Effect of Short-Term Metro-Rhythmic Stimulations on Gait Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- G1—group 1—subjects who were not informed about the aim of the test and the necessity of the adjustment of gait to the sounds heard;
- G2—group 2—subjects informed before the test about its aim and asked to adjust the frequency of taking steps to the sounds heard.
2.2. Measurement Protocol
- GA (arrhythmic stimulus played at a rate of 120 BPM, time 4/4, ambient style)—the lack of accents in the stimulus and gradual transition between individual tones. Music was supposed to provide relaxation, assumedly leading to the symmetrization and “tranquilizing” of gait;
- GR100 (rhythmic stimulus played at a rate corresponding to the frequency of gait and determined during tests of preferable speed, 4/4 time, motivating music). The stimulation was of a motivating nature, characteristic of music played during sports training (e.g., aerobics);
- GR110 (rhythmic stimulus as above, played at a rate corresponding to gait frequency increased by 10%, the tempo was determined during the tests of gait at a preferable speed);
- GR200 (rhythmic stimulus as above, played at a rate corresponding to doubled gait frequency, the tempo was determined during the tests of gait at a preferable speed) [39].
2.3. Results Analysis Procedure
- For gait without metro-rhythmic stimuli (GP) from 15 to 60 s of registered gait;
- For gait with metro-rhythmic stimuli (GA, GR100, GR110, GR200) from 60 to 105 s, which means the analysis of the fragment beginning 30 s after the appearance of the sound stimuli [39].
3. Results
4. Discussion
4.1. The Effect of Short-Time RAS Influence on the Change of Time and Spatial Parameters of Gait
4.2. The Variability of Gait in Healthy Subjects during Stimulation with Metro-Rhythmic Stimuli
4.3. Own Results Compared to the Research Conducted by Other Authors and Their Importance in Rehabilitation
4.4. Limitation of This Study and Directions of Further Research
5. Conclusions
- Short-term effect of metro-rhythmic stimuli during gait influences the change of time and spatial parameters of gait, i.e., on the frequency of gait, length and time of the gait cycle;
- When the music has a relaxation function, arrhythmic stimuli influence indirectly the mollification of the gait pace;
- Rhythmic stimuli with a pace different from the frequency of gait with a preferred speed have the strongest influence on the modification of the time and spatial parameters of gait, although their pace should not significantly differ from the frequency of the steps taken;
- Providing instructions on how to respond to stimulations played a significant role in the stimulation by sound stimuli—higher variability of the temporospatial parameters of gait was noted in group 2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). International Statistical Classification of Diseases and Related Health Problems. Available online: https://www.who.int/classifications/icd/ICD10Volume2_en_2010.pdf (accessed on 25 November 2020).
- Jahn, K.; Zwergal, A.; Schniepp, R. Gait disturbances in old age: Classification, diagnosis, and treatment from a neurological perspective. Dtsch. Arztebl. Int. 2010, 107, 306–315. [Google Scholar] [CrossRef]
- Voss, D.E.; Ionta, M.K.; Myers, B.J. Proprioceptive Neuromuscular Facilitation: Patterns and Techniques, 3rd ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 1985; ISBN 978-0-06-142595-0. [Google Scholar]
- Kania, D.; Romaniszyn, P.; Mańka, A.; Ledwoń, D.; Łysień, A.; Nawrat-Szołtysik, A.; Danch-Wierzchowska, M.; Michnik, R.; Mitas, A.; Myśliwiec, A. Technology as a Support for Rehabilitation Patients After Stroke; Springer: Cham, Switzerland, 2020; pp. 215–226. [Google Scholar]
- Clements-Cortes, A.; Bartel, L. Are we doing more than we know? possible mechanisms of response to music therapy. Front. Med. 2018, 5, 255. [Google Scholar] [CrossRef]
- Fang, R.; Ye, S.; Huangfu, J.; Calimag, D.P. Music therapy is a potential intervention for cognition of Alzheimer’s disease: A mini-review. Transl. Neurodegener. 2017, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R.; Miller, R.A.; Rathbun, J.; Brault, J.M. Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 1996, 11, 193–200. [Google Scholar] [CrossRef]
- Jochymczyk-Woźniak, K.; Nowakowska, K.; Michnik, R.; Gzik, M.; Kowalczykowski, D. Three-dimensional adults gait pattern—Reference data for healthy adults aged between 20 and 24. In Proceedings of the Innovations in Biomedical Engineering, Katowice, Poland, 18–20 October 2018; Tkacz, E., Gzik, M., Paszenda, Z., Piętka, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 169–176. [Google Scholar]
- Wittwer, J.E.; Webster, K.E.; Hill, K. Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait Posture 2013, 37, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Leman, M.; Moelants, D.; Varewyck, M.; Styns, F.; van Noorden, L.; Martens, J.-P. Activating and relaxing music entrains the speed of beat synchronized walking. PLoS ONE 2013, 8, e67932. [Google Scholar] [CrossRef] [Green Version]
- Ready, E.A.; McGarry, L.M.; Rinchon, C.; Holmes, J.D.; Grahn, J.A. Beat perception ability and instructions to synchronize influence gait when walking to music-based auditory cues. Gait Posture 2019, 68, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Murgia, M.; Pili, R.; Corona, F.; Sors, F.; Agostini, T.A.; Bernardis, P.; Casula, C.; Cossu, G.; Guicciardi, M.; Pau, M. The use of footstep sounds as rhythmic auditory stimulation for gait rehabilitation in Parkinson’s disease: A randomized controlled trial. Front. Neurol. 2018, 9, 348. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.K.; Kang, S.H. Effects of inclined treadmill walking training with rhythmic auditory stimulation on balance and gait in stroke patients. J. Phys. Ther. Sci. 2016, 28, 3367–3370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, Y.-K.; Chong, H.J.; Kim, S.J.; Cho, S.-R. Effect of rhythmic auditory stimulation on hemiplegic gait patterns. Yonsei Med. J. 2015, 56, 1703–1713. [Google Scholar] [CrossRef]
- Wright, R.L.; Bevins, J.W.; Pratt, D.; Sackley, C.M.; Wing, A.M. Metronome cueing of walking reduces gait variability after a cerebellar stroke. Front. Neurol. 2016, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Shahraki, M.; Sohrabi, M.; Taheri Torbati, H.R.; Nikkhah, K.; Naeimi Kia, M. Effect of rhythmic auditory stimulation on gait kinematic parameters of patients with multiple sclerosis. J. Med. Life 2017, 10, 33–37. [Google Scholar] [PubMed]
- Terrier, P.; Dériaz, O. Persistent and anti-persistent pattern in stride-to-stride variability of treadmill walking: Influence of rhythmic auditory cueing. Hum. Mov. Sci. 2012, 31, 1585–1597. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, C.; Remacle, A.; Chantraine, F.; Kolanowski, E.; Moissenet, F. Influence of a rhythmic auditory stimulation on asymptomatic gait. Gait Posture 2016, 50, 17–22. [Google Scholar] [CrossRef]
- Ko, B.-W.; Lee, H.-Y.; Song, W.-K. Rhythmic auditory stimulation using a portable smart device: Short-term effects on gait in chronic hemiplegic stroke patients. J. Phys. Ther. Sci. 2016, 28, 1538–1543. [Google Scholar] [CrossRef] [Green Version]
- Arias, P.; Cudeiro, J. Effect of rhythmic auditory stimulation on gait in parkinsonian patients with and without freezing of gait. PLoS ONE 2010, 5, e9675. [Google Scholar] [CrossRef] [Green Version]
- Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena. Mov. Disord. 2004, 19, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Conklyn, D.; Stough, D.; Novak, E.; Paczak, S.; Chemali, K.; Bethoux, F. A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: A pilot study. Neurorehabil. Neural Repair 2010, 24, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Delval, A.; Moreau, C.; Bleuse, S.; Tard, C.; Ryckewaert, G.; Devos, D.; Defebvre, L. Auditory cueing of gait initiation in Parkinson’s disease patients with freezing of gait. Clin. Neurophysiol. 2014, 125, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Plotnik, M.; Shema, S.; Dorfman, M.; Gazit, E.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. A motor learning-based intervention to ameliorate freezing of gait in subjects with Parkinson’s disease. J. Neurol. 2014, 261, 1329–1339. [Google Scholar] [CrossRef]
- Rochester, L.; Baker, K.; Hetherington, V.; Jones, D.; Willems, A.-M.; Kwakkel, G.; Van Wegen, E.; Lim, I.; Nieuwboer, A. Evidence for motor learning in Parkinson’s disease: Acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain Res. 2010, 1319, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Roerdink, M.; Lamoth, C.J.C.; Kwakkel, G.; van Wieringen, P.C.W.; Beek, P.J. Gait coordination after stroke: Benefits of acoustically paced treadmill walking. Phys. Ther. 2007, 87, 1009–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willems, A.M.; Nieuwboer, A.; Chavret, F.; Desloovere, K.; Dom, R.; Rochester, L.; Jones, D.; Kwakkel, G.; Van Wegen, E. The use of rhythmic auditory cues to influence gait in patients with Parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study. Disabil. Rehabil. 2006, 28, 721–728. [Google Scholar] [CrossRef]
- Park, K.S.; Hass, C.J.; Fawver, B.; Lee, H.; Janelle, C.M. Emotional states influence forward gait during music listening based on familiarity with music selections. Hum. Mov. Sci. 2019, 66, 53–62. [Google Scholar] [CrossRef]
- Lei, J.; Conradi, N.; Abel, C.; Frisch, S.; Brodski-Guerniero, A.; Hildner, M.; Kell, C.A.; Kaiser, J.; Schmidt-Kassow, M. Cognitive effects of rhythmic auditory stimulation in Parkinson’s disease: A P300 study. Brain Res. 2019, 1716, 70–79. [Google Scholar] [CrossRef]
- Nwebube, C.; Faulkner, G.E.; Thaut, M.H.; Bartel, L.R.; Stukel, T.A.; Redelmeier, D.A.; Marzolini, S.; Chen, J.L.; Goodman, J.M.; Oh, P.I.; et al. Rhythmic auditory music stimulation increases task-distraction during exercise among cardiac rehabilitation patients: A secondary analysis of a randomized controlled trial. Psychol. Sport Exerc. 2021, 53, 101868. [Google Scholar] [CrossRef]
- Roerdink, M.; Bank, P.J.M.; Peper, C.L.E.; Beek, P.J. Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation. Gait Posture 2011, 33, 690–694. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, K.; Song, C. Gait training with bilateral rhythmic auditory stimulation in stroke patients: A randomized controlled trial. Brain Sci. 2018, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Juslin, P.N.; Västfjäll, D. Emotional responses to music: The need to consider underlying mechanisms. Behav. Brain Sci. 2008, 31, 559–575, discussion 575–621. [Google Scholar] [CrossRef] [Green Version]
- Balteş, F.R.; Avram, J.; Miclea, M.; Miu, A.C. Emotions induced by operatic music: Psychophysiological effects of music, plot, and acting: A scientist’s tribute to Maria Callas. Brain Cogn. 2011, 76, 146–157. [Google Scholar] [CrossRef]
- Abd-Elshafy, S.K.; Khalaf, G.S.; Abo-Kerisha, M.Z.; Ahmed, N.T.; Abd El-Aziz, M.A.; Mohamed, M.A. Not all sounds have negative effects on children undergoing cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2015, 29, 1277–1284. [Google Scholar] [CrossRef] [Green Version]
- Nelson, K.; Adamek, M.; Kleiber, C. Relaxation training and postoperative music therapy for adolescents undergoing spinal fusion surgery. Pain Manag. Nurs. 2017, 18, 16–23. [Google Scholar] [CrossRef]
- Romaniszyn-Kania, P.; Kania, D.; Nowakowska, K.; Sobkowiak-Pilorz, M.; Turner, B.; Myśliwiec, A.; Michnik, R.; Mitas, A. RAS in the aspect of symmetrization of lower limb loads. In Proceedings of the International Conference on Information Technologies in Biomedicine, Kamień Śląski, Poland, 18–20 June 2019; Springer: Cham, Switzerland, 2019; pp. 436–447. ISBN 978-3-030-23761-5. [Google Scholar]
- Nowakowska-Lipiec, K.; Michnik, R.; Mańka, A.; Niedzwiedź, S.; Twardawa, P.; Romaniszyn, P.; Danecka, A.; Mitas, A.W. Effect of various types of metro-rhythmic stimulations on the gait symmetry in healthy people. In Proceedings of the 6th International Conference Engineering Mechanics, Brno, Czech Republic, 24–25 November 2020. [Google Scholar]
- Michnik, R.; Nowakowska-Lipiec, K.; Mańka, A.; Niedzwiedź, S.; Twardawa, P.; Romaniszyn-Kania, P.; Turner, B.; Danecka, A.; Mitas, A. Effect of various types of metro-rhythmic stimulations on the variability of gait frequency. In Information Technologies in Medicine; Springer: Cham, Switzerland, 2021; pp. 121–131. ISBN 978-3-030-49665-4. [Google Scholar]
- Alton, F.; Baldey, L.; Caplan, S.; Morrissey, M.C. A Kinematic comparison of overground and treadmill walking. Clin. Biomech. (Bristol) 1998, 13, 434–440. [Google Scholar] [CrossRef]
- Erra, C.; Mileti, I.; Germanotta, M.; Petracca, M.; Imbimbo, I.; De Biase, A.; Rossi, S.; Ricciardi, D.; Pacilli, A.; Di Sipio, E.; et al. Immediate effects of rhythmic auditory stimulation on gait kinematics in Parkinson’s disease on/off medication. Clin. Neurophysiol. 2019, 130, 1789–1797. [Google Scholar] [CrossRef]
- Thaut, M.H.; Rice, R.R.; Braun Janzen, T.; Hurt-Thaut, C.P.; McIntosh, G.C. Rhythmic auditory stimulation for reduction of falls in Parkinson’s disease: A randomized controlled study. Clin. Rehabil. 2019, 33, 34–43. [Google Scholar] [CrossRef]
- Styns, F.; van Noorden, L.; Moelants, D.; Leman, M. Walking on music. Hum. Mov. Sci. 2007, 26, 769–785. [Google Scholar] [CrossRef]
- del Olmo, M.F.; Cudeiro, J. Temporal variability of gait in Parkinson disease: Effects of a rehabilitation programme based on rhythmic sound cues. Parkinsonism Related Disord. 2005, 11, 25–33. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Lowenthal, J.; Herman, T.; Gruendlinger, L.; Peretz, C.; Giladi, N. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur. J. Neurosci. 2007, 26, 2369–2375. [Google Scholar] [CrossRef]
- Nombela, C.; Hughes, L.E.; Owen, A.M.; Grahn, J.A. Into the groove: Can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 2013, 37, 2564–2570. [Google Scholar] [CrossRef] [Green Version]
- Moens, B.; Leman, M. Alignment strategies for the entrainment of music and movement rhythms. Ann. N. Y. Acad. Sci. 2015, 1337, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, S.L.; Ullén, F.; Ehrsson, H.H.; Hashimoto, T.; Kito, T.; Naito, E.; Forssberg, H.; Sadato, N. Listening to rhythms activates motor and premotor cortices. Cortex 2009, 45, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Grahn, J.A.; Brett, M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex 2009, 45, 54–61. [Google Scholar] [CrossRef]
- Bijsterbosch, J.D.; Lee, K.-H.; Hunter, M.D.; Tsoi, D.T.; Lankappa, S.; Wilkinson, I.D.; Barker, A.T.; Woodruff, P.W.R. The role of the cerebellum in sub- and supraliminal error correction during sensorimotor synchronization: Evidence from FMRI and TMS. J. Cogn. Neurosci. 2011, 23, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Hidler, J. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 2008, 104, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.O.; Paolini, G.; Della Croce, U.; Paylo, K.W.; Kerrigan, D.C. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture 2007, 26, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Nymark, J.R.; Balmer, S.J.; Melis, E.H.; Lemaire, E.D.; Millar, S. Electromyographic and kinematic nondisabled gait differences at extremely slow overground and treadmill walking speeds. J. Rehabil. Res. Dev. 2005, 42, 523–534. [Google Scholar] [CrossRef] [PubMed]
Variable | G1 | G2 | Difference (p-Value) | 95% CI |
---|---|---|---|---|
Number of participants | 18 | 18 | ||
Sex (F/M) | 14/4 | 12/6 | ||
Age (mean ± SD) [years] | 22 ± 2 | 25 ± 6 | −3 (p = 0.03 *) | −6.08 to 0.08 |
Body mass (mean ± SD) [kg] | 68.39 ± 16.94 | 67.22 ± 12.49 | 1.17 (p = 0.59) | −9.07 to 11.41 |
Body height (mean ± SD) [m] | 1.72 ± 0.08 | 1.71 ± 0.07 | 0.01 (p = 0.65) | −0.04 to 0.07 |
Preferable gait speed (mean ± SD) [km/h] | 3.98 ± 0.82 | 4.39 ± 0.44 | −0.41 (p = 0.04 *) | −0.87 to 0.05 |
Gait Test | Parameter | G1 | G2 | G1 vs. G2 | ||
---|---|---|---|---|---|---|
Mean ± SD | Min–Max | Mean ± SD | Min–Max | p-Value | ||
GP | length of the gait cycle [cm] | 130.85 ± 9.62 | 109.07–147.23 | 137.84 ± 13.91 | 117.76–171.80 | 0.088 |
width of stride [cm] | 8.8 ± 3.18 | 3.15–16.26 | 8.43 ± 2.25 | 4.03–11.87 | 0.687 | |
time of the gait cycle [s] | 1.09 ± 0.04 | 1.03–1.15 | 1.11 ± 0.06 | 1.00–1.22 | 0.218 | |
gait frequency [steps/min] | 110.09 ± 3.82 | 104.01–116.07 | 108.22 ± 5.48 | 98.19–120.04 | 0.241 | |
GA | length of the gait cycle [cm] | 132.17 ± 8.82 | 113.82–148.34 | 141.59 ± 15.12 | 120.31–176.32 | 0.029 * |
width of stride [cm] | 8.58 ± 3.02 | 3.18–16.38 | 7.95 ± 2.52 | 2.01–12.06 | 0.499 | |
time of the gait cycle [s] | 1.11 ± 0.04 | 1.03–1.19 | 1.14 ± 0.06 | 1.03–1.25 | 0.071 | |
gait frequency [steps/min] | 108.58 ± 4.4 | 101.26–116.31 | 105.48 ± 5.81 | 95.76–116.46 | 0.079 | |
GR100 | length of the gait cycle [cm] | 132.51 ± 8.8 | 115.22–148.45 | 135.3 ± 14.28 | 115.93–169.13 | 0.485 |
width of stride [cm] | 8.69 ± 3.05 | 4.13–17.24 | 7.96 ± 2.56 | 3.61–13.8 | 0.446 | |
time of the gait cycle [s] | 1.1 ± 0.05 | 1.04–1.2 | 1.09 ± 0.07 | 0.96–1.22 | 0.484 | |
gait frequency [steps/min] | 108.81 ± 4.44 | 99.79–114.97 | 110.46 ± 7.13 | 98.76–125.81 | 0.411 | |
GR110 | length of the gait cycle [cm] | 134.19 ± 9.59 | 114.95–149.56 | 131.73 ± 13.86 | 105.99–153.5 | 0.54 |
width of stride [cm] | 8.55 ± 2.87 | 3.55–15.93 | 7.35 ± 2.31 | 3.8–12.11 | 0.176 | |
time of the gait cycle [s] | 1.12 ± 0.04 | 1.06–1.19 | 1.06 ± 0.07 | 0.97–1.28 | 0.002 * | |
gait frequency [steps/min] | 107.51 ± 4.11 | 100.64–113.77 | 113.55 ± 7.03 | 93.99–123.92 | 0.003 * | |
GR200 | length of the gait cycle [cm] | 133.83 ± 9.08 | 114.33–147.54 | 134.39 ± 13.1 | 117.36–158.92 | 0.882 |
width of stride [cm] | 8.83 ± 3.02 | 4.02–16.23 | 7.67 ± 2.76 | 3.49–13.25 | 0.240 | |
time of the gait cycle [s] | 1.12 ± 0.04 | 1.06–1.19 | 1.09 ± 0.09 | 0.9–1.26 | 0.215 | |
gait frequency [steps/min] | 107.71 ± 4.02 | 100.94–113.44 | 111.32 ± 9.63 | 95.54–133.92 | 0.152 |
Gait Parameters | Type of Metro-Rhythmic Stimulation | GP vs. Gait with RAS | |
---|---|---|---|
G1 | G2 | ||
length of the gait cycle [cm] | GA | 0.052 | ≤0.001 * |
GR100 | 0.004 * | 0.057 | |
GR110 | ≤0.001 * | 0.002 * | |
GR200 | ≤0.001 * | 0.181 | |
width of stride [cm] | GA | 0.246 | 0.052 |
GR100 | 0.595 | 0.065 | |
GR110 | 0.253 | 0.003 * | |
GR200 | 0.893 | 0.063 | |
time of the gait cycle [s] | GA | 0.001 * | 0.001 * |
GR100 | 0.009 * | 0.061 | |
GR110 | ≤0.001 * | 0.003 * | |
GR200 | ≤0.001 * | 0.170 | |
gait frequency [steps/min] | GA | 0.001 * | ≤0.001 * |
GR100 | 0.008 * | 0.060 | |
GR110 | ≤0.001 * | 0.001 * | |
GR200 | ≤0.001 * | 0.146 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowakowska-Lipiec, K.; Michnik, R.; Niedzwiedź, S.; Mańka, A.; Twardawa, P.; Turner, B.; Romaniszyn-Kania, P.; Danecka, A.; Mitas, A.W. Effect of Short-Term Metro-Rhythmic Stimulations on Gait Variability. Healthcare 2021, 9, 174. https://doi.org/10.3390/healthcare9020174
Nowakowska-Lipiec K, Michnik R, Niedzwiedź S, Mańka A, Twardawa P, Turner B, Romaniszyn-Kania P, Danecka A, Mitas AW. Effect of Short-Term Metro-Rhythmic Stimulations on Gait Variability. Healthcare. 2021; 9(2):174. https://doi.org/10.3390/healthcare9020174
Chicago/Turabian StyleNowakowska-Lipiec, Katarzyna, Robert Michnik, Sandra Niedzwiedź, Anna Mańka, Patrycja Twardawa, Bruce Turner, Patrycja Romaniszyn-Kania, Aneta Danecka, and Andrzej W. Mitas. 2021. "Effect of Short-Term Metro-Rhythmic Stimulations on Gait Variability" Healthcare 9, no. 2: 174. https://doi.org/10.3390/healthcare9020174
APA StyleNowakowska-Lipiec, K., Michnik, R., Niedzwiedź, S., Mańka, A., Twardawa, P., Turner, B., Romaniszyn-Kania, P., Danecka, A., & Mitas, A. W. (2021). Effect of Short-Term Metro-Rhythmic Stimulations on Gait Variability. Healthcare, 9(2), 174. https://doi.org/10.3390/healthcare9020174