Muscle Exercise Mitigates the Negative Influence of Low Socioeconomic Status on the Lack of Muscle Strength: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographic Characteristics and Health-Related Variables
2.3. Assessment of Handgrip Strength
2.4. Statistical Analyses
3. Results
3.1. Demographic Characteristics of Participants According to HGS
3.2. Interaction between SES and Muscle Exercise in Low SES Group
3.3. Mediating Effect of Muscle Exercise for HGS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, S.; Oh, H.J.; Choi, H.; Kim, J.G.; Lim, S.K.; Kim, E.K.; Pyo, E.Y.; Oh, K.; Kim, Y.T.; Wilson, K.; et al. Characteristics of Body Fat, Body Fat Percentage and Other Body Composition for Koreans from KNHANES IV. J. Korean Med. Sci. 2011, 26, 1599–1605. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Schaap, L.A. Consequences of sarcopenia. Clin. Geriatr. Med. 2011, 27, 387–399. [Google Scholar] [CrossRef]
- Cheon, Y.-H.; Kim, H.-O.; Suh, Y.S.; Kim, M.G.; Yoo, W.-H.; Kim, R.B.; Yang, H.-S.; Lee, S.-I.; Park, K.-S. Relationship between decreased lower extremity muscle mass and knee pain severity in both the general population and patients with knee osteoarthritis: Findings from the KNHANES V 1-2. PLoS ONE 2017, 12, e0173036. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Bae, E.-J.; Kim, Y.-H. Factors Affecting Sarcopenia in Korean Adults by Age Groups. Osong Public Health Res. Perspect. 2017, 8, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Shepard, D.S.; Katzmarzyk, P.; Roubenoff, R. The Healthcare Costs of Sarcopenia in the United States. J. Am. Geriatr. Soc. 2003, 52, 80–85. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Bouchard, D.R.; Janssen, I. Dynapenic-Obesity and Physical Function in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65, 71–77. [Google Scholar] [CrossRef]
- Visser, M.; Goodpaster, B.H.; Kritchevsky, S.; Newman, A.B.; Nevitt, M.; Rubin, S.M.; Simonsick, E.M.; Harris, T.B.; for the Health ABC Study. Muscle Mass, Muscle Strength, and Muscle Fat Infiltration as Predictors of Incident Mobility Limitations in Well-Functioning Older Persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 324–333. [Google Scholar] [CrossRef]
- Rantanen, T.; Volpato, S.; Ferrucci, L.; Heikkinen, E.; Fried, L.P.; Guralnik, J.M. Handgrip strength and cause-specific and total mor-tality in older disabled women: Exploring the mechanism. J. Am. Geriatr. Soc. 2003, 51, 636–641. [Google Scholar] [CrossRef]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Labott, B.K.; Bucht, H.; Morat, M.; Morat, T.; Donath, L. Effects of Exercise Training on Handgrip Strength in Older Adults: A Meta-Analytical Review. Gerontology 2019, 65, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-J.; Wu, G.-H.; Yang, Y.-L.; Wu, Y.-H.; Zhang, L.; Wang, M.-H.; Mo, L.-Y.; Xue, G.; Wang, C.-Z.; Weng, X.-F. Nutrition, Physical Exercise, and the Prevalence of Sarcopenia in Elderly Residents in Nursing Homes in China. Med. Sci. Monit. 2019, 25, 4390–4399. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.; Rangarajan, S.; Kutty, V.R.; Lanas, F.; Hui, C.; Quanyong, X.; Zhenzhen, Q.; Jinhua, T.; Noorhassim, I.; et al. Reference ranges of handgrip strength from 125,462 healthy adults in 21 countries: A prospective urban rural epidemiologic (PURE) study. J. Cachexia-Sarcopenia Muscle 2016, 7, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Jeng, C.; Zhao, L.-J.; Wu, K.; Zhou, Y.; Chen, T.; Deng, H.-W. Race and socioeconomic effect on sarcopenia and sarcopenic obesity in the Louisiana Osteoporosis Study (LOS). JCSM Clin. Rep. 2018, 3, e00027. [Google Scholar] [CrossRef] [Green Version]
- Abate, M.; Di Iorio, A.; Di Renzo, D.; Paganelli, R.; Saggini, R.; Abate, G. Frailty in the elderly: The physical dimension. Eur. Medicophys. 2006, 43, 407–415. [Google Scholar]
- Lee, M.R.; Jung, S.M.; Bang, H.; Kim, H.S.; Kim, Y.B. Association between muscle strength and type 2 diabetes mellitus in adults in Korea: Data from the Korea national health and nutrition examination survey (KNHANES) VI. Medicine 2018, 97, e10984. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data Resource Profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelstein, F.O.; Wuerth, D.; Finkelstein, S.H. Health related quality of life and the CKD patient: Challenges for the nephrology community. Kidney Int. 2009, 76, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Sobel, M.E. Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. Sociol. Methodol. 1982, 13, 290–312. [Google Scholar] [CrossRef]
- Hasegawa, T. Average and healthy life expectancies and self-rated health in the European country. Nippon Ronen Igakkai Zasshi Jpn. J. Geriatr. 2014, 51, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, K.; Yamaguchi, A. Sarcopenia and Age-Related Endocrine Function. Int. J. Endocrinol. 2012, 2012, 127362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.R.; Jeon, Y.-J.; Jeong, T. Risk factors associated with low handgrip strength in the older Korean population. PLoS ONE 2019, 14, e0214612. [Google Scholar] [CrossRef]
- Quan, S.; Jeong, J.Y.; Kim, D.H. The Relationship between Smoking, Socioeconomic Status and Grip Strength among Communi-ty-dwelling Elderly Men in Korea: Hallym Aging Study. Epidemiol. Health 2013, 35, e2013001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, R.; Takeshima, T.; Kotani, K. Exercise Intervention for Anti-Sarcopenia in Community-Dwelling Older People. J. Clin. Med. Res. 2016, 8, 848–853. [Google Scholar] [CrossRef] [Green Version]
- Yarasheski, K.E. Exercise, aging, and muscle protein metabolism. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M918–M922. [Google Scholar] [CrossRef] [Green Version]
- Roth, S.; Ferrell, R.F.; Hurley, B.F. Strength training for the prevention and treatment of sarcopenia. J. Nutr. Health Aging 2000, 4, 143–155. [Google Scholar] [PubMed]
- Denison, H.J.; Cooper, C.; Sayer, A.A.; Robinson, S.M. Prevention and optimal management of sarcopenia: A review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clin. Interv. Aging 2015, 10, 859–869. [Google Scholar]
- De Gelder, R.; Koster, E.M.; Van Buren, L.P.; Van Ameijden, E.J.C.; Harrison, A.; Birt, C.A.; Verma, A. Differences in adults’ health and health behaviour between 16 European urban areas and the associations with socio-economic status and physical and social environment. Eur. J. Public Health 2016, 27 (Suppl. S2), 93–99. [Google Scholar] [CrossRef] [Green Version]
Variables | Total (n = 6081) | Normal HGS (n = 5247) | Poor HGS (n = 834) | pa |
---|---|---|---|---|
sex (female) | 3393 (49.7) | 2781 (46.5) | 612 (75.5) | <0.001 |
age (year), mean (SD) | 41.3 (0.5) | 43.7 (0.4) | 47.6 (1.4) | <0.001 b |
household income | <0.001 | |||
4Q (highest) | 1806 (30.7) | 1664 (32.1) | 142 (19.6) | |
3Q | 1653 (29.0) | 1512 (30.2) | 141 (19.5) | |
2Q | 1462 (24.5) | 1286 (24.9) | 176 (21.7) | |
1Q (lowest) | 1141 (15.7) | 770 (12.8) | 371 (39.1) | |
education | <0.001 | |||
college/university | 2190 (41.3) | 2056 (43.8) | 134 (21.0) | |
high school | 1954 (36.5) | 1793 (38.0) | 161 (24.1) | |
middle school | 586 (8.4) | 497 (8.2) | 89 (10.2) | |
elementary school | 1116 (13.7) | 720 (10.0) | 396 (44.6) | |
poor subjective health | 4175 (69.2) | 3525 (68.0) | 650 (78.4) | 0.484 |
no muscle exercise | 4637 (77.6) | 3930 (76.1) | 707 (89.1) | 0.018 |
no aerobic exercise | 3405 (55.0) | 2844 (53.3) | 561 (68.4) | 0.552 |
BMI (kg/m2) | 0.002 | |||
underweight (<18.5) | 210 (3.7) | 169 (3.4) | 41 (6.4) | |
overweight and obese (≥23) | 2103 (35.0) | 1855 (35.6) | 248 (30.5) | |
HTN | 1492 (19.6) | 1131 (17.4) | 361 (37.8) | 0.141 |
DM | 573 (7.4) | 429 (6.4) | 144 (14.8) | 0.370 |
DLP | 1155 (15.4) | 930 (14.5) | 225 (23.0) | 0.073 |
stroke | 146 (1.9) | 92 (1.3) | 54 (6.0) | 0.007 |
OA | 698 (8.2) | 494 (6.6) | 204 (20.9) | 0.018 |
Variables | Univariable | Multivariable | ||||||
---|---|---|---|---|---|---|---|---|
OR | 95% Confidence Interval | p a | OR | 95% Confidence Interval | p a | |||
Lower | Upper | Lower | Upper | |||||
sex | ||||||||
male | 1 | 1 | ||||||
female | 3.537 | 2.903 | 4.309 | <0.001 | 2.655 | 2.138 | 3.297 | <0.001 |
age (year), mean (SD) | 1.058 | 1.047 | 1.069 | <0.001 | 1.029 | 1.016 | 1.041 | <0.001 |
household income | ||||||||
4Q (highest) | 1 | 1 | ||||||
3Q | 1.056 | 0.767 | 1.454 | 0.736 | 0.921 | 0.653 | 1.298 | 0.635 |
2Q | 1.427 | 1.083 | 1.880 | 0.012 | 0.943 | 0.697 | 1.277 | 0.704 |
1Q (lowest) | 4.977 | 3.707 | 6.683 | <0.001 | 1.637 | 1.159 | 2.312 | 0.005 |
education | ||||||||
college/university | 1 | 1 | ||||||
high school | 1.322 | 0.989 | 1.768 | 0.059 | 1.085 | 0.808 | 1.456 | 0.586 |
middle school | 2.593 | 1.859 | 3.617 | <0.001 | 1.125 | 0.761 | 1.622 | 0.553 |
elementary school | 9.337 | 6.765 | 12.887 | <0.001 | 2.351 | 1.629 | 3.394 | <0.001 |
poor subjective health | 1.708 | 1.345 | 2.169 | <0.001 | 1.115 | 0.853 | 1.457 | 0.425 |
no muscle exercise | 2.559 | 1.877 | 3.489 | <0.001 | 1.526 | 1.094 | 2.129 | 0.013 |
no aerobic exercise | 1.895 | 1.550 | 2.318 | <0.001 | 1.093 | 0.881 | 1.355 | 0.416 |
BMI (kg/m2) | ||||||||
normal weight | 1 | 1 | ||||||
underweight | 1.823 | 1.211 | 2.744 | 0.059 | 2.645 | 1.678 | 4.168 | 0.009 |
overweight | 0.826 | 0.677 | 1.007 | 0.001 | 0.731 | 0.578 | 0.924 | <0.001 |
HTN | 2.892 | 2.387 | 3.504 | <0.001 | 1.137 | 0.904 | 1.429 | 0.271 |
DM | 2.535 | 2.018 | 3.184 | <0.001 | 1.182 | 0.899 | 1.554 | 0.231 |
DLP | 1.768 | 1.439 | 2.171 | <0.001 | 0.789 | 0.612 | 1.016 | 0.066 |
stroke | 4.780 | 3.115 | 7.336 | <0.001 | 2.236 | 1.352 | 3.699 | 0.002 |
OA | 3.813 | 3.009 | 4.831 | 0.001 | 1.406 | 1.087 | 1.818 | 0.010 |
(A) Steps (Pathway) | B | SE | OR | 95% CI | p | Sobel Test | |
Lower | Upper | z (p) | |||||
Step 1 (a). I (1Q) → M | 0.532 | 0.151 | 1.702 | 1.264 | 2.292 | 0.001 | 2.373 (0.017) |
(b) M → G | −0.417 | 0.169 | 0.664 | 0.475 | 0.928 | 0.017 | |
Step 2 (c). I (1Q) → G | 0.572 | 0.174 | 1.772 | 1.257 | 2.498 | 0.001 | |
Step 3 (c’). I (1Q) → G | 0.552 | 0.172 | 1.736 | 1.235 | 2.440 | 0.002 | |
(B) Steps (Pathway) | B | SE | OR | 95% CI | p | Sobel Test | |
Lower | Upper | z (p) | |||||
Step 1 (a). E (1E) → M | 0.494 | 0.165 | 1.639 | 1.184 | 2.271 | 0.003 | 2.489 (0.012) |
(b) M → G | −0.407 | 0.172 | 0.665 | 0.474 | 0.935 | 0.019 | |
Step 2 (c). E (E) → G | 0.862 | 0.187 | 2.368 | 1.635 | 3.429 | <0.001 | |
Step 3 (c’). E (E) → G | 0.837 | 0.187 | 2.309 | 1.596 | 3.342 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kim, M.-J.; Lee, J.; Kim, M.; Suh, Y.S.; Kim, H.-O.; Cheon, Y.-H. Muscle Exercise Mitigates the Negative Influence of Low Socioeconomic Status on the Lack of Muscle Strength: A Cross-Sectional Study. Healthcare 2021, 9, 1244. https://doi.org/10.3390/healthcare9101244
Lee H, Kim M-J, Lee J, Kim M, Suh YS, Kim H-O, Cheon Y-H. Muscle Exercise Mitigates the Negative Influence of Low Socioeconomic Status on the Lack of Muscle Strength: A Cross-Sectional Study. Healthcare. 2021; 9(10):1244. https://doi.org/10.3390/healthcare9101244
Chicago/Turabian StyleLee, Hanna, Mi-Ji Kim, Junhee Lee, Mingyo Kim, Young Sun Suh, Hyun-Ok Kim, and Yun-Hong Cheon. 2021. "Muscle Exercise Mitigates the Negative Influence of Low Socioeconomic Status on the Lack of Muscle Strength: A Cross-Sectional Study" Healthcare 9, no. 10: 1244. https://doi.org/10.3390/healthcare9101244
APA StyleLee, H., Kim, M.-J., Lee, J., Kim, M., Suh, Y. S., Kim, H.-O., & Cheon, Y.-H. (2021). Muscle Exercise Mitigates the Negative Influence of Low Socioeconomic Status on the Lack of Muscle Strength: A Cross-Sectional Study. Healthcare, 9(10), 1244. https://doi.org/10.3390/healthcare9101244