Exploring the Impact of Obesity on Health Care Resources and Coding in the Acute Hospital Setting: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 16 February 2018).
- Australian Institute of Health and Welfare. Available online: https://www.aihw.gov.au/reports/biomedical-risk-factors/risk-factors-to-health/contents/risk-factors-and-disease-burden (accessed on 7 August 2017).
- Haslam, D. An introduction to obesity. Pract. Nurse 2008, 35, 13–17. [Google Scholar]
- Geiss, L.S.; James, C.; Gregg, E.W.; Albright, A.; Williamson, D.F.; Cowie, C.C. Diabetes risk reduction behaviours among U.S. adults with prediabetes. Am. J. Prev. Med. 2010, 38, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Abdelmalek, M.F.; Diehl, A.M. Nonalcoholic fatty liver disease as a complication of insulin resistance. Med. Clin. N. Am. 2007, 91, 1125–1149. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, T.C.; Verwer, B.J.; Nieuwkerk, C.W.; Mulder, C.J. Nonalcoholic fatty liver disease: An overview of current insights in pathogenesis, diagnosis and treatment. World J. Gastrol. 2008, 14, 2474–2486. [Google Scholar] [CrossRef] [PubMed]
- Jean-Pierre, D. Cardiovascular disease under the influence of excess visceral fat. Crit. Pathw. Cardiol. 2007, 6, 51–59. [Google Scholar]
- Dee, A.; Kearns, K.; O’Neill, C.; Sharp, L.; Staines, A.; O’Dwyer, V.; Fitzgerald, S.; Perry, I.J. The direct and indirect costs of both overweight and obesity: A systematic review. BMC Res. Notes 2014, 7, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colagiuri, S.; Lee, C.M.; Colagiuri, R.; Magliano, D.; Shaw, J.E.; Zimmet, P.Z.; Caterson, I.D. The cost of overweight and obesity in Australia. MJA 2010, 192, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Korda, R.J.; Joshy, G.; Paige, E.; Butler, J.R.; Louisa, R.J.; Liu, B.; Bauman, A.E.; Banks, E. The relationship between body mass index and hospitalization rates, day in hospital and costs: Findings from a large prospective linked data study. PLoS ONE 2015, 10, e0118599. [Google Scholar] [CrossRef]
- Bahia, L.; Coutinho, E.S.F.; Barufaldi, L.A.; Abreu, G.A.; Malhao, T.A.; Souza, C.P.R.; Araujo, D.V. The costs of overweight and obesity-related diseases in the Brazilian public health system: Cross-sectional study. BMC Public Health 2012, 12, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Buchmuller, T.C.; Meliyanni, J. Obesity and health expenditures: Evidence from Australia. Econ. Hum. Biol. 2015, 17, 42–58. [Google Scholar] [CrossRef]
- Gupta, S.; Richard, L.; Forsythe, A. The humanistic and economic burden associated with increasing body mass index in the EU5. Diabetes Metab. Syndr. Obes. 2015, 8, 327–328. [Google Scholar] [CrossRef] [Green Version]
- Lal, A.; Moodie, M.; Ashton, T.; Siahpush, M.; Swinburn, B. Health care and lost productivity costs of overweight and obesity in New Zealand. Aust. N. Z. J. Public Health 2012, 36, 550–556. [Google Scholar] [CrossRef]
- Lehnert, T.; Streltchenia, P.; Konnopka, A.; Riedel-Heller, S.G.; Konig, H.H. Health burden and costs of obesity and overweight in Germany. Eur. J. Health Econ. 2015, 16, 957–967. [Google Scholar] [CrossRef]
- Flessa, S.; Moeller, M.; Ensor, T.; Hornetz, K. Basing care reforms on evidence: The Kenya health sector costing model. BMC Health Serv. Res. 2011, 11, 128–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conteh, L.; Walker, D. Cost and unit cost calculations using step-down accounting. Health Policy Plan. 2004, 19, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Batura, N.; Pulkki-Brännström, A.M.; Agrawal, P.; Bagra, A.; Haghparast-Bidgoli, H.; Bozzani, F.; Colbourn, T.; Greco, G.; Hossain, T.; Sinha, R.; et al. Collecting and analysing cost data for complex public health trials: Reflections on practice. Glob. Health Action 2014, 7, 23257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapko, M.K.; Liu, C.F.; Perkins, M.; Li, Y.F.; Fortney, J.C.; Maciejewski, M.L. Equivalence of two healthcare costing methods: Bottom-up and top-down. Health Econ. 2009, 18, 1188–1201. [Google Scholar] [CrossRef]
- Modern Healthcare. Available online: https://www.modernhealthcare.com/article/20100802/MAGAZINE/100739994/making-adjustments (accessed on 18 October 2020).
- Australian Consortium for Classification Development. Available online: https://www.accd.net.au/ArDrg.aspx (accessed on 31 October 2018).
- Queensland Health. Available online: https://www.health.qld.gov.au/__data/assets/pdf_file/0026/443582/funding-guidelines-2016-17.pdf (accessed on 31 October 2018).
- Di Bella, A.L.; Comans, T.; Gane, E.M.; Young, A.M.; Hickling, D.F.; Lucas, A.; Hickman, I.J.; Banks, M. Underreporting of obesity in hospital inpatients: A comparison of body mass index and administrative documentation in Australian hospitals. Healthcare 2020, 8, 334. [Google Scholar] [CrossRef]
- Mocarski, M.; Tian, Y.; Zmolarz, B.G.; McAna, J.; Crawford, A. Use of international classification of diseases, ninth revision codes for obesity: Trends in the United States from an electronic health record-derived database. Popul. Health Manag. 2007, 21, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Kazzi, E.S.A.; Lau, B.; Li, T.; Schneider, E.B.; Makary, M.A.; Hutfless, S. Differences in the prevalence of obesity, smoking and alcohol in the United States nationwide inpatient sample and the behavioural risk factor surveillance system. PLoS ONE 2015, 10, e0140165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goode, V.; Rovnyak, V.; Hinton, I.; Philips, E.; Merwin, E. Are international classification of diseases codes in electronic health records useful in identifying obesity as a risk factor when evaluating surgical outcomes? Health Care Manag 2016, 35, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. Available online: https://www.aihw.gov.au/getmedia/c3639246-e544-4672-8856-1a37721d6832/20135.pdf.aspx?inline=true (accessed on 16 July 2016).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chron Dis 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. The index of ADL: A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Kuys, S.S.; Dolecka, U.E.; Guard, A. Activity level of hospital medical inpatients: An observational study. Arch. Gerontol. Geriatr. 2012, 55, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Queensland Government. Available online: https://www.health.qld.gov.au/__data/assets/pdf_file/0033/388095/11_12_qhapdc_final.pdf (accessed on 31 October 2018).
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C.H. A tutorial on pilot studies: The what, why and how. BMC Med. Res. Methodol. 2010, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- L’her, E.; Martin-Babau, J.; Lellouche, F. Accuracy of height estimation and tidal volume setting using anthropometric formulas in an ICU Caucasian population. Ann. Intensive Care 2016, 6, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, V.M.; Stratton, R.J.; Lafuente, E.; Elia, M. Ulna length to preduct height in English and Portugese patient populations. Eur. J. Clin. Nutr. 2011, 66, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Crandall, C.S.; Gardner, S.; Braude, D.A. Estimation of total body weight in obese patients. Air Med. J. 2009, 283, 139–145. [Google Scholar] [CrossRef]
- World Health Organization. Available online: http://apps.who.int/iris/bitstream/10665/44583/1/9789241501491_eng.pdf (accessed on 31 October 2018).
- Lin, C.C.; Yu, S.C.; Wu, B.J.; Chang, D.J. Measurement of waist circumference at different sites affects the detection of abdominal obesity and metabolic syndrome among psychiatric patients. Psychiatry Res. 2012, 30, 322–326. [Google Scholar] [CrossRef]
- Durkin, J.L.; Dowlring, J.J. Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models. J. Biomech. Eng. 2003, 125, 515–522. [Google Scholar] [CrossRef]
- Queensland Government. Available online: https://www.health.qld.gov.au/hrpolicies/wage_rates (accessed on 29 June 2018).
- World Health Organization. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 31 October 2018).
- Arain, M.; Campbell, M.J.; Cooper, C.L.; Lancaster, G.A. What is a pilot or feasibility study? A review of current practice and editorial policy. BMC Med. Res. Methodol. 2010, 10, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treweek, S.; Pitkethly, M.; Cook, J.; Fraser, C.; Mitchell, E.; Sullivan, F.; Jackson, C.; Taskila, T.K.; Gardner, H. Strategies to improve recruitment to randomised trials. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Allison, D.B.; Heymsfield, S.B.; Kelley, D.E.; Leibel, R.L.; Nonas, C.; Kahn, R. Waist circumference and cardiometabolic risk: A consensus statement from Shaping America’s Health: Association for weight management and obesity prevention; NAASO, The Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity 2007, 15, 1061–1067. [Google Scholar] [PubMed]
- Cornier, M.A.; Tate, C.W.; Grunwald, G.K.; Bessesen, D.H. Relationship between waist circumference, body mass index, and medical care costs. Obes. Res. 2002, 10, 1167–1172. [Google Scholar] [CrossRef]
- Højgaard, B.; Gyrd-Hansen, D.; Olsen, K.R.; Søgaard, J.; Sørensen, T.I. Waist circumference and body mass index as predictors of health care costs. PLoS ONE 2008, 3, e2619. [Google Scholar] [CrossRef] [Green Version]
- Gholamhosseini, L.; Sadoughi, F.; Safaei, A. Hospital real-time location system (a practical approach in healthcare): A narrative review article. Iran. J. Public Health 2019, 48, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Kim, S.; Kim, E.; Jung, E.; Lee, K.; Hee, H. Real-time location system-based asset tracking in the healthcare field: Lessons learned from a feasibility study. BMC Med. Inform. Decis. Mak. 2018, 18, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Zigman, D.; Krajina, S.; Krznaric, M. Application of real-time locating in health care. Arch. Ind. Hyg. Toxicol. 2009, 60, 503–508. [Google Scholar]
Day/Timeline | Variables | Data Collection Procedures |
---|---|---|
Pre-Observation |
|
|
Observation day (7.30 a.m.–5.30 p.m.) |
| Observe each participant for 1 min at every 10-min interval (based on procedures outlined by Kuys et al. [30])
|
Post-discharge |
|
|
Aspects | Objectives | Feasibility Measures | Feasibility Results |
---|---|---|---|
Process | To recruit sufficient participants To obtain all required data (as per Table 1) | • Participant recruitment rate | • 28% (29 of 102 participants) |
• Participant consent rate | • 55% (29 of 53 participants) | ||
• Participant retention rate | • 62% (18 of 29 participants) | ||
• Effectiveness/suitability of data collection tool | • All data during “Pre-Observation“ and “Observation“ periods were collected | ||
• Amount of missing data for each variable | • See Table 3 | ||
• Availability of costing report | • Not available at four-months post-study | ||
• Availability of obesity coding data | • Not available at four-months post-study | ||
• Availability of equipment cost data | • Available from hospital procurement services | ||
Resources | To determine the level of research assistant resource required to recruit patients To determine the level of research assistant resource required to collect all required data To determine level of physiotherapy and/or nursing staff resource required to provide mobility assistance To determine the accessibility of equipment required to collect anthropometric data | • Average time to recruit each participant | • 20 min |
• Average time to collect data for each participant | • 11 h (“Pre-Observation“ and “Observation day“ data) | ||
• All data collected within allowed time | • Costing report and obesity coding data unavailable within study timeframe | ||
• Percentage of participants requiring mobility assistance; time of required assistance from physiotherapists and/or nursing staff to mobilise participant | • 56% (10 of 18 participants); time required included in participant recruitment time as described above | ||
• Availability of required equipment | • Available when required |
Variable | n (%) |
---|---|
Age | 18 (100%) |
Sex | 18 (100%) |
Comorbidities (CCI score) | 18 (100%) |
Activities of Daily Living | 18 (100%) |
Weight | 18 (100%) |
Measured | 14 (78%) |
Self-reported | 4 (22%) |
Height | 18 (100%) |
Stadiometer | 8 (44%) |
Knee Height | 8 (44%) |
Ulna | 2 (12%) |
Waist circumference | 18 (100%) |
Standing | 15 (83%) |
Lying | 3 (17%) |
Primary diagnosis | 0 |
Assigned DRG code for obesity | 0 |
Cost of hospital encounter | 0 |
Cost of equipment | 0 |
Variables | Non-Obese (n = 12) | Obese (n = 6) |
---|---|---|
BMI categories; count (%) | Normal weight: 7 (39) Overweight: 5 (28) | Obese class I: 2 (11) Obese class II: 2 (11) Obese class III: 2 (11) |
Sex, male; count (%) | 4 (33) | 3 (50) |
Age, years; mean (SD) | 50.3 (13.9) | 52.0 (10.6) |
CCI score; median (IQR) | 1 (1.3) | 0.5 (1) |
Katz ADL score; median (IQR) | 4 (4) | 2 (2) |
Staff time (hours); mean (SD) | 15.5 (6.7) | 21.7 (8.8) |
Staff cost; mean (SD) | AUD 113.61 (54.35) | AUD 165.88 (73.13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, W.S.Y.; Young, A.M.; Di Bella, A.L.; Comans, T.; Banks, M. Exploring the Impact of Obesity on Health Care Resources and Coding in the Acute Hospital Setting: A Feasibility Study. Healthcare 2020, 8, 459. https://doi.org/10.3390/healthcare8040459
Tan WSY, Young AM, Di Bella AL, Comans T, Banks M. Exploring the Impact of Obesity on Health Care Resources and Coding in the Acute Hospital Setting: A Feasibility Study. Healthcare. 2020; 8(4):459. https://doi.org/10.3390/healthcare8040459
Chicago/Turabian StyleTan, Winnie S. Y., Adrienne M. Young, Alexandra L. Di Bella, Tracy Comans, and Merrilyn Banks. 2020. "Exploring the Impact of Obesity on Health Care Resources and Coding in the Acute Hospital Setting: A Feasibility Study" Healthcare 8, no. 4: 459. https://doi.org/10.3390/healthcare8040459
APA StyleTan, W. S. Y., Young, A. M., Di Bella, A. L., Comans, T., & Banks, M. (2020). Exploring the Impact of Obesity on Health Care Resources and Coding in the Acute Hospital Setting: A Feasibility Study. Healthcare, 8(4), 459. https://doi.org/10.3390/healthcare8040459