci. 2007, 10, 420–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munte, T.F.; Kohlmetz, C.; Nager, W.; Altenmuller, E. Superior auditory spatial tuning in conductors. Nature 2001, 409, 580. [Google Scholar] [CrossRef]
- Parberry-Clark, A.; Skoe, E.; Lam, C.; Kraus, N. Musician enhancement for speech in noise. Ear Hear. 2009, 30, 653–661. [Google Scholar] [CrossRef]
- Douglas, S.; Willatts, P. The relationship between musical ability and literacy skills. J. Res. Read. 1994, 17, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, M.F.; Fox, A.; Knowles, F.; Jeffery, D. Learning improved by arts training. Nature 1996, 381, 284. [Google Scholar] [CrossRef]
- Gaab, N.; Schlaug, G. The effect on musicianship on pitch memory in performance matched groups. Neuroreport 2003, 14, 2291–2295. [Google Scholar] [CrossRef]
- Hannon, E.; Trainor, L. Music acquisition: Effects of enculturation and formal training on development. Trends Cogn. Sci. 2007, 11, 466–472. [Google Scholar] [CrossRef]
- Bialystok, E.; DePape, A.M. Musical expertise, bilingualism, and executive functioning. J. Exp. Psychol. Hum. Percept. Perform. 2009, 35, 565–574. [Google Scholar] [CrossRef]
- Strait, D.L.; Kraus, N.; Parberry-Clark, A.; Ashley, R. Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hear. Res. 2010, 261, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.; Bialystok, E.; Barac, R.; Schellenberg, E.G.; Cepeda, N.J.; Chau, T. Short-term music training enhances verbal intelligence and executive function. Psychol. Sci. 2011, 22, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Pallesen, K.J.; Brattico, E.; Bailey, C.J.; Korvenoja, A.; Koivisto, J.; Gjedde, A.; Carlson, S. Cognitive control in auditory working memory is enhanced in musicians. PLoS ONE 2010, 4, e11120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strait, D.L.; Kraus, N. Playing music for a smarter ear: Cognitive, perceptual, and neurobiological evidence. Music Percept. 2011, 29, 133–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C. Therapeutic Music Training (TMT): A music therapy model using music training on an instrument to address therapeutic goals in the areas of cognition and psychosocial health. Approaches 2020. [Google Scholar]
- Chan, A.S.; Ho, Y.C.; Cheung, M.C. Music training improves verbal memory. Nature 1998, 396, 128. [Google Scholar] [CrossRef]
- Baddeley, A. Fractionating the central executive. In Principles of Frontal Lobe Function; Stuss, D.T., Knight, R.T., Eds.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Baddeley, A. Working memory: Theories, models, and controversies. Ann. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Miller, E.K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 2000, 1, 59–65. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.E.; Posner, M.I. The attentional system of the human brain: 20 years later. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach-y-Rita, P. Recovery from brain damage. J. Neuro. Rehab. 1992, 6, 191–199. [Google Scholar] [CrossRef]
- Doidge, N. The Brain’s Way of Healing; Penguin Press: New York, NY, USA, 2015. [Google Scholar]
- Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: Insights into associations between tumor and brain plasticity. Lancet Neurol. 2005, 4, 476–486. [Google Scholar] [CrossRef]
- Duffau, H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci. Res. 2009, 65, 131–135. [Google Scholar] [CrossRef]
- Rossini, P.M.; Calautti, C.; Pauri, R.; Baron, J.C. Post-stroke plastic reorganization in the adult brain. Lancet Neurol. 2003, 2, 493–502. [Google Scholar] [CrossRef]
- Thaut, M.H.; McIntosh, G.C.; Hoemberg, V. Neurologic Music Therapy: From social science to neuroscience. In The Handbook of Neurologic Music Therapy; Thaut, M., Hoemberg, V., Eds.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Bruscia, K. Defining Music Therapy; Barcelona Publishers: New Braunfels, TX, USA, 1998. [Google Scholar]
- Mateer, C.A.; Kerns, K.A. Capitalizing on neuroplasticity. Brain Cogn. 2000, 42, 106–109. [Google Scholar] [CrossRef] [Green Version]
- Ceravolo, M.G. Cognitive rehabilitation of attention deficit after brain damage: From research to clinical practice. Eur. Medicophys. 2006, 42, 49–51. [Google Scholar]
- Chen, A.J.W.; Abams, G.M.; D’Esposito, M. Functional reintegration of prefrontal neural networks for enhancing recovery after brain injury. J. Head Trauma Rehabil. 2006, 21, 107–118. [Google Scholar] [CrossRef]
- Altenmuller, E.; Marco-Pallares, J.; Munte, T.F.; Schneider, S. Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Neurosci. Music III Disord. Plast Ann. N. Y. Acad. Sci. 2009, 1169, 395–405. [Google Scholar] [CrossRef]
- Rodriguez-Fornells, A.; Rojo, N.; Amengual, J.L.; Ripolles, P.; Altenmuller, E.; Munte, T.F. The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients. Ann. N. Y. Acad. Sci. Neurosci. Music IV Learn. Mem. 2012, 1252, 282–293. [Google Scholar] [CrossRef]
- Fujioka, T.; Ween, J.E.; Jamali, S.; Stuss, D.T.; Ross, B. Changes in neuromagnetic beta-band oscillation after music-supported stroke rehabilitation. Ann. N. Y. Acad. Sci. Neurosci. Music IV Learn. Mem. 2012, 1252, 294–304. [Google Scholar] [CrossRef]
- Burgess, P.W.; Robertson, I.H. Principles of the rehabilitation of the frontal lobe function. In Principles of Frontal Lobe Function; Stuss, D.R., Knight, R.T., Eds.; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- D’Esposito, M.; Postile, B.R. The organization of working memory function in lateral prefrontal cortex: Evidence from event-related functional MRI. In Principles of Frontal Lobe Function; Stuss, D.T., Knight, R.T., Eds.; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Cohen, J.D.; Braver, T.S.; O’Reilly, R.C. A computational approach to prefrontal cortex, cognitive control, and schizophrenia: Recent developments and current challenges. In The Prefrontal Cortex: Executive and Cognitive Functions; Roberts, A.C., Robbins, T.W., Weiskrantz, L., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 195–220. [Google Scholar]
- Anderson, V.; Levin, H.S.; Jacobs, R. Executive functions after frontal lobe injury: A developmental perspective. In Principles of Frontal Lobe Function; Stuss, D., Knight, R., Eds.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Krebs, C.; Weinberg, J.; Akesson, E. Lippincott’s Illustrated Reviews: Neuroscience; Lippincott Williams & Wilkins Publishers: Philadelphia, PA, USA, 2012. [Google Scholar]
- Levine, B.; Robertson, I.H.; Clare, L.; Carter, G.; Hong, J.U.; Wilson, B.A.; Duncan, J.; Stuss, D.T. Rehabilitation of executive function: An experimental-clinical validation of Goal Management Training. J. Int. Neuropsychol. Soc. 2000, 6, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Dockree, P.M.; Kelly, S.P.; Roche, R.A.P.; Hogan MJReilly, R.B.; Robertson, I.H. Behavioural and physiological impairments of sustained attention after traumatic brain injury. Cogn. Brain Res. 2004, 20, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.A.; Novakovic-Agopian Tatjana Nycum, T.J.; Song, S.; Turner, G.R.; Hills NKKRome SAbrams, G.M.; D’Esposito, M. Training of goal-irected attention regulation enhances control over neural processing for individuals with brain injury. Brain 2011, 134, 1541–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateer, C.A.; Sohlberg, M.M. A.; Sohlberg, M.M. A paradigm shift in memory rehabilitation. In Neuropsychological Studies of Nonfocal Brain Injury: Dementia and Closed Head Injury; Whitaker, H., Ed.; Springer: New York, NY, USA, 1988. [Google Scholar]
- Mateer, C.A.; Sohlberg, M.M.; Youngman, P. The management of acquired attention and memory disorders following mild closed head injury. In Cognitive Rehabilitation in Perspective; Wood, R., Fussey, I., Eds.; Taylor & Francis: London, UK, 1990. [Google Scholar]
- Mateer, C.A. Systems of care for post-concussive syndrome. In Rehabilitation of Post-Concussive Disorders; Horn, L., Zasler, N., Eds.; Henely & Belfus: Philadelphia, PA, USA, 1992. [Google Scholar]
- Niemann, H.; Ruff, R.M.; Basser, C.A. Computer-assisted attention training in head injured individuals: A controlled efficacy study in an outpatient group. J. Consult. Clin. Psychol. 1990, 58, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.; Foxe, J.J.; Garavan, H. Patterns of normal brain plasticity after practice and their implications for neurorehabilitation. Arch. Phys. Med. Rehabil. 2006, 87, S20–S29. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.G.; Robertson, I.H. Plasticity of high-order cognition: A review of experience-induced remediation studies for executive deficits. In Neuroplasticity and Rehabilitation; Raskin, S., Ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Sohlberg, M.M.; Mateer, C.A. Cognitive Rehabilitation: An Integrative Neuropsychological Approach; Guilford Press: New York, NY, USA, 2001. [Google Scholar]
- George, E.M.; Coch, D. Music training and working memory: An ERP study. Neuropsychologia 2011, 49, 1083–1094. [Google Scholar] [CrossRef]
- Knox, R.; Jutai, J. Music-based rehabilitation of attention following brain injury. Can. J. Rehabil. 1996, 9, 169–181. [Google Scholar]
- Knox, R.; Yokota-Adachi, H.; Kershner, J.; Jutai, J. Musical attention training program and alternating attention in brain injury: An initial report. Music Ther. Perspect. 2003, 21, 99–104. [Google Scholar] [CrossRef]
- Moreno, S.; Bidelman, G.M. Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hear. Res. 2014, 308, 84–97. [Google Scholar] [CrossRef]
- Stuss, D.T.; Eskes, G.A.; Foster, J.K. Experimental neuropsychological studies of frontal lobe functions. In Handbook of Neuropsychology; Oller, F.B., Grafman, J., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1994; Volume 9. [Google Scholar]
- Barr, W.B. Neuropsychological testing of high school athletes: Preliminary norms and test-retest indices. Arch. Clin. Neuropsychol. 2003, 18, 91–101. [Google Scholar] [PubMed]
- Lucas, J.A.; Ivnik, R.J.; Smith, G.E.; Ferman, T.J.; Willis, F.B.; Petersen, R.C.; Graff-Radford, N.R. Mayo’s Older African American Normative Stuides: Norms for Boston Naming Test, Controlled Oral Word Association, Category Fluency, Animal Naming, Token Test, WRAT-3 Reading, Trail Making Test, Stroop Test, and Judgment of Line Orientation. Clin. Neuropsychol. 2005, 19, 242–269. [Google Scholar] [CrossRef] [PubMed]
- Mitrushina, M.N.; Boone, K.B.; Razani, J.; D’Elia, L.F. Handbook of Normative Data for Neuropsychological Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Tombaugh, T.N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 2005, 19, 203–214. [Google Scholar] [CrossRef]
- Rabin, L.A.; Barr, W.B.; Burton, L.A. Assessment practices of clinical neuropsychologists in United States and Canada: A survey of INS, NAN, and APA Division 40 members. Arch. Clin. Neuropsychol. 2005, 20, 33–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponsford, J.L.; Kinsella, G. Evaluation of a remedial programme for attentional deficits following closed head injury. J. Clin. Exp. Neuropsychol. 1988, 10, 693–708. [Google Scholar] [CrossRef]
- Laux, L.F.; Lane, D.M. Information processing components of substitution test performance. Intelligence 1985, 9, 111–136. [Google Scholar] [CrossRef]
- Lezak, M.D. Neuropsychological Assessment, 3rd ed.; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- Uchiyama, C.L.; D’Elia, L.F.; Delinger, A.M.; Selnes, O.A.; Becker, J.T.; Wesch Je Chen, B.B.; Satz, P.; Van Gorp, W.; Miller, E.N. Longitudinal comparison of alternate versions of the Symbol Digit Modalities Test: Issues of form comparability and moderating demographic variables. Clin. Neuropsychol. 1994, 8, 209–218. [Google Scholar] [CrossRef]
- Bowler, R.; Sudia, S.; Mergler, D.; Harrison, R.; Cone, J. Comparison of Digit Symbol and Symbol Digit Modalities Tests for assessing neurotoxic exposure. Clin. Neuropsychol. 1992, 6, 103–104. [Google Scholar] [CrossRef]
- Emmerson, R.Y.; Dustman, R.E.; Shearer, D.E.; Turner, C.W. P3 latency and symbol digit performance correlations in aging. Exp. Aging Res. 1990, 15, 151–159. [Google Scholar] [CrossRef]
- Gilmore, G.C.; Royer, F.L.; Gruhn, J.J. Age differences in symbol-digit substitution task performance. J. Clin. Psychol. 1983, 39, 114–124. [Google Scholar] [CrossRef]
- Joy, S.; Kaplan, E.; Fein, D. Speed and memory in the WAIS-III Digit Symbol-Coding subtest across the adult lifespan. Arch. Clin. Neuropsychol. 2004, 19, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Hinton-Bayre, A.D.; Geffen, G. Comparability, reliability, and practice effects on alternate forms of the Digit Symbol and Symbol Digit Modalitites Tests. Psychol. Assess 2005, in press. [Google Scholar]
- Yeudall, L.T.; Fromm, D.; Reddon, J.R.; Stefanyk, W.O. Normative data stratified by age and sex for 12 neuropsychological tests. J. Clin. Psychol. 1986, 42, 918–946. [Google Scholar] [CrossRef]
- Peterson, L.R.; Peterson, M.J. Short-term retention of individual verbal items. J. Exp. Psychol. 1959, 58, 193–198. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Bherer, L.; Belleville, S.; Petetz, I. Education, age, and the Brown-Peterson technique. Dev. Neuropsychol. 2001, 19, 237–251. [Google Scholar] [CrossRef]
- Boone, K.B. Neuropsychological assessment of executive functions: Impact of age, education, gender, intellectual level, and vascular status on executive test scores. In The Human Frontal Lobes: Functions and Disorders; Miller, B.L., Cummings, J.L., Eds.; Guildford Press: New York, NY, USA, 1999. [Google Scholar]
- Floden, D.; Stuss, D.T.; Craik, F.I.M. Age difference in performance on two versions of the Brown-Peterson task. Aging Neuropsychol. Cogn. 2000, 7, 247–259. [Google Scholar] [CrossRef]
- Kopelman, M.D.; Stanhopes, N. Rates of forgetting in organic amnesia following temporal lobe, diencephalic, or frontal lobe lesions. Neuropsychology 1997, 11, 343–356. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Changes in grey matter induced by training. Nature 2004, 427, 6972. [Google Scholar] [CrossRef]
- Lee, Y.; Lu, M.; Ko, H. Effects of skill training on working memory capacity. Learn. Instr. 2007, 17, 336–344. [Google Scholar] [CrossRef]
- Habib, M.; Besson, M. What do music training and musical experience teach us about brain plasticity? Music Percept. 2009, 26, 279–285. [Google Scholar] [CrossRef]
- Pantev, C. Music training and induced cortical plasticity. The neuroscience and music III: Disorders and plasticity. Ann. N. Y. Acad. Sci. 2009, 1169, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Schlaug, G.; Forgeard, M.; Zhu, L.; Norton, A.; Norton, A.; Winner, E. Training-induced neuroplasticity in young children. The Neurosciences and Music III: Disorders and Plasticity. Ann. N. Y. Acad. Sci. 2009, 1169, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Trainor, L.; Shahim, A.J.; Roberts, L.E. Understanding the benefits of musical training: Effects on oscillatory brain activity. The Neurosciences and Music III: Disorders and Plasticity. Ann. N. Y. Acad. Sci. 2009, 1169, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Gummow, L.; Miller, P.; Dustman, R.E. Attention and brain injury: A case for cognitive rehabilitation of attentional deficits. Clin. Psychol. Rev. 1983, 3, 55–274. [Google Scholar] [CrossRef]
- Mateer, C.A.; Mapou, R.L. Understanding, evaluating, and managing attention disorders following traumatic brain injury. J. Head Rehabil. 1996, 11, 1–16. [Google Scholar]
- Van den Broek, M.D. Cognitive rehabilitation and brain injury. Rev. Clin. Gerontol. 1999, 9, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Sohlberg, M.M.; Avery, J.; Kennedy, M.; Ylvisaker, M.; Coelho, C.; Turkstra, L.; Yorkston, K. Practice guidelines for direct attention training. J. Med. Speech Lang. Pathol. 2003, 11, 19–39. [Google Scholar]
- Sturm, W.; Longoni, F.; Weis, S.; Specht, K.; Herzog, H.; Vohn, R.; Thimm, M.; Willmes, K. Functional reorganization in patients with right hemisphere stroke after training of alertness: A longitudinal PET and fMRI study in eight cases. Neuropsychologia 2004, 42, 434–450. [Google Scholar] [CrossRef]
- Cicerone, K.; Levin, H.; Malec, J.; Stuss, D.; Whyte, J. Cognitive rehabilitation interventions for executive function: Moving from bench to bedside in patient with traumatic brain injury. J. Cogn. Neurosci. 2006, 18, 1212–1222. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yoo, W.K.; Ko, M.H.; Park, C.H.; Kim, S.T.; Na, D.L. Plasticity of attentional network after brain injury and cognitive rehabilitation. Neurorehabil. Neural Repair 2009, 23, 468–477. [Google Scholar] [CrossRef]
- Engle, J.A.; Kerns, K.A. Neuroplasticity and rehabilitation of attention in children. In Neuroplasticity and Rehabilitation; Raskin, S., Ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Barrett, K.C.; Ashley, R.; Strait, D.L.; Kraus, N. Art and science: How musical training shapes the brain. Front. Psychol. 2013, 1, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bugos, J.A.; Perlstein, W.M.; McCrae, C.S.; Brophy, T.S.; Bedenbaugh, P.H. Individualized piano instruction enhances executive functioning and working memory in older adults. Aging Ment. Health 2007, 11, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, S.; Figueroa, H.; Ortiz-Gil, J.; Sanchez-Vives, M.V. Effects of learning and piano practice on cognitive function, mood and quality of life in older adults. Front. Psychol. 2013, 4, 810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, L.; Henson, R.; Kampe, K.; Walsh, V.; Turner, R.; Frith, U. Brain changes after learning to read and play music. NeuroImage 2003, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, T.; Ross, B.; Kakigi, R.; Pantev, C.; Trainor, L.J. One year of musical training affects development of auditory cortical-evoked fields in young children. Brain 2006, 129, 2593–2608. [Google Scholar] [CrossRef] [Green Version]
- McPherson, G.E.; O’Neill, S.A. Students’ motivation to study music as compared to other school subjects: A comparison of eight countries. Res. Stud. Music Educ. 2010, 32, 1–37. [Google Scholar] [CrossRef]
- Peck, K.J.; Girard, T.A.; Russo, F.A.; Fiocco, A.J. Music and memory in Alzheimer’s disease and the potential underlying mechanisms. J. Alzheimer’s Dis. 2006, 51, 2571–2584. [Google Scholar] [CrossRef]
Trail Making Test | Participant | Norms Adults. Normal or Neurologically Stable (n = 384) | ||||
---|---|---|---|---|---|---|
Pre-Test | Post-Test | T2-T1 | Test 1 | Test 2 | T2-T1 | |
Test A | 54.78 | 27.9 | −26.88 | 26.52 | 25.56 | −0.96 |
Test B | 76.13 | 55.8 | −20.33 | 72.05 | 68.19 | −3.86 |
Digit Symbol Test | Participant | Norms Age >50 | |
---|---|---|---|
Pre-Test | Post-Test | ||
Incidental Learning | 3 | 3 | 4.86 |
Free-recall | 6 | 4 | N/A |
Brown-Peterson Task | Participant | Norms Adults. Normal or Neurologically Stable. Age 50–69 (n = 30) | ||||
---|---|---|---|---|---|---|
Pre-Test Number Correct/15 | Post-Test Number Correct/15 | T2-T1 | Test 1 Number Correct/15 | Test 2 Number Correct/15 | T2-T1 | |
9-s delay | 15 | 14 | −1 | 11.47 | 11.70 | +0.23 |
18-s delay | 7 | 13 | +6 | 10.23 | 10.67 | +0.44 |
36-s delay | 3 | 10 | +7 | 8.67 | 8.57 | −0.1 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, C. The Use of Therapeutic Music Training to Remediate Cognitive Impairment Following an Acquired Brain Injury: The Theoretical Basis and a Case Study. Healthcare 2020, 8, 327. https://doi.org/10.3390/healthcare8030327
Jones C. The Use of Therapeutic Music Training to Remediate Cognitive Impairment Following an Acquired Brain Injury: The Theoretical Basis and a Case Study. Healthcare. 2020; 8(3):327. https://doi.org/10.3390/healthcare8030327
Chicago/Turabian StyleJones, Cheryl. 2020. "The Use of Therapeutic Music Training to Remediate Cognitive Impairment Following an Acquired Brain Injury: The Theoretical Basis and a Case Study" Healthcare 8, no. 3: 327. https://doi.org/10.3390/healthcare8030327