Video Game Streaming in Young People and Teenagers: Uptake, User Groups, Dangers, and Opportunities
Abstract
:1. Introduction and State of the Research
1.1. Video Games and Live Streaming: The Rise of the Streaming Phenomenon
1.2. Motivation in Video Games and Crowdsourced Platforms
1.3. Positive Effects of Video Games: Opportunities Associated with Live Streaming
1.4. Problems and Dangers Related to Video Games and Live Streaming
2. Materials and Methods
2.1. Study Design and Process
2.2. Measurement Instrument
- a.
- Sociodemographic characteristics.
- b.
- Gamer attributes, preferred platforms for gaming/viewing, time spent weekly, and self-perception of skill level.
- c.
- Motivations for gaming/viewing content.
- d.
- Potential harm.
- e.
- Potential benefits.
2.3. Statistical Analyses
3. Analysis and Results
- Recreational-informative factor: incorporates the motivations linked to utility, connected to the needs they meet. This factor explains 28.9% of the total variance in gaming/viewing on streaming platforms.
- BM factor (bad manners or bad behaviour): includes potentially negative issues related to the aggressiveness arising in relationships with third parties when interacting on such platforms, such as making or receiving hurtful comments or trolling others, and it explains 12.5% of the variance.
- Social factor: incorporates issues connected to social networks within these platforms, and accounts for 12.1% of the total variance explained.
- Cluster 1 denoted a sporadic-casual audience: the largest group with 256 respondents or 44.1% of the sample, and this group scored the lowest in all the dimensions analysed.
- Cluster 2, or social audience: composed of 82 respondents (14.1%), it registered high scores in social variables and moderate scores in the recreational-informative dimension.
- Cluster 3, termed a hobby audience: comprising 205 respondents (35.3%), their motivation stems from aspects such as entertainment, learning strategies, staying up to date on video games, and complementing social networks. They show medium–high values in components related to the escapist-addictive factor, such as playing to forget problems or spending an ever-increasing amount of time gaming.
- Cluster 4, or potentially problematic audience: composed of 37 users, only 6.4% of the sample; however, this cluster represents the most complete spectrum, registering very high scores in factors associated with bad behaviour in networks and notable escapist-addictive elements, together with high recreational-informative motivation.
4. Discussion and Conclusions
Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. Universal Declaration of Human Rights; Assembly, G., Ed.; Department of State, United States of America: Washington, DC, USA, 1948; Volume 302, pp. 14–25.
- Buchanan-Oliver, M.; Seo, Y. Play as co-created narrative in computer game consumption: The hero’s journey in Warcraft III. J. Consum. Behav. 2012, 11, 423–431. [Google Scholar] [CrossRef]
- Muros, B.; Aragon, Y.; Bustos, A. Youth’s Usage of Leisure Time with Video Games and Social Networks. Comunicar 2013, 20, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Hellstrom, C.; Nilsson, K.W.; Leppert, J.; Aslund, C. Influences of motives to play and time spent gaming on the negative consequences of adolescent online computer gaming. Comput. Hum. Behav. 2012, 28, 1379–1387. [Google Scholar] [CrossRef]
- Paraskeva, F.; Mysirlaki, S.; Papagianni, A. Multiplayer online games as educational tools: Facing new challenges in learning. Comput. Educ. 2010, 54, 498–505. [Google Scholar] [CrossRef]
- Snodgrass, J.G.; Lacy, M.G.; Dengah, H.J.F.; Polzer, E.R.; Else, R.J.; Arevalo, J.M.G.; Cole, S.W. Positive mental well-being and immune transcriptional profiles in highly involved videogame players. Brain Behav. Immun. 2019, 82, 84–92. [Google Scholar] [CrossRef]
- Paulus, F.W.; Ohmann, S.; Von Gontard, A.; Popow, C. Internet gaming disorder in children and adolescents: A systematic review. Dev. Med. Child Neurol. 2018, 60, 645. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.D.; Hunt, N. Computer game playing in adolescence-prevalence and demographic indicators. J. Community Appl. Soc. Psychol. 1995, 5, 189–193. [Google Scholar] [CrossRef]
- Jackson, L.A.; von Eye, A.; Witt, E.A.; Zhao, Y.; Fitzgerald, H.E. A longitudinal study of the effects of Internet use and videogame playing on academic performance and the roles of gender, race and income in these relationships. Comput. Hum. Behav. 2011, 27, 228–239. [Google Scholar] [CrossRef]
- Lager, A.; Bremberg, S. Health Effects of Video and Computer Game Playing. A Systematic Review; Swedish National Institute of Public Health: Stockholm, Sweeden, 2005.
- Gros Salvat, B. Certezas e interrogantes acerca del uso de los videojuegos para el aprendizaje. Rev. Int. Comun. Audiov. Public Lit. 2009, 1, 251–264. [Google Scholar]
- Gonzálvez, M.T.; Espada, J.P.; Tejeiro, R. El uso problemático de videojuegos está relacionado con problemas emocionales en adolescentes. Adicciones 2016, 29, 180–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, Z.; Griffiths, M.D. Excessive use of massively multi-player online role-playing games: A pilot study. Int. J. Ment. Health Addict. 2009, 7, 563. [Google Scholar] [CrossRef]
- Wang, X.D.; Tian, Y.; Lan, R.H.; Yang, W.; Zhang, X.M. Beyond the Watching: Understanding Viewer Interactions in Crowdsourced Live Video Broadcasting Services. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3454–3468. [Google Scholar] [CrossRef]
- Newzoo YouTube Contends with Twitch as Streamers Establish Their Audiences. Available online: https://newzoo.com/insights/articles/youtube-contends-with-twitch-as-streamers-establish-their-audiences/ (accessed on 11 November 2020).
- ESportcharts. The Effect of Coronavirus on Streaming in Abril; Esportscharts. Available online: https://escharts.com/blog/effect-coronavirus-streaming-april (accessed on 11 November 2020).
- Li, Y.; Wang, C.L.; Liu, J. A Systematic Review of Literature on User Behavior in Video Game Live Streaming. Int. J. Environ. Res. Public Health 2020, 17, 3328. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, S.L. Moderating effects of information-oriented versus escapism-oriented motivations on the relationship between psychological well-being and problematic use of video game live-streaming services. J. Behav. Addict. 2019, 8, 564–573. [Google Scholar] [CrossRef]
- Jeong, H.; Yim, H.W.; Jo, S.-J.; Lee, S.-Y.; Lee, H.K.; Gentile, D.A.; Son, H.J.; Han, H.-H.; Kweon, Y.-S.; Bhang, S.-Y.; et al. Gaming patterns and related symptoms in adolescents using cluster analysis: Baseline results from the Internet User Cohort for Unbiased Recognition of Gaming Disorder in Early Adolescence (iCURE) study. Environ. Res. 2020, 182, 109105. [Google Scholar] [CrossRef]
- Matsui, A.; Sapienza, A.; Ferrara, E. Does Streaming Esports Affect Players’ Behavior and Performance? Games Cult. 2020, 15, 9–31. [Google Scholar] [CrossRef]
- Johnson, M.R.; Woodcock, J. It’s like the gold rush’: The lives and careers of professional video game streamers on Twitch.tv. Info. Commun. Soc. 2019, 22, 336–351. [Google Scholar] [CrossRef]
- Johnson, M.; Woodcock, J. The impacts of live streaming and Twitch.tv on the video game industry. Media Cult. Soc. 2019, 41, 670–688. [Google Scholar] [CrossRef]
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Lloyd, J.; Doll, H.; Hawton, K.; Dutton, W.H.; Geddes, J.R.; Goodwin, G.M.; Rogers, R.D. Internet Gamblers: A Latent Class Analysis of Their Behaviours and Health Experiences. J. Gamb. Stud. 2010, 26, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Flayelle, M.; Maurage, P.; Karila, L.; Vogele, C.; Billieux, J. Overcoming the unitary exploration of binge-watching: A cluster analytical approach. J. Behav. Addict. 2019, 8, 586–602. [Google Scholar] [CrossRef]
- Cao, W.J.; Fang, Z.W.; Hou, G.Q.; Han, M.; Xu, X.R.; Dong, J.X.; Zheng, J.Z. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 2020, 287, 5. [Google Scholar] [CrossRef] [PubMed]
- Kempe-Cook, L.; Sher, S.T.H.; Su, N.M.; Assoc Comp, M. Behind the Voices: The Practice and Challenges of Esports Casters; Assoc Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
- Johnson, M.R.; Woodcock, J. “And Today’s Top Donator is”: How Live Streamers on Twitch.tv Monetize and Gamify Their Broadcasts. Soc. Med. Soc. 2019, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Bingham, C.M. Talking about Twitch: Dropped Frames and a normative theory of new media production. Convergence 2020, 26, 269–286. [Google Scholar] [CrossRef]
- Woodcock, J.; Johnson, M.R. Live streamers on Twitch. tv as social media influencers: Chances and challenges for strategic communication. Int. J. Strateg. Commun. 2019, 13, 321–335. [Google Scholar] [CrossRef]
- Liao, C.W.; Chen, C.H.; Shih, S.J. The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Comput. Educ. 2019, 133, 43–55. [Google Scholar] [CrossRef]
- Payne, K.; Keith, M.J.; Schuetzler, R.M.; Giboney, J.S. Examining the learning effects of live streaming video game instruction over Twitch. Comput. Hum. Behav. 2017, 77, 95–109. [Google Scholar] [CrossRef]
- Woodcock, J.; Johnson, M.R. The Affective Labor and Performance of Live Streaming on Twitch.tv. Telev. New Media 2019, 20, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Griffiths, M.D. Online Social Networking and Addiction-A Review of the Psychological Literature. Int. J. Environ. Res. Public Health 2011, 8, 3528–3552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro-Sánchez, M.; Rojas-Jiménez, M.; Zurita-Ortega, F.; Chacón-Cuberos, R. Multidimensional Self-Concept and Its Association with Problematic Use of Video Games in Spanish College Students. Educ. Sci. 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Buiza-Aguado, C.; Alonso-Canovas, A.; Conde-Mateos, C.; Buiza-Navarrete, J.J.; Gentile, D. Problematic video gaming in a young Spanish population: Association with psychosocial health. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.T.; Bowman, N.; Lin, S.F.; Chen, Y.S. Setting the digital stage: Defining game streaming as an entertainment experience. Entertain. Comput. 2019, 31, 8. [Google Scholar]
- Newzoo Streamlabs and Newzoo Q3 2019 Game Streaming Report: How Has Ninja’s Move Impacted Mixer and Twitch? Available online: https://newzoo.com/insights/articles/q3-game-streaming-insights-how-has-ninjas-move-impacted-mixer-and-twitch/ (accessed on 11 November 2020).
- Hamilton, W.A.; Garretson, O.; Kerne, A. Streaming on twitch: Fostering participatory communities of play within live mixed media. In Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, Toronto, ON, Canada, 26 April–1 May 2014; ACM: Toronto, ON, Canada, 2014; pp. 1315–1324. [Google Scholar]
- Spilker, H.S.; Ask, K.; Hansen, M. The new practices and infrastructures of participation: How the popularity of Twitch. tv challenges old and new ideas about television viewing. Inf. Commun. Soc. 2018, 23, 605–620. [Google Scholar] [CrossRef]
- Churchill, B.C.B.; Xu, W. The Modem Nation: A First Study on Twitch.TV Social Structure and Player/Game Relationships; IEEE: New York, NY, USA, 2016; pp. 223–228. [Google Scholar]
- Stankevicius, D.; Jady, H.A.; Drachen, A.; Schoenau-Fog, H. A Factor-Based Exploration of Player’s Continuation Desire in Free-to-Play Mobile Games. In Proceedings of the Eleventh Artificial Intelligence and Interactive Digital Entertainment Conference, Santa Cruz, CA, USA, 14–18 November 2005. [Google Scholar]
- Sjoblom, M.; Hamari, J. Why do people watch others play video games? An empirical study on the motivations of Twitch users. Comput. Hum. Behav. 2017, 75, 985–996. [Google Scholar] [CrossRef]
- Gros, D.; Wanner, B.; Hackenholt, A.; Zawadzki, P.; Knautz, K. World of Streaming. Motivation and Gratification on Twitch. In Social Computing and Social Media: Human Behavior, Pt I; Meiselwitz, G., Ed.; Springer International Publishing Ag: Cham, Switzerland, 2017; Volume 10282, pp. 44–57. [Google Scholar]
- Cabeza-Ramirez, L.J.; Sanchez-Canizares, S.M.; Fuentes-Garcia, F.J. Motivations for the Use of Video Game Streaming Platforms: The Moderating Effect of Sex, Age and Self-Perception of Level as a Player. Int. J. Environ. Res. Public Health 2020, 17, 7019. [Google Scholar] [CrossRef]
- Bartle, R. Hearts, clubs, diamonds, spades: Players who suit MUDs. J. MUD Res. 1996, 1, 19. [Google Scholar]
- Gandolfi, E. To watch or to play, it is in the game: The game culture on Twitch.tv among performers, plays and audiences. J. Gaming Virtual Worlds 2016, 8, 63–82. [Google Scholar] [CrossRef]
- Hamari, J.; Sjoblom, M. What is eSports and why do people watch it? Internet Res. 2017, 27, 211–232. [Google Scholar] [CrossRef]
- Hilvert-Bruce, Z.; Neill, J.T.; Sjoblom, M.; Hamari, J. Social motivations of live-streaming viewer engagement on Twitch. Comput. Hum. Behav. 2018, 84, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Gozli, D.G.; Bavelier, D.; Pratt, J. The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task. Hum. Mov. Sci. 2014, 38, 152–162. [Google Scholar] [CrossRef]
- Jackson, L.A.; Witt, E.A.; Games, A.I.; Fitzgerald, H.E.; von Eye, A.; Zhao, Y. Information technology use and creativity: Findings from the Children and Technology Project. Comput. Hum. Behav. 2012, 28, 370–376. [Google Scholar] [CrossRef]
- Bavelier, D.; Green, C.S.; Pouget, A.; Schrater, P. Brain Plasticity Through the Life Span: Learning to Learn and Action Video Games. In Annual Review of Neuroscience; Hyman, S.E., Ed.; Annual Reviews: Palo Alto, CA, USA, 2012; Volume 35, pp. 391–416. [Google Scholar]
- Zolides, A. Gender moderation and moderating gender: Sexual content policies in Twitch’s community guidelines. New Media Soc. 2020. [Google Scholar] [CrossRef]
- Seering, J.; Wang, T.; Yoon, J.; Kaufman, G. Moderator engagement and community development in the age of algorithms. New Media Soc. 2019, 21, 1417–1443. [Google Scholar] [CrossRef]
- Ruberg, B. Obscene, pornographic, or otherwise objectionable: Biased definitions of sexual content in video game live streaming. New Media Soc. 2020. [Google Scholar] [CrossRef]
- Buiza-Aguado, C. Videojuegos, Uso Problemático y Factores Asociados; Focad. General Council of Psychology of Spain. Available online: https://psicosol.es/wp-content/uploads/2018/11/FACTORES-ASOCIADOS.pdf (accessed on 11 November 2020).
- Buiza-Aguado, C.; García-Calero, A.; Alonso-Cánovas, A.; Ortiz-Soto, P.; Guerrero-Díaz, M.; González-Molinier, M.; Hernández-Medrano, I. Los videojuegos: Una afición con implicaciones neuropsiquiátricas. Psicol. Educ. 2017, 23, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Dieris-Hirche, J.; Pape, M.; te Wildt, B.T.; Kehyayan, A.; Esch, M.; Aicha, S.; Herpertz, S.; Bottel, L. Problematic gaming behavior and the personality traits of video gamers: A cross-sectional survey. Comput. Hum. Behav. 2020, 106, 106272. [Google Scholar] [CrossRef]
- Montag, C.; Schivinski, B.; Sariyska, R.; Kannen, C.; Demetrovics, Z.; Pontes, H.M. Psychopathological Symptoms and Gaming Motives in Disordered Gaming-A Psychometric Comparison between the WHO and APA Diagnostic Frameworks. J. Clin. Med. 2019, 8, 1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fineberg, N.A.; Demetrovics, Z.; Stein, D.J.; Ioannidis, K.; Potenza, M.N.; Grunblatt, E.; Brand, M.; Billieux, J.; Carmi, L.; King, D.L.; et al. Manifesto for a European research network into Problematic Usage of the Internet. Eur. Neuropsychopharmacol. 2018, 28, 1232–1246. [Google Scholar] [CrossRef] [PubMed]
- Fumero, A.; Marrero, R.J.; Bethencourt, J.M.; Peñate, W. Risk factors of internet gaming disorder symptoms in Spanish adolescents. Comput. Hum. Behav. 2020, 111, 106416. [Google Scholar] [CrossRef]
- Busalim, A.H.; Masrom, M.; Zakaria, W. The impact of Facebook Addiction and self-esteem on students’ academic performance: A multi-group analysis. Comput. Educ. 2019, 142, 14. [Google Scholar] [CrossRef]
- Bozzola, E.; Spina, G.; Ruggiero, M.; Vecchio, D.; Caruso, C.; Bozzola, M.; Staiano, A.M.; Agostiniani, R.; Del Vecchio, A.; Banderali, G.; et al. Media use during adolescence: The recommendations of the Italian Pediatric Society. Ital. J. Pediatr. 2019, 45, 9. [Google Scholar] [CrossRef]
- Hasan, M.R.; Jha, A.K.; Liu, Y. Excessive use of online video streaming services: Impact of recommender system use, psychological factors, and motives. Comput. Hum. Behav. 2018, 80, 220–228. [Google Scholar] [CrossRef]
- AEVI. La Industria del Videojuego en España. Anuario 2019; Asociación Española de Videojuegos: London, UK, 2019. [Google Scholar]
- Shi, J.; Renwick, R.; Turner, N.E.; Kirsh, B. Understanding the lives of problem gamers: The meaning, purpose, and influences of video gaming. Comput. Hum. Behav. 2019, 97, 291–303. [Google Scholar] [CrossRef]
- Association, W.M. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373. [Google Scholar]
- Andreassen, C.; Billieux, J.; Griffiths, M.; Kuss, D.; Demetrovics, Z.; Mazzoni, E. La relación entre el uso adictivo de las redes sociales y los videojuegos y los síntomas de trastornos psiquiátricos: Un estudio transversal a gran escala. Psicol. Conductas Adict. 2016, 30, 252. [Google Scholar]
- Johnson, M.R. Inclusion and exclusion in the digital economy: Disability and mental health as a live streamer on Twitch.tv. Info. Commun. Soc. 2019, 22, 506–520. [Google Scholar] [CrossRef]
- Selyutin, A. Aggressive speech behaviour in the discourse of game video blogs and streams. In Iii Post Mass Media in the Modern Informational Society; Viktorovna, Z.M., Ed.; Future Acad: Nicosia, Cyprus, 2019; Volume 66, pp. 273–278. [Google Scholar]
- Ruvalcaba, O.; Shulze, J.; Kim, A.; Berzenski, S.R.; Otten, M.P. Women’s Experiences in eSports: Gendered Differences in Peer and Spectator Feedback During Competitive Video Game Play. J. Sport Soc. Issues 2018, 42, 295–311. [Google Scholar] [CrossRef]
- Wulf, T.; Schneider, F.M.; Beckert, S. Watching Players: An Exploration of Media Enjoyment on Twitch. Games Cult. 2018, 15, 328–346. [Google Scholar] [CrossRef]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guilford Publications: New York, NY, USA, 2015. [Google Scholar]
- Long, Q.; Tefertiller, A.C. China’s New Mania for Live Streaming: Gender Differences in Motives and Uses of Social Live Streaming Services. Int. J. Hum. Comput. Interact. 2020, 11, 1314–1324. [Google Scholar] [CrossRef]
- Xouridas, S. Gambling on Electronic Gaming Machines in Germany: An Age-Period-Cohort Analysis. Int. Gambl. Stud. 2018, 18, 439–459. [Google Scholar] [CrossRef]
- Trzesniewski, K.H.; Donnellan, M.B. Rethinking “Generation Me”: A Study of Cohort Effects From 1976–2006. Perspect. Psychol. Sci. 2010, 5, 58–75. [Google Scholar] [CrossRef]
- Stevens, C.; Zhang, E.; Cherkerzian, S.; Chen, J.A.; Liu, C.H. Problematic internet use/computer gaming among US college students: Prevalence and correlates with mental health symptoms. Depress. Anxiety 2020, 11, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Sjoblom, M.; Torhonen, M.; Hamari, J.; Macey, J. Content structure is king: An empirical study on gratifications, game genres and content type on Twitch. Comput. Hum. Behav. 2017, 73, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, F.; Scheibe, K.; Stock, W.G. A Model for Information Behavior Research on Social Live Streaming Services (SLSSs). In Social Computing and Social Media; Meiselwitz, G., Ed.; Technologies and Analytics; Springer International Publishing: Cham, Switzerland, 2018; pp. 429–448. [Google Scholar]
- Hsu, C.L.; Lin, J.C.C.; Miao, Y.F. Why Are People Loyal to Live Stream Channels? The Perspectives of Uses and Gratifications and Media Richness Theories. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 351–356. [Google Scholar] [CrossRef]
- White, R.W. Motivation reconsidered-the concept of competence. Psychol. Rev. 1959, 66, 297–333. [Google Scholar] [CrossRef] [PubMed]
- Hopp, T.; Barker, V.; Weiss, A.S. Interdependent Self-Construal, Self-Efficacy, and Community Involvement as Predictors of Perceived Knowledge Gain Among MMORPG Players. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 468–473. [Google Scholar] [CrossRef]
- Nacke, L.E.; Bateman, C.; Mandryk, R.L. BrainHex: A neurobiological gamer typology survey. Entertain. Comput. 2014, 5, 55–62. [Google Scholar] [CrossRef]
- Marczewski, A. Even Ninja Monkeys Like to Play: Gamification, Game Thinking and Motivational Design; CreateSpace Independent Publishing: Scotts Valley, CA, USA, 2015. [Google Scholar]
- Manzano-León, A.; Camacho-Lazarraga, P.; Guerrero-Puerta, M.A.; Guerrero-Puerta, L.; Alias, A.; Trigueros, R.; Aguilar-Parra, J.M. Adaptation and Validation of the Scale of Types of Users in Gamification with the Spanish Adolescent Population. Int. J. Environ. Res. Public Health 2020, 17, 4157. [Google Scholar] [CrossRef]
- (INE), N.S.I. Main Series Since 1971. 2019. Available online: https://www.ine.es/jaxiT3/Tabla.htm?t=31304 (accessed on 12 October 2020).
- Andreassen, C.S.; Billieux, J.; Griffiths, M.D.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The Relationship Between Addictive Use of Social Media and Video Games and Symptoms of Psychiatric Disorders: A Large-Scale Cross-Sectional Study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | n | % |
---|---|---|
Age | ||
16 and under | 94 | 16.2 |
17–19 years old | 153 | 26.4 |
20–22 years old | 219 | 37.8 |
23–24 years old | 114 | 19.7 |
Weekly gaming hours | ||
0–3 h | 288 | 49.7 |
3–7 h | 104 | 18.0 |
7–10 h | 68 | 11.7 |
10–15 h | 46 | 7.9 |
15–25 h | 42 | 7.3 |
More than 25 h | 31 | 5.4 |
Weekly viewing hours | ||
0–3 h | 398 | 69.1 |
3–7 h | 83 | 14.4 |
7–10 h | 43 | 7.5 |
10–15 h | 26 | 4.5 |
15–25 h | 13 | 2.3 |
More than 25 h | 13 | 2.3 |
Gender | ||
Female | 237 | 40.9 |
Male | 343 | 59.1 |
Educational level | ||
Primary education | 67 | 11.6 |
Secondary education | 192 | 33.1 |
Upper Secondary/VET | 257 | 44.3 |
University degree | 56 | 9.6 |
Postgraduate/Doctorate | 8 | 1.4 |
Employment status | ||
Full-time work | 20 | 3.5 |
Part-time work | 10 | 1.7 |
Work and study | 91 | 15.7 |
Study | 451 | 78.0 |
Unemployed | 6 | 1.0 |
Variables | Components | Factors | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
For entertainment—A | 0.83 | Recreational-informative | |||
To learn gaming strategies—B | 0.81 | ||||
To stay up to date on video games—C | 0.81 | ||||
To follow tournaments or events—D | 0.78 | ||||
As a complement/alternative to social networks/Tv—E | 0.76 | ||||
To help my education (languages)—F | 0.66 | ||||
I have felt bad when I could not play—G | 0.81 | Escapist/addictive | |||
I play to forget about my problems—H | 0.74 | ||||
I spend more and more time gaming—I | 0.69 | ||||
I often neglect important tasks to play—J | 0.68 | ||||
I have made hurtful comments—K | 0.84 | BM * | |||
I have received hurtful comments—L | 0.70 | ||||
I use platforms to troll other users—M | 0.65 | ||||
I use platforms to meet new friends—N | 0.89 | Social | |||
I use platforms to communicate with others in the chat room—O | 0.83 | ||||
Eigenvalues | 4.33 | 2.75 | 1.88 | 1.81 | |
% Variance | 28.89 | 18.39 | 12.55 | 12.09 | |
Cumulative % variance | 28.89 | 47.28 | 59.84 | 71.94 | |
Sampling adequacy Kaiser–Meyer–Olkin (KMO): 0.898 | |||||
Bartlett’s Test of Sphericity χ2 = 5145.127;d.f: 105; p 0.000 |
Model | Incremental | Global | |||
---|---|---|---|---|---|
CFI | TLI | GFI | RMSEA (IC 90%) | SRMR | |
Total | 0.996 | 0.995 | 0.996 | 0.047 (0.038–0.056) | 0.046 |
Sample 1 | 0.994 | 0.992 | 0.993 | 0.058 (0.045–0.071) | 0.055 |
Sample 2 | 0.999 | 0.999 | 0.994 | 0.020 (0.000–0.039) | 0.053 |
Variable | Categories | C1 | C2 | C3 | C4 | n * | χ2 | Sig. |
---|---|---|---|---|---|---|---|---|
n = 256 (44.1%) | n = 82 (14.1%) | n = 205 (35.3%) | n = 37 (6.4%) | |||||
Gender | Female | 158 (61.7%) | 38 (46.3%) | 38 (18.5%) | 3 (8.3%) | 237 | 105.812 | <0.001 |
Male | 98 (38.3%) | 44 (53.7%) | 167 (81.5%) | 34 (91.7%) | 343 | |||
Age | 19 and under | 77 (30.1%) | 26 (31.7%) | 122 (59.5%) | 22 (59.5%) | 247 | 48.679 | <0.001 |
20–24 years old | 179 (69.9%) | 56 (68.3%) | 83 (40.5%) | 15 (40.5%) | 333 | |||
Gaming hours | 0–7 h | 230 (90.2%) | 67 (81.7%) | 84 (41.0%) | 11 (29.7%) | 392 | 162.076 | <0.001 |
7–15 h | 20 (13.4%) | 11 (13.4%) | 69 (33.7%) | 14 (37.8%) | 114 | |||
More than 15 h | 5 (2.0%) | 4 (4.9%) | 52 (25.4%) | 12 (32.4%) | 73 | |||
Viewing hours | 0–7 h | 243 (96.0%) | 75 (91.5%) | 140 (68.3%) | 23 (62.2%) | 481 | 82.089 | <0.001 |
7–15 h | 8 (3.2%) | 5 (6.2%) | 47 (22.9%) | 9 (24.3%) | 69 | |||
More than 15 h | 2 (0.8%) | 1 (1.2%) | 18 (8.8%) | 5 (13.5%) | 26 | |||
Player skill level | Novice/amateur | 170 (66.4%) | 37 (45.7%) | 30 (14.8%) | 1 (2.7%) | 238 | 187.655 | <0.001 |
Regular | 63 (25.1) | 30 (37.0%) | 83 (40.9%) | 11 (29.7%) | 187 | |||
Expert/Pro | 18 (7.0%) | 14 (17.1%) | 90 (44.3%) | 25 (67.6%) | 147 | |||
PC | None–A little | 216 (84.7%) | 59 (72.5%) | 99 (48.3%) | 16 (43.2%) | 390 | 79.830 | <0.001 |
Quite a lot/A lot | 39(15.3%) | 22 (27.2%) | 106 (51.7%) | 21 (56.8%) | 188 | |||
Smartphone | None–A little | 153 (59.8%) | 33 (40.2%) | 79 (38.7%) | 14 (38.9%) | 279 | 24.375 | <0.001 |
Quite a lot/A lot | 103 (40.2%) | 49 (59.8%) | 125 (61.3%) | 22 (61.1%) | 299 | |||
PlayStation | None–A little | 226 (89.0%) | 67 (82.7%) | 121 (59.3%) | 18 (50.0%) | 432 | 68.037 | <0.001 |
Quite a lot/A lot | 28 (11.0%) | 14 (17.3%) | 83 (40.7%) | 18 (50.0%) | 143 | |||
Tablet | None–A little | 237 (92.9%) | 74 (91.4%) | 185 (90.7%) | 31 (86.1%) | 527 | 2.199 | <0.532 |
Quite a lot/A lot | 18 (7.1%) | 7 (8.6%) | 19 (9.3%) | 5 (13.9%) | 49 | |||
Xbox | None–A little | 248 (96.9%) | 75 (93.8%) | 194 (95.0%) | 31 (86.1%) | 548 | 12.108 | <0.007 |
Quite a lot/A lot | 5 (2.0%) | 5 (6.3%) | 10 (4.9%) | 5 (13.9%) | 25 | |||
Nintendo | None–A little | 243 (95.3%) | 76 (93.8%) | 175 (85.8%) | 28 (77.8%) | 522 | 20.141 | <0.001 |
Quite a lot/A lot | 12 (4.7%) | 5 (6.2%) | 29 (14.2%) | 8 (22.2%) | 54 | |||
Hobby/profession | None/Hardly any | 254 (99.2%) | 70 (86.4%) | 140 (68.6%) | 24 (64.9%) | 488 | 101.622 | <0.001 |
Some | 2 (0.8%) | 3 (3.7%) | 33 (16.2%) | 3 (8.1%) | 41 | |||
Quite a lot/A lot | 0 (0%) | 8 (9.9%) | 31 (15.2%) | 10 (27.0%) | 49 |
Variable | Cluster | ANOVA | ||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | F | Sig. | |
n = 256 | n = 82 | n = 205 | n = 37 | |||
Streaming is beneficial to my education | 1.31 (**) | 1.84 (**) | 2.75 (*) | 3.00 (*) | 100.603 | <0.001 |
Professionalise my hobby | 1.07 (**) | 1.62 (**) | 2.08 (*) | 2.32 (*) | 55.024 | <0.001 |
Self-perception of skill level as a player | 1.86 (**) | 2.38 (**) | 3.35 (**) | 3.95 (**) | 93.988 | <0.001 |
Variables | Homogeneity of Variances (Levene) | Equality of Means | |||
---|---|---|---|---|---|
Streaming is beneficial to my education | 23.39 | <0.001 | Welch | 100.848 | <0.001 |
Brown-Forsythe | 76.716 | <0.001 | |||
Professionalise my hobby | 112.016 | <0.001 | Welch | 59.442 | <0.001 |
Brown-Forsythe | 36.598 | <0.001 | |||
Self-perception of skill level as a player | 5.802 | <0.005 | Welch | 99.963 | <0.001 |
Brown-Forsythe | 95.709 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabeza-Ramírez, L.J.; Muñoz-Fernández, G.A.; Santos-Roldán, L. Video Game Streaming in Young People and Teenagers: Uptake, User Groups, Dangers, and Opportunities. Healthcare 2021, 9, 192. https://doi.org/10.3390/healthcare9020192
Cabeza-Ramírez LJ, Muñoz-Fernández GA, Santos-Roldán L. Video Game Streaming in Young People and Teenagers: Uptake, User Groups, Dangers, and Opportunities. Healthcare. 2021; 9(2):192. https://doi.org/10.3390/healthcare9020192
Chicago/Turabian StyleCabeza-Ramírez, Luis Javier, Guzmán Antonio Muñoz-Fernández, and Luna Santos-Roldán. 2021. "Video Game Streaming in Young People and Teenagers: Uptake, User Groups, Dangers, and Opportunities" Healthcare 9, no. 2: 192. https://doi.org/10.3390/healthcare9020192
APA StyleCabeza-Ramírez, L. J., Muñoz-Fernández, G. A., & Santos-Roldán, L. (2021). Video Game Streaming in Young People and Teenagers: Uptake, User Groups, Dangers, and Opportunities. Healthcare, 9(2), 192. https://doi.org/10.3390/healthcare9020192