Factors Associated with Poor Glycemic Control Amongst Rural Residents with Diabetes in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Collection
2.2. Definition of Poor Glycemic Control
2.3. Measurements of Related Factors
2.4. Data Analysis
3. Results
3.1. The General Characteristics of Participants
3.2. Differences in Glycemic Control According to Participants’ Characteristics
3.3. Factors Associated with Poor Glycemic Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Diabetes-Key Facts; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 17 July 2019).
- Blonde, L.; Aschner, P.; Bailey, C.; Ji, L.; Leiter, L.A.; Matthaei, S. Global partnership for effective diabetes management: Gaps and barriers in the control of blood glucose in people with type 2 diabetes. Diabetes Vasc. Dis. Res. 2017, 14, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Korea Centers for Disease Control and Prevention. Korea Health Statistics 2018; Korea National Health and Nutrition Examination Survey; Korea Centers for Disease Control and Prevention: Seoul, Korea, 2018. Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_03.do?classType=7 (accessed on 15 February 2020).
- Kim, S.Y.; Nah, E.H.; Cho, S. Prevalence of comorbidities among patients with diabetes. J. Health Inform. Stat. 2018, 43, 237–244. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Introduction: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. 1), S1–S2. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Kim, J.M.; Choi, J.Y. Effects of depression, impulsivity and diabetes management behaviors on glycemic control in adults with type 2 diabetes mellitus. Health Soc. Welf. Rev. 2018, 38, 191–215. [Google Scholar]
- Laiteerapong, N.; Fairchild, P.C.; Chou, C.H.; Chin, M.H.; Hung, E.S. Revisiting disparities in quality of care among US adults with diabetes in the era of individualized care, NHANES 2007-2010. Med Care 2015, 53, 25–31. [Google Scholar] [CrossRef] [Green Version]
- De Pablos-Velasco, P.; Parhofer, K.G.; Bradley, C.; Eschwège, E.; Gönder-Frederick, L.; Maheux, P.; Wood, I.; Simon, D. Dominique Simon Current level of glycaemic control and its associated factors in patients with type 2 diabetes across Europe: Data from the PANORAMA study. Clin. Endocrinol. 2014, 80, 47–56. [Google Scholar] [CrossRef]
- Braga, M.F.; Casanova, A.; Teoh, H.; Gerstein, H.C.; Fitchett, D.H.; Honos, G.; McFarlane, P.A.; Ur, E.; Yale, J.F.; Langer, A.; et al. Poor achievement of guidelines-recommended targets in type 2 diabetes: Findings from a contemporary prospective cohort study. Int. J. Clin. Pract. Suppl. 2012, 66, 457–464. [Google Scholar] [CrossRef]
- Emmons, K.M. Health behaviors in a social context. In Social Epidemiology, 1st ed.; Berkman, L.F., Kawachi, I., Eds.; Oxford University Press Inc.: New York, NY, USA, 2000; pp. 242–266. [Google Scholar]
- Lee, M.J.; Kown, D.H.; Kim, Y.Y.; Han, K.J.; Jun, M.S.; Woo, P.K.; Woo, P.I.; Jun, P.; Yeon, B.N.; Seok, S.G.; et al. Factors associated with experience of diagnosis and utilization of chronic diseases among Korean elderly: Focus on comparing between urban and rural elderly. J. Agric. Med. Community Health 2019, 44, 165–184. [Google Scholar]
- Yi, Y.J.; Kim, E.J. The effects of accessibility to medical facilities and public transportation on perceived health of urban and rural elderly: Using generalized ordered logit model. J. Korean Reg. Dev. Assoc. 2015, 27, 65–87. [Google Scholar]
- Statistics Korea. Diabetes Prevalence Trend. 2020. Available online: http://kosis.kr/statHtml/statHtml.do?orgId=117&tblId=DT_11702_N102 (accessed on 9 March 2020).
- Park, J.; Lim, S.; Yim, E.; Kim, Y.; Chung, W. Factors associated with poor glycemic control among patients with type 2 diabetes mellitus: The Fifth Korea National Health and Nutrition Examination Survey (2010–2012). Health Policy Manag. 2016, 26, 125. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R. A survey on knowledge of diabetes and self-care behavior of rural patients with diabetes mellitus. J. Korean Acad. Rural Health Nurs. 2013, 8, 13–24. [Google Scholar]
- Chun, J.D.; Ryu, S.Y.; Han, M.A.; Park, J. Comparisons of health status and health behaviors among the elderly between urban and rural areas. J. Agric. Med. Community Health 2013, 38, 182–194. [Google Scholar] [CrossRef]
- Carpenter, R.D.; Theeke, L.A.; Mallow, J.A.; Theeke, E.; Gilleland, D. Relationships among distress, appraisal, self-management behaviors, and psychosocial factors in a sample of rural Appalachian adults with type 2 diabetes. J. Rural Nurs. Health Care 2017, 17, 34–64. [Google Scholar] [CrossRef]
- Kim, K. The influencing factors associated with glycemic control among adult diabetes patients. J. Korea Acad. Ind. Coop. Soc. 2015, 16, 3284–3292. [Google Scholar]
- Gu, M.O. Factors influencing glycemic control among type 2 diabetes mellitus patients: The Sixth Korea National Health and Nutrition Examination Survey (2013~2015). J. Korean Adult. Nurs. 2019, 31, 235–248. [Google Scholar] [CrossRef]
- Saghir, S.A.; Alhariri, A.E.; Alkubati, S.A.; Almiamn, A.A.; Aladaileh, S.H.; Alyousefi, N.A. Factors associated with poor glycemic control among type-2 diabetes mellitus patients in Yemen. Trop. J. Pharm. Res. 2019, 18, 1539–1546. [Google Scholar]
- Fiseha, T.; Alemayehu, E.; Kassahun, W.; Adamu, A.; Gebreweld, A. Factors associated with glycemic control among diabetic adult out-patients in Northeast Ethiopia. BMC Res. Notes 2018, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.Y.; Park, S.K.; Oh, C.M.; Ryoo, J.H.; Choi, J.M.; Choi, Y.J. The risk of type 2 diabetes mellitus according to the categories of body mass index: The Korean Genome and Epidemiology Study (KoGES). Acta Diabetol. 2018, 55, 479–484. [Google Scholar] [CrossRef]
- Jang, S.; Lee, J. Friedewald-Estimated versus directly measured LDL-Cholesterol: KNHANES 2009–2010. J. Korea Acad. Ind. Coop. Soc. 2015, 16, 5492–5500. [Google Scholar]
- World Health Organization Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies, Geneva, Switzerland. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Aung, W.P.; Htet, A.S.; Bjertness, E.; Stigum, H.; Chongsuvivatwong, V.; Kjøllesdal, M.K.R. Urban–rural differences in the prevalence of diabetes mellitus among 25–74 year-old adults of the Yangon Region, Myanmar: Two cross-sectional studies. BMJ Open 2018, 8, e020406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019; Available online: http://www.diabetesatlas.org/ (accessed on 20 October 2019).
- Shim, K.H.; Hwang, M.S.; Park, J.E.; Jung, J.H.; Lee, J.H.; Song, B.R. Goal attainment rate for parameters of metabolic adjustment in elderly patients with type 2 diabetes taking a hypoglycemic agent. J. Korean Diabetes 2018, 19, 58–70. [Google Scholar] [CrossRef]
- Lee, D.Y.; Yoo, M.G.; Kim, H.J.; Jang, H.B.; Kim, J.; Lee, H.; Park, S.I. Association between alcohol consumption pattern and the incidence risk of type 2 diabetes in Korean men: A 12-years follow-up study. Sci. Rep. 2017, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Rebholz, C.M.; Daya, N.; Lazo, M.; Selvin, E. Alcohol consumption and incident diabetes: The Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 2019, 62, 770–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korean Diabetes Association. Treatment Guideline for Diabetes, 6th ed.; Seoul Medcus: Seoul, Korean, 2019; Available online: https://www.diabetes.or.kr/newsletter/2019/file/mail_190520_file1.pdf (accessed on 20 October 2019).
- Chen, J.; Guo, H.; Yuan, S.; Qu, C.; Mao, T.; Qiu, S.; Li, W.; Wang, X.; Cai, M.; Sun, H.; et al. Efficacy of urinary glucose for diabetes screening: A reconsideration. Acta Diabetol. 2019, 56, 45–53. [Google Scholar] [CrossRef] [PubMed]
- International Expert Committee. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009, 32, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Selvin, E.; Warren, B.; He, X.; Sacks, D.B.; Saenger, A.K. Establishment of community-based reference intervals for fructosamine, glycated albumin, and 1,5-anhydroglucitol. Clin. Chem. 2018, 64, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.A.C.; Ehlert, L.R.; Camargo, J.L. Glycated albumin: A potential biomarker in diabetes. Arch. Endocrinol. Metab. 2017, 61, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.J.; Park, C.Y. Review of the potential glycemic markers glycated albumin and 1, 5-anhydroglucitol. J. Korean Diabetes 2012, 13, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y. It’s still not too late to make a change: Current status of glycemic control in Korea. J. Diabetes Metab. 2014, 38, 194–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.H.; Lim, S.Y. Convergence study on diabetes self-management knowledge, social support, educational needs of the diabetes in rural elderly. J. Korea Converg. Soc. 2017, 8, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Korean Diabetes Association. Diabetes Fact Sheet in Korea 2018, Seoul, Korea. Available online: http://www.diabetes.or.kr/pro/news/admin.php?category=A&code=admin&number=1546&mode=view (accessed on 17 July 2019).
- Pyo, E.Y.; Jung, M.H.; Kim, Y.S. Factors related to blood glucose control in patients with diabetes. J. Korean Health Educ. Promot. 2012, 29, 15–22. [Google Scholar]
- Krauss, R.M. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 2004, 27, 1496–1504. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.K.; Ko, S.-H.; Kim, B.-Y.; Kang, E.S.; Noh, J.; Kim, S.-K.; Park, S.-O.; Hur, K.Y.; Chon, S.; Moon, M.K.; et al. 2019 Clinical practice guidelines for type 2 diabetes mellitus in Korea. J. Diabetes Metab. 2019, 43, 398–406. [Google Scholar] [CrossRef]
- Du, G.L.; Su, Y.X.; Yao, H.; Zhu, J.; Ma, Q.; Tuerdi, A.; He, X.D.; Wang, L.; Wang, Z.Q.; Xiao, S.; et al. Metabolic risk factors of type 2 diabetes mellitus and correlated glycemic control/complications: A cross-sectional study between rural and urban Uygur residents in Xinjiang Uygur Autonomous Region. PLoS ONE 2016, 11, e0162611. [Google Scholar] [CrossRef] [PubMed]
- Aires, I.; Fila, M.; Polidori, D.; Santos, A.R.; Costa, A.B.; Calado, J. Determination of the renal threshold for glucose excretion in familial renal glucosuria. Nephron 2015, 129, 300–304. [Google Scholar] [CrossRef]
- Ciccone, M.M.; Aquilino, A.; Cortese, F.; Scicchitano, P.; Sassara, M.; Mola, E.; Rollo, R.; Caldarola, P.; Giorgino, F.; Pomo, V.; et al. Feasibility and effectiveness of a disease and care management model in the primary health care system for patients with heart failure and diabetes (Project Leonardo). Vasc. Health Risk Manag. 2010, 6, 297–305. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Categories | All (n %) | HbA1c < 7% (n, %) | HbA1c ≥ 7% (n, %) | x2-Value | p-Value |
---|---|---|---|---|---|---|
Total † | 522 (100.0) | 271 (51.9) | 251 (48.1) | |||
Sociodemographic factors | ||||||
Gender | Men | 220 (42.1) | 124 (56.4) | 96 (43.6) | 3.014 | 0.083 |
Women | 302 (57.9) | 147 (48.7) | 155 (51.3) | |||
Age (year) | Mean (SD) | 60.17 ± 7.84 | ||||
40–64 | 359 (68.8) | 182 (50.7) | 177 (49.3) | 0.685 | 0.408 | |
≥65 | 163 (31.2) | 89 (54.6) | 74 (45.4) | |||
Spouse | Yes | 94 (18.0) | 53 (56.4) | 41 (43.6) | 0.877 | 0.349 |
No | 427 (82.0) | 218 (51.1) | 209 (48.9) | |||
Education | ≤Primary school | 264 (50.6) | 137 (51.9) | 127 (48.1) | 1.225 | 0.542 |
≤Middle school | 109 (20.9) | 61 (56.0) | 48 (44.0) | |||
≥High school | 149 (28.5) | 73 (49.0) | 76 (51.0) | |||
Monthly household income (10,000 Korean won) | <100 | 258 (54.7) | 140 (54.3) | 118 (45.7) | 2.238 | 0.327 |
100–199 | 111 (23.5) | 51 (45.9) | 60 (54.1) | |||
≥200 | 103 (21.8) | 55 (53.4) | 48 (46.6) | |||
Current job | No | 228 (44.0) | 117 (51.3) | 111 (48.7) | 0.062 | 0.804 |
Yes | 290 (56.0) | 152 (52.4) | 138 (47.6) | |||
Health behavior and comorbidity factors | ||||||
Current drinking | No | 343 (66.3) | 161 (46.9) | 182 (53.1) | 9.035 | 0.003 |
Yes | 174 (33.7) | 106 (60.9) | 68 (39.1) | |||
Duration | 1–5 (years) | 14 (6.5) | 6 (42.9) | 8 (57.1) | 7.332 | 0.197 |
6–10 (years) | 21 (9.7) | 13 (61.9) | 8 (38.1) | |||
11–20 (years) | 30 (13.9) | 15 (50.0) | 15 (50.0) | |||
21–30 (years) | 44 (20.4) | 21 (47.7) | 23 (52.3) | |||
31–40 (years) | 62 (28.7) | 37 (59.7) | 25 (40.3) | |||
>40 (years) | 45 (20.8) | 32 (71.1) | 13 (28.9) | |||
Current smoking | No | 465 (89.1) | 244 (52.5) | 221 (47.5) | 0.530 | 0.467 |
Yes | 57 (10.9) | 27 (47.4) | 30 (52.6) | |||
Regular physical activity | Yes | 244 (46.8) | 144 (59.0) | 100 (41.0) | 9.510 | 0.002 |
No | 277 (53.2) | 126 (45.5) | 151 (54.5) | |||
Hypertension | No | 279 (53.4) | 142 (50.9) | 137 (49.1) | 0.250 | 0.617 |
Yes | 243 (46.6) | 129 (53.1) | 114 (46.9) | |||
Hyperlipidemia | No | 433 (83) | 224 (51.7) | 209 (48.3) | 0.034 | 0.853 |
Yes | 89 (17) | 47 (52.8) | 42 (47.2) | |||
Stroke | No | 499 (95.6) | 262 (52.5) | 237 (47.5) | 1.575 | 0.209 |
Yes | 23 (4.4) | 9 (39.1) | 14 (60.9) | |||
Diabetes-related factors | ||||||
HbA1c | Mean (SD) | 7.13 ± 1.31 | ||||
Diabetes duration | Mean (SD) | 7.02 ± 7.24 | ||||
≤7 | 317 (61.9) | 188 (59.3) | 129 (40.7) | 16.174 | <0.001 | |
>7 | 195 (38.1) | 80 (41.0) | 115 (59.0) | |||
Diabetes Tx. OHA or Insulin | Yes | 131 (25.9) | 68 (51.9) | 63 (48.1) | 0.013 | 0.91 |
No | 374 (74.1) | 192 (51.3) | 182 (48.7) | |||
Diabetes Tx. Diet or Exercise | Yes | 10 (2.5) | 5 (50.0) | 5 (50.0) | 0.019 | 0.891 |
No | 389 (97.5) | 203 (52.2) | 186 (47.8) | |||
Fasting blood glucose (mg/dL) | Mean (SD) | 127.22 ± 38.15 | ||||
70–130 | 346 (66.4) | 238 (68.8) | 108 (31.2) | 118.715 | <0.001 | |
>130 | 175 (33.6) | 32 (18.3) | 143 (81.7) | |||
Clinical-related factors | ||||||
BP (mmHg) | Mean (SD) | 126.69 ± 17.72/75.85 ± 10.51 | ||||
<140 or 85 | 365 (70.2) | 193 (52.9) | 172 (47.1) | 0.446 | 0.504 | |
≥140 or 85 | 155 (29.8) | 77 (49.7) | 78 (50.3) | |||
BMI (kg/m2) | Mean (SD) | 25.21 ± 3.17 | ||||
<25 | 251 (48.1) | 133 (53.0) | 118 (47.0) | 0.223 | 0.637 | |
≥25 | 271 (57.9) | 138 (50.9) | 133 (49.1) | |||
Cholesterol (mg/dL) | Mean (SD) | 192.65 ± 37.45 | ||||
<200 | 322 (61.8) | 185 (57.5) | 137 (42.5) | 10.703 | 0.001 | |
≥200 | 199 (38.2) | 85 (42.7) | 114 (57.3) | |||
Triglycemia (mg/dL) | Mean (SD) | 170.43 ± 14.90 | ||||
<150 | 291 (55.9) | 160 (55.0) | 131 (45.0) | 2.635 | 0.105 | |
≥150 | 230 (44.1) | 110 (47.8) | 120 (52.2) | |||
HDL-C, male (mg/dL) | Mean (SD) | 39.84 ± 9.31 | ||||
≥40 | 82 (37.4) | 47 (57.3) | 35 (42.7) | 0.071 | 0.790 | |
<40 | 137 (62.6) | 76 (55.5) | 61 (44.5) | |||
HDL-C, female (mg/dL) | Mean (SD) | 40.81 ± 8.86 | ||||
≥50 | 45 (14.9) | 18 (40.0) | 27 (60.0) | 1.593 | 0.207 | |
<50 | 257 (85.1) | 129 (50.2) | 128 (49.8) | |||
LDL-C (mg/dL) | Mean (SD) | 118.73 ± 34.08 | ||||
<100 | 147 (28.2) | 80 (54.4) | 67 (45.6) | 0.554 | 0.457 | |
≥100 | 374 (78.1) | 190 (50.8) | 184 (49.2) | |||
Urine protein | Negative | 478 (92.3) | 254 (53.1) | 224 (46.9) | 3.616 | 0.057 |
Positive | 40 (7.7) | 15 (37.5) | 25 (62.5) | |||
Urine glucose | Negative | 473 (91.3) | 265 (56.0) | 208 (44.0) | 36.573 | <0.001 |
Positive | 45 (8.7) | 4 (8.9) | 41 (91.1) |
Variable | Categories | Poor Glycemic Control n (%) | OR (95% CI) | p-Value |
---|---|---|---|---|
Current drinking | No | 182 (53.1) | 1.00 | |
Yes | 68 (39.1) | 0.42 (0.24–0.71) | <0.001 | |
Regular physical activity | Yes | 100 (39.8) | 1.00 | |
No | 150 (60.2) | 1.68 (1.03–2.76) | 0.040 | |
Fasting glucose (mg/dL) | 70–130 | 108 (43.0) | 1.00 | |
>130 | 143 (57.0) | 7.80 (4.35–13.98) | <0.001 | |
Diabetes duration (years) | ≤7 | 129 (40.7) | 1.00 | |
>7 | 115 (59.0) | 1.79 (1.08–2.98) | 0.024 | |
Cholesterol (mg/dL) | <200 | 137 (54.6) | 1.00 | |
≥200 | 114 (45.4) | 1.73 (1.05–2.84) | 0.031 | |
Urine glucose | Negative | 208 (83.5) | 1.00 | |
Positive | 41 (16.5) | 6.24 (1.32–29.44) | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.; Yang, Y. Factors Associated with Poor Glycemic Control Amongst Rural Residents with Diabetes in Korea. Healthcare 2021, 9, 391. https://doi.org/10.3390/healthcare9040391
Ahn J, Yang Y. Factors Associated with Poor Glycemic Control Amongst Rural Residents with Diabetes in Korea. Healthcare. 2021; 9(4):391. https://doi.org/10.3390/healthcare9040391
Chicago/Turabian StyleAhn, Junhee, and Youngran Yang. 2021. "Factors Associated with Poor Glycemic Control Amongst Rural Residents with Diabetes in Korea" Healthcare 9, no. 4: 391. https://doi.org/10.3390/healthcare9040391
APA StyleAhn, J., & Yang, Y. (2021). Factors Associated with Poor Glycemic Control Amongst Rural Residents with Diabetes in Korea. Healthcare, 9(4), 391. https://doi.org/10.3390/healthcare9040391