Analysis of Factors Affecting Post-Stroke Fatigue: An Observational, Cross-Sectional, Retrospective Chart Review Study
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.1.1. Selection Criteria
2.1.2. Exclusion Criteria
2.2. Methods
2.3. Observation Items
2.3.1. Demographic Characteristics
- (1)
- Age (years);
- (2)
- Sex (male, female);
- (3)
- Body mass index (kg/m2);
- (4)
- Education level (years).
2.3.2. Stroke-Related Characteristics
- (1)
- Stroke hospitalization duration and disease duration;
- (2)
- Stroke type classification: ischemic stroke and hemorrhagic stroke;
- (3)
- History of stroke surgery;
- (4)
- Family history of stroke;
- (5)
- Degree of neurological impairment: National Institutes of Health Stroke Scale (NIHSS) score;
- (6)
- Cognitive function: Korean version of the Mini-Mental State Examination (MMSE-K) score;
- (7)
- Depression: Patient Health Questionnaire (PHQ-9) score;
- (8)
- History of stroke and various risk factors.
2.3.3. Lab Test Results
- (1)
- Biochemical, endocrine, and lipid tests
- (2)
- Complete blood count and inflammatory marker tests
2.4. Statistical Analysis
3. Results
3.1. Comparison of Demographic Characteristics
3.2. Comparison of Stroke-Related Characteristics
3.3. Comparison of Laboratory Evaluation Results
3.4. Multivariate Analysis of Factors Affecting Post-Stroke Fatigue
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lakshminarayan, K.; Berger, A.K.; Fuller, C.C.; Jacobs, D.R., Jr.; Anderson, D.C.; Steffen, L.M.; Sillah, A.; Luepker, R.V. Trends in 10-year survival of patients with stroke hospitalized between 1980 and 2000: The Minnesota stroke survey. Stroke 2014, 45, 2575–2581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferro, J.; Caeiro, L.; Figueira, M.L. Neuropsychiatric sequelae of stroke. Nat. Rev. Neurol. 2016, 12, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. Post-stroke Mood and Emotional Disturbances: Pharmacological Therapy Based on Mechanisms. J. Stroke 2016, 18, 244–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cumming, T.B.; Packer, M.; Kramer, S.; English, C. The prevalence of fatigue after stroke: A systematic review and meta-analysis. Int. J. Stroke 2016, 11, 968–977. [Google Scholar] [CrossRef]
- Egerton, T.; Hokstad, A.; Askim, T.; Bernhardt, J.; Indredavik, B. Prevalence of fatigue in patients 3 months after stroke and association with early motor activity: A prospective study comparing stroke patients with a matched general population cohort. BMC Neurol. 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hubacher, M.; Calabrese, P.; Bassetti, C.; Carota, A.; Stöcklin, M.; Penner, I.-K. Assessment of Post-Stroke Fatigue: The Fatigue Scale for Motor and Cognitive Functions. Eur. Neurol. 2012, 67, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, M.; Goh, H.-T. Post-stroke fatigue: A review on prevalence, correlates, measurement, and management. Top. Stroke Rehabilitation. 2015, 22, 208–220. [Google Scholar] [CrossRef]
- Oyake, K.; Otaka, Y.; Matsuura, D.; Honaga, K.; Mori, N.; Kondo, K. Poststroke fatigue at admission is associated with independence levels of Activities of Daily Living at discharge from subacute rehabilitation wards. Arch Phys Med Rehabil. 2021, 102, 849–855. [Google Scholar] [CrossRef]
- Andersen, K.K.; Olsen, T.S.; Dehlendorff, C.; Kammersgaard, L.P. Hemorrhagic and ischemic strokes compared: Stroke severity, mortality, and risk factors. Stroke 2009, 40, 2068–2072. [Google Scholar] [CrossRef] [Green Version]
- Cumming, T.B.; Mead, G. Classifying post-stroke fatigue: Optimal cut-off on the Fatigue Assessment Scale. J. Psychosom. Res. 2017, 103, 147–149. [Google Scholar] [CrossRef]
- Wang, S.-S.; Wang, J.-J.; Wang, P.-X.; Chen, R. Determinants of Fatigue after First-Ever Ischemic Stroke during Acute Phase. PLoS ONE. 2014, 9, e110037. [Google Scholar] [CrossRef]
- Choi-Kwon, S.; Han, S.W.; Kwon, S.U.; Kim, J.S. Poststroke Fatigue: Characteristics and Related Factors. Cerebrovasc. Dis. 2005, 19, 84–90. [Google Scholar] [CrossRef]
- Tseng, B.Y.; Billinger, S.A.; Gajewski, B.J.; Kluding, P.M. Exertion Fatigue and Chronic Fatigue Are Two Distinct Constructs in People Post-Stroke. Stroke 2010, 41, 2908–2912. [Google Scholar] [CrossRef] [Green Version]
- Radman, N.; Staub, F.; Aboulafia-Brakha, T.; Berney, A.; Bogousslavsky, J.; Annoni, J.-M. Poststroke fatigue following minor infarcts: A prospective study. Neurology. 2012, 79, 1422–1427. [Google Scholar] [CrossRef] [PubMed]
- Ponchel, A.; Bombois, S.; Bordet, R.; Hénon, H. Factors Associated with Poststroke Fatigue: A Systematic Review. Stroke Res. Treat. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroll, B.; Goodyear-Smith, F.; Crengle, S.; Gunn, J.; Kerse, N.; Fishman, T.; Falloon, K.; Hatcher, S. Validation of PHQ-2 and PHQ-9 to Screen for Major Depression in the Primary Care Population. Ann. Fam. Med. 2010, 8, 348–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrero, J.J.; Franko, M.A.; Obergfell, A.; Gabrielsen, A.; Jernberg, T. hsCRP Level and the Risk of Death or Recurrent Cardiovascular Events in Patients With Myocardial Infarction: A Healthcare-Based Study. J. Am. Hear. Assoc. 2019, 8, e012638. [Google Scholar] [CrossRef]
- Chaudhuri, J.R.; Mridula, K.R.; Umamahesh, M.; Swathi, A.; Balaraju, B.; Bandaru, V.C. High sensitivity C-reactive protein levels in Acute Ischemic Stroke and subtypes: A study from a tertiary care center. Iran J Neurol. 2013, 12, 92–97. [Google Scholar]
- Liu, X.; Wang, B.; Wang, X.; Tian, K.M.; Zhang, Y. Elevated plasma high-sensitivity C-reactive protein at admission predicts the occurrence of post-stroke fatigue at 6 months after ischaemic stroke. Eur. J. Neurol. 2020, 27, 2022–2030. [Google Scholar] [CrossRef]
- Lusho, S.; Durando, X.; Mouret-Reynier, M.-A.; Kossai, M.; Lacrampe, N.; Molnar, I.; Penault-Llorca, F.; Radosevic-Robin, N.; Abrial, C. Platelet-to-Lymphocyte Ratio Is Associated With Favorable Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer: A Study on 120 Patients. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kawada, K.; Obama, K. Inflammation-Related Biomarkers for the Prediction of Prognosis in Colorectal Cancer Patients. Int. J. Mol. Sci. 2021, 22, 8002. [Google Scholar] [CrossRef]
- Santos Thuler, L.C.; Reis Wariss, B.; Nogueira-Rodrigues, A.; de Melo, A.C.; Bergmann, A. The utility of pretreatment systemic inflammatory response biomarkers on overall survival of cervical cancer patients stratified by clinical staging. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 264, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cai, L.; Chen, T.; Ding, S.; Zhang, F.; Gao, B.; Zhu, H.; Huang, J. Predictive value of inflammation-based Glasgow prognostic score, platelet-lymphocyte ratio, and global registry of acute coronary events score for major cardiovascular and cerebrovascular events during hospitalization in patients with acute myocardial infarction. Aging 2021, 13, 18274–18286. [Google Scholar] [CrossRef]
- Ye, G.-L.; Chen, Q.; Chen, X.; Liu, Y.-Y.; Yin, T.-T.; Meng, Q.-H.; Wei, H.-Q.; Zhou, Q.-H. The prognostic role of platelet-to-lymphocyte ratio in patients with acute heart failure: A cohort study. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Gandhi, N. Role of Platelet to Lymphocyte Ratio (PLR) and its Correlation with NIHSS (National Institute of Health Stroke Scale) for Prediction of Severity in Patients of Acute Ischemic Stroke. J. Assoc. Assoc. Physicians India 2021, 69, 56–60. [Google Scholar]
- Wang, X.; Li, X.; Shang, Y.; Wang, J.; Zhang, X.; Su, D.; Zhao, S.; Wang, Q.; Liu, L.; Li, Y.; et al. Ratios of neutrophil-to-lymphocyte and platelet-to-lymphocyte predict all-cause mortality in inpatients with coronavirus disease 2019 (COVID-19): A retrospective cohort study in a single medical centre. Epidemiol. Infect. 2020, 148. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Ling, Y.; Zhang, Y.H.; Wei, L.Y.; Chen, X.; Li, X.M.; Liu, X.Y.; Liu, H.M.; Guo, Z.; Ren, H.; et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J. Med. Virol. 2020, 92, 1533–1541. [Google Scholar] [CrossRef]
- Wen, H.; Weymann, K.B.; Wood, L.; Wang, Q.M. Inflammatory Signaling in Post-Stroke Fatigue and Depression. Eur. Neurol. 2018, 80, 138–148. [Google Scholar] [CrossRef]
- Richter, P.; Werner, J.; Heerlein, A.; Kraus, A.; Sauer, H. On the Validity of the Beck Depression Inventory. Psychopathology 1998, 31, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.S.; Bae, S.O.; Ahn, Y.M.; Park, D.B.; Noh, K.S.; Shin, H.K.; Woo, H.W.; Lee, H.S.; Han, S.I.; Kim, Y.S. Validity and reliability of the Korean version of the Hamilton depression rating scale (K-HDRS). J. Korean Neuropsychiatr. Assoc. 2005, 44, 456–465. [Google Scholar]
All Types of Stroke | Ischemic Stroke | Hemorrhagic Stroke | |||||||
---|---|---|---|---|---|---|---|---|---|
PSF (n = 96) | Non-PSF (n = 82) | p-Value a | PSF (n = 75) | Non-PSF (n = 69) | p-Value a | PSF (n = 21) | Non-PSF (n = 13) | p-Value a | |
Age, year | 69.0 ± 10.5 | 65.0 ± 12.9 | 0.027 b | 71.0 ± 9.9 | 66.8 ± 11.7 | 0.018 b | 61.9 ± 9.7 | 55.5 ± 15.3 | 0.140 |
Sex, n (%) | |||||||||
Male | 47 (49.0) | 48 (58.5) | 0.130 | 37 (49.3) | 41 (59.4) | 0.148 | 10 (47.6) | 7 (53.8) | 0.500 |
Female | 49 (51.0) | 34 (41.5) | 38 (50.7) | 28 (40.6) | 11 (52.4) | 6 (46.2) | |||
BMI, kg/m2 | 24.12 ± 3.31 | 24.33 ± 3.66 | 0.689 | 24.24 ± 3.55 | 24.53 ± 3.44 | 0.495 b | 23.68 ± 2.28 | 23.23 ± 4.69 | 0.748 |
Education, years | 7.8 ± 5.5 | 8.7 ± 5.3 | 0.611 b | 7.3 ± 5.3 | 8.1 ± 5.2 | 0.749 b | 9.6 ± 5.9 | 11.5 ± 5.3 | 0.400 b |
All Types of Stroke | Ischemic Stroke | Hemorrhagic Stroke | |||||||
---|---|---|---|---|---|---|---|---|---|
PSF (n = 96) | Non-PSF (n = 82) | p-Value a | PSF (n = 75) | Non-PSF (n = 69) | p-Value a | PSF (n = 21) | Non-PSF (n = 13) | p-Value a | |
Hospitalization duration, days | 33.0 ± 32.0 | 27.5 ± 26.6 | 0.113 b | 31.4 ± 26.9 | 25.6 ± 26.0 | 0.059 b | 38.8 ± 46.1 | 37.5 ± 28.7 | 0.727 b |
Disease duration, months | 1.2 ± 0.7 | 1.7 ± 3.2 | 0.814 b | 1.1 ± 0.5 | 1.5 ± 2.3 | 0.544 b | 1.5 ± 1.2 | 3.1 ± 6.0 | 0.484 b |
Stroke surgery history, n (%) | 14 (14.6) | 6 (7.3) | 0.097 | 5 (6.7) | 3 (4.3) | 0.407 | 9 (42.9) | 3 (23.1) | 0.212 |
Family history, n (%) | 21 (21.9) | 19 (23.2) | 0.488 | 15 (20.0) | 18 (26.1) | 0.251 | 6 (28.6) | 1 (7.7) | 0.153 |
NIHSS score | 5.65 ± 4.5 | 4.51 ± 4.1 | 0.038 b | 5.20 ± 4.1 | 4.54 ± 4.3 | 0.162 b | 7.24 ± 5.5 | 4.33 ± 3.1 | 0.131 b |
MMSE-K score | 23.33 ± 6.9 | 25.25 ± 3.9 | 0.006 b | 23.38 ± 6.9 | 24.92 ± 4.0 | 0.014 b | 23.20 ± 6.7 | 26.92 ± 2.7 | 0.169 b |
PHQ-9 score | 11.10 ± 6.0 | 3.83 ± 3.2 | <0.001 | 11.30 ± 6.4 | 3.65 ± 3.1 | <0.001 | 10.38 ± 4.7 | 4.77 ± 3.5 | 0.001 |
Medical history, n (%) | |||||||||
Stroke | 21 (21.9) | 19 (23.2) | 0.488 | 15 (20.0) | 18 (26.1) | 0.251 | 6 (28.6) | 1 (7.7) | 0.153 |
Hypertension | 62 (64.6) | 55 (64.7) | 0.425 | 48 (64.0) | 51 (73.9) | 0.135 | 14 (66.7) | 4 (30.8) | 0.046 |
Dyslipidemia | 33 (34.4) | 31 (37.8) | 0.375 | 31 (41.3) | 29 (42.0) | 0.534 | 2 (9.5) | 2 (15.4) | 0.498 |
Diabetes mellitus | 25 (26.0) | 26 (31.7) | 0.252 | 22 (29.3) | 24 (34.8) | 0.301 | 3 (14.3) | 2 (15.4) | 0.647 |
Heart disease | 22 (22.9) | 14 (17.1) | 0.218 | 19 (25.3) | 14 (20.3) | 0.302 | 3 (14.3) | 0 (0.0) | 0.222 |
Cancer | 5 (5.2) | 5 (6.1) | 0.524 | 5 (6.7) | 5 (7.2) | 0.574 | 0 (0.0) | 0 (0.0) | 1.000 |
All Types of Stroke | Ischemic Stroke | Hemorrhagic Stroke | |||||||
PSF (n = 96) | Non-PSF (n = 82) | p-Value a | PSF (n = 75) | Non-PSF (n = 69) | p-Value a | PSF (n = 21) | Non-PSF (n = 13) | p-Value a | |
Total protein, g/dL | 6.97 ± 0.64 | 6.93 ± 0.89 | 0.638 b | 6.96 ± 0.60 | 6.88 ± 0.94 | 0.751 b | 7.00 ± 0.78 | 7.19 ± 0.45 | 0.435 |
Albumin, g/dL | 3.99 ± 0.39 | 4.62 ± 4.36 | 0.164 | 3.97 ± 0.37 | 4.69 ± 4.76 | 0.208 | 4.04 ± 0.43 | 4.30 ± 0.42 | 0.098 |
Total bilirubin, mg/dL | 1.52 ± 8.49 | 0.66 ± 0.26 | 0.441 b | 1.79 ± 9.66 | 0.67 ± 0.27 | 0.627 b | 0.58 ± 0.43 | 0.61 ± 0.17 | 0.583 |
BUN, mg/dL | 18.19 ± 8.53 | 16.90 ± 6.57 | 0.391 b | 18.99 ± 8.47 | 16.68 ± 5.94 | 0.112 b | 15.33 ± 8.34 | 18.08 ± 9.48 | 0.462 b |
Creatinine, mg/dL | 0.85 ± 0.35 | 0.92 ± 0.81 | 0.902 b | 0.89 ± 0.37 | 0.87 ± 0.51 | 0.636 b | 0.71 ± 0.25 | 1.22 ± 1.67 | 0.701 b |
AST, U/L | 35.00 ± 43.63 | 26.56 ± 12.26 | 0.192 b | 35.19 ± 41.41 | 26.96 ± 12.72 | 0.065 b | 34.33 ± 51.91 | 24.46 ± 9.60 | 0.505 |
ALT, U/L | 35.17 ± 58.41 | 25.17 ± 16.00 | 0.529 b | 36.39 ± 62.03 | 25.57 ± 16.58 | 0.315 b | 30.81 ± 44.11 | 23.08 ± 12.80 | 0.780 b |
γ-GT, U/L | 31.42 ± 22.57 | 37.24 ± 45.74 | 0.757 b | 33.93 ± 24.48 | 38.33 ± 48.23 | 0.420 b | 22.43 ± 96 | 31.46 ± 30.01 | 0.600 b |
TSH, mIU/L | 2.49 ± 5.19 | 2.29 ± 2.10 | 0.350 b | 2.45 ± 5.63 | 2.21 ± 2.00 | 0.216 b | 2.61 ± 3.10 | 2.78 ± 2.68 | 0.933 b |
HbA1c, % | 6.77 ± 5.25 | 6.12 ± 1.04 | 0.590 b | 6.32 ± 1.27 | 6.51 ± 1.07 | 0.844 b | 8.36 ± 11.01 | 5.58 ± 0.63 | 0.136 b |
Homocysteine, μmol/L | 11.65 ± 7.44 | 11.31 ± 5.30 | 0.983 b | 10.83 ± 4.54 | 11.32 ± 4.56 | 0.557 | 14.94 ± 13.84 | 11.26 ± 8.97 | 0.196 b |
Total Cholesterol, mg/dL | 148.52 ± 45.64 | 154.69 ± 54.59 | 0.745 b | 137.52 ± 40.80 | 152.42 ± 56.47 | 0.249 b | 185.71 ± 42.07 | 167.17 ± 42.63 | 0.234 |
Triglyceride, mg/dL | 120.97 ± 58.54 | 125.49 ± 6.03 | 0.796 b | 119.10 ± 59.96 | 127.46 ± 65.79 | 0.591 b | 127.19 ± 54.44 | 115.62 ± 47.79 | 0.484 b |
LDL-Cholesterol, mg/dL | 88.31 ± 30.89 | 89.27 ± 33.34 | 0.896 b | 80.27 ± 26.69 | 87.06 ± 32.98 | 0.398 b | 115.10 ± 29.26 | 100.46 ± 34.23 | 0.193 |
HDL-Cholesterol, mg/dL | 43.79 ± 10.71 | 47.48 ± 20.5 | 0.316 b | 43.31 ± 10.22 | 48.23 ± 22.06 | 0.224 b | 45.43 ± 12.37 | 43.69 ± 10.17 | 0.674 |
hs-CRP, mg/dL | 0.77 ± 1.77 | 0.52 ± 1.35 | 0.011 b | 0.68 ± 1.79 | 0.58 ± 1.47 | 0.056 b | 1.17 ± 1.73 | 0.21 ± 0.31 | 0.053 |
All Types of Stroke | Ischemic Stroke | Hemorrhagic Stroke | |||||||
---|---|---|---|---|---|---|---|---|---|
PSF (n = 96) | Non-PSF (n = 82) | p-Value a | PSF (n = 75) | Non-PSF (n = 69) | p-Value a | PSF (n = 21) | Non-PSF (n = 13) | p-Value a | |
WBC, 103/μL | 7.05 ± 2.43 | 6.65 ± 2.52 | 0.229 b | 7.23 ± 2.58 | 6.87 ± 2.62 | 0.400 b | 6.42 ± 1.73 | 5.48 ± 1.46 | 0.115 |
RBC, 106/μL | 4.29 ± 0.53 | 4.34 ± 0.53 | 0.540 | 4.29 ± 0.56 | 4.36 ± 0.53 | 0.452 | 4.31 ± 0.43 | 4.26 ± 0.55 | 0.781 |
Hemoglobin, g/dL | 13.27 ± 1.72 | 13.51 ± 1.73 | 0.364 | 13.31 ± 1.79 | 13.51 ± 1.74 | 0.505 | 13.12 ± 1.47 | 13.48 ± 1.69 | 0.510 |
Platelet, 103/μL | 249.93 ± 90.99 | 237.4 ± 84.00 | 0.702 b | 245.29 ± 96.29 | 237.02 ± 89.01 | 0.827 b | 266.48 ± 68.19 | 239.77 ± 52.17 | 0.148 b |
ESR, mm/hr | 30.07 ± 21.40 | 23.86 ± 23.00 | 0.006 b | 30.51 ± 22.55 | 24.32 ± 24.28 | 0.018 b | 28.52 ± 17.13 | 21.25 ± 13.92 | 0.220 |
Segment of Lymphocyte, % | 27.30 ± 11.03 | 31.29 ± 25.80 | 0.197 b | 26.82 ± 10.92 | 28.23 ± 10.22 | 0.315 b | 29.00 ± 11.53 | 47.56 ± 59.68 | 0.172 |
Monocyte, % | 5.86 ± 1.40 | 5.99 ± 1.49 | 0.457 b | 5.98 ± 1.46 | 6.01 ± 1.51 | 0.692 b | 5.45 ± 1.08 | 5.88 ± 1.46 | 0.330 |
Eosinophil, % | 3.04 ± 2.30 | 2.51 ± 1.97 | 0.119 b | 2.95 ± 2.08 | 2.52 ± 2.02 | 0.174 b | 3.36 ± 3.02 | 2.44 ± 1.74 | 0.441 b |
Basophil, % | 0.51 ± 0.38 | 0.57 ± 0.56 | 0.396 b | 0.51 ± 0.40 | 0.58 ± 0.60 | 0.291 b | 0.52 ± 0.30 | 0.48 ± 0.22 | 0.686 |
Neutrophil, % | 62.33 ± 10.39 | 61.30 ± 8.11 | 0.460 | 63.04 ± 9.79 | 61.77 ± 8.48 | 0.408 | 59.81 ± 12.22 | 58.85 ± 5.39 | 0.755 |
NLR | 2.84 ± 1.85 | 2.41 ± 1.11 | 0.280 b | 2.87 ± 1.79 | 2.51 ± 1.13 | 0.360 b | 2.74 ± 2.07 | 1.88 ± 0.83 | 0.506 b |
MLR | 0.25 ± 0.11 | 0.23 ± 0.11 | 0.329 b | 0.25 ± 0.11 | 0.24 ± 0.11 | 0.375 b | 0.23 ± 0.13 | 019 ± 0.10 | 0.441 b |
PLR | 10.79 ± 6.76 | 8.94 ± 4.63 | 0.123 b | 10.72 ± 6.99 | 9.25 ± 4.86 | 0.371 b | 11.05 ± 6.00 | 7.26 ± 2.73 | 0.082 b |
All Types of Stroke | Ischemic Stroke | Hemorrhagic Stroke | |||||||
---|---|---|---|---|---|---|---|---|---|
Factors | Estimate | Standard Error | p-Value a | Estimate | Standard Error | p-Value a | Estimate | Standard Error | p-Value a |
(a) FAS scores | |||||||||
ESR | 0.065 | 0.032 | 0.047 | ||||||
PLR | 0.829 | 0.279 | 0.007 | ||||||
AST | 0.035 | 0.021 | 0.094 | ||||||
PHQ-9 | 1.103 | 0.117 | <0.001 | 1.149 | 0.117 | <0.001 | 1.143 | 0.296 | 0.001 |
(b) FSS scores | |||||||||
Hypertension | −10.227 | 5.438 | 0.073 | ||||||
PLR | 0.955 | 0.456 | 0.048 | ||||||
PHQ-9 | 1.868 | 0.1941 | <0.001 | 1.837 | 0.201 | <0.001 | 1.884 | 0.506 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Jin, C.; Cho, S.-Y.; Park, S.-U.; Jung, W.-S.; Moon, S.-K.; Park, J.-M.; Ko, C.-N.; Cho, K.-H. Analysis of Factors Affecting Post-Stroke Fatigue: An Observational, Cross-Sectional, Retrospective Chart Review Study. Healthcare 2021, 9, 1586. https://doi.org/10.3390/healthcare9111586
Kwon S, Jin C, Cho S-Y, Park S-U, Jung W-S, Moon S-K, Park J-M, Ko C-N, Cho K-H. Analysis of Factors Affecting Post-Stroke Fatigue: An Observational, Cross-Sectional, Retrospective Chart Review Study. Healthcare. 2021; 9(11):1586. https://doi.org/10.3390/healthcare9111586
Chicago/Turabian StyleKwon, Seungwon, Chul Jin, Seung-Yeon Cho, Seong-Uk Park, Woo-Sang Jung, Sang-Kwan Moon, Jung-Mi Park, Chang-Nam Ko, and Ki-Ho Cho. 2021. "Analysis of Factors Affecting Post-Stroke Fatigue: An Observational, Cross-Sectional, Retrospective Chart Review Study" Healthcare 9, no. 11: 1586. https://doi.org/10.3390/healthcare9111586
APA StyleKwon, S., Jin, C., Cho, S.-Y., Park, S.-U., Jung, W.-S., Moon, S.-K., Park, J.-M., Ko, C.-N., & Cho, K.-H. (2021). Analysis of Factors Affecting Post-Stroke Fatigue: An Observational, Cross-Sectional, Retrospective Chart Review Study. Healthcare, 9(11), 1586. https://doi.org/10.3390/healthcare9111586