Aquatic Exercise Positively Affects Physiological Frailty among Postmenopausal Women: A Randomized Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Aquatic Exercise Program
2.3. Body Composition
2.4. Blood Pressure
2.5. Biochemistry Analysis
2.6. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Body Composition
ANCOVA Analysis of SMM
3.3. Cardiovascular Risk Factors
3.4. Insulin Resistance
3.5. Aging-Related Sex Hormones
3.6. Difference (Δ) in All Valuables after Aquatic Exercise Intervention
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Ha, M.-S.; Kim, J.-H.; Kim, Y.-S.; Kim, D.-Y. Effects of aquarobic exercise and burdock intake on serum blood lipids and vascular elasticity in Korean elderly women. Exp. Gerontol. 2018, 101, 63–68. [Google Scholar] [CrossRef]
- De Stefano, F.; Zambon, S.; Giacometti, L.; Sergi, G.; Corti, M.C.; Manzato, E.; Busetto, L. Obesity, muscular strength, muscle composition and physical performance in an elderly population. J. Nutr. Health Aging 2015, 19, 785–791. [Google Scholar] [CrossRef]
- Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 2018, 105, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; MacDonald, H.V.; Lamberti, L.; Johnson, B.T. Exercise for Hypertension: A Prescription Update Integrating Existing Recommendations with Emerging Research. Curr. Hypertens. Rep. 2015, 17, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, J.C.; Tsiligiannis, S.; Panay, N. Cardiovascular Risk in Perimenopausal Women. Curr. Vasc. Pharmacol. 2018, 17, 591–594. [Google Scholar] [CrossRef]
- Jankowski, C.M.; Wolfe, P.; Schmiege, S.J.; Nair, K.S.; Khosla, S.; Jensen, M.; von Muhlen, D.; Laughlin, G.A.; Kritz-Silverstein, D.; Bergstrom, J.; et al. Sex-specific effects of dehydroepiandrosterone (DHEA) on bone mineral density and body composition: A pooled analysis of four clinical trials. Clin. Endocrinol. 2019, 90, 293–300. [Google Scholar] [CrossRef]
- Maggio, M.; Lauretani, F.; Vita, F.; Basaria, S.; Lippi, G.; Butto, V.; Luci, M.; Cattabiani, C.; Ceresini, G.; Verzicco, I.; et al. Multiple Hormonal Dysregulation as Determinant of Low Physical Performance and Mobility in Older Persons. Curr. Pharm. Des. 2014, 20, 3119–3148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 2017, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R.; Wahlin-Jacobsen, S. Testosterone in women-the clinical significance. Lancet Diabetes Endocrinol. 2015, 3, 980–992. [Google Scholar] [CrossRef]
- Spoletini, I.; Caprio, M.; Vitale, C.; Rosano, G.M.C. Androgens and cardiovascular disease: Gender-related differences. Menopause Int. 2013, 19, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, G.A.; Goodell, V.; Barrett-Connor, E. Extremes of endogenous testosterone are associated with increased risk of incident coronary events in older women. J. Clin. Endocrinol. Metab. 2010, 95, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J.L.; Boudreau, R.M.; Cappola, A.R.; Arnold, A.M.; Robbins, J.; Cushman, M.; Newman, A.B. Cardiovascular disease is associated with greater incident dehydroepiandrosterone sulfate decline in the oldest old: The cardiovascular health study all stars study. J. Am. Geriatr. Soc. 2010, 58, 421–426. [Google Scholar] [CrossRef]
- Shufelt, C.; Bretsky, P.; Almeida, C.M.; Johnson, B.D.; Shaw, L.J.; Azziz, R.; Braunstein, G.D.; Pepine, C.J.; Bittner, V.; Vido, D.A.; et al. DHEA-S levels and cardiovascular disease mortality in postmenopausal women: Results from the National Institutes of Health—National Heart, Lung, and Blood Institute (NHLBI)-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). J. Clin. Endocrinol. Metab. 2010, 95, 4985–4992. [Google Scholar] [CrossRef] [PubMed]
- Stefanska, A.; Sypniewska, G.; Ponikowska, I.; Cwiklinska-Jurkowska, M. Association of follicle-stimulating hormone and sex hormone binding globulin with the metabolic syndrome in postmenopausal women. Clin. Biochem. 2012, 45, 703–706. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis. J. Am. Med. Assoc. 2006, 295, 1288–1299. [Google Scholar] [CrossRef]
- Le, T.N.; Nestler, J.E.; Strauss, J.F.; Wickham, E.P. Sex hormone-binding globulin and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2012, 23, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Wallace, I.R.; McKinley, M.C.; Bell, P.M.; Hunter, S.J. Sex hormone binding globulin and insulin resistance. Clin. Endocrinol. (Oxf.) 2013, 78, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.R.; Robinson, P.J.; Moufarege, A.; Bell, R.J. The contribution of SHBG to the variation in HOMA-IR is not dependent on endogenous oestrogen or androgen levels in postmenopausal women. Clin. Endocrinol. 2012, 77, 541–547. [Google Scholar] [CrossRef]
- Jaspers, L.; Dhana, K.; Muka, T.; Meun, C.; De Jong, J.C.K.; Hofman, A.; Laven, J.S.E.; Franco, O.H.; Kavousi, M. Sex steroids, sex hormone-binding globulin and cardiovascular health in men and postmenopausal women: The Rotterdam study. J. Clin. Endocrinol. Metab. 2016, 101, 2844–2852. [Google Scholar] [CrossRef] [Green Version]
- Woods, J.A.; Wilund, K.R.; Martin, S.A.; Kistler, B.M. Exercise, inflammation and aging. Aging Dis. 2012, 3, 130–140. [Google Scholar] [PubMed]
- Nelson, M.E.; Rejeski, W.J.; Blair, S.N.; Duncan, P.W.; Judge, J.O.; King, A.C.; Macera, C.A.; Castaneda-Sceppa, C. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1094–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, M.-S.; Kim, J.-H.; Ha, S.; Kim, Y.-S.; Kim, D. Positive influence of aqua exercise and burdock extract intake on fitness factors and vascular regulation substances in elderly. J. Clin. Biochem. Nutr. 2019, 64, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhagen, A.P.; Cardoso, J.R.; Bierma-Zeinstra, S.M.A. Aquatic exercise & balneotherapy in musculoskeletal conditions. Best Pract. Res. Clin. Rheumatol. 2012, 26, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.S.; Yook, J.S.; Lee, M.; Suwabe, K.; Jeong, W.M.; Kwak, J.-J.; Soya, H. Exercise training and burdock root (Arctium lappa L.) extract independently improve abdominal obesity and sex hormones in elderly women with metabolic syndrome. Sci. Rep. 2021, 11, 5175. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jung, Y.-S.; Kim, J.-W.; Ha, M.-S.; Ha, S.-M.; Kim, D.-Y. Effects of aquatic and land-based exercises on amyloid beta, heat shock protein 27, and pulse wave velocity in elderly women. Exp. Gerontol. 2018, 108, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group randomised trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Taylor & Francis Inc.: New York, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- James, G. ACSM’s Guidelines For Exercise Testing And Prescription, 10th ed; ACSM: Indianapolis, IN, USA, 2017; ISBN 17543444. [Google Scholar]
- Heyward, V.H.; Wagner, D.R. Applied Body Composition Assessment; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Csapo, R.; Alegre, L.M. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand. J. Med. Sci. Sports 2016, 26, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014, 2, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Waters, D.L.; Baumgartner, R.N. Sarcopenia and Obesity. Clin. Geriatr. Med. 2011, 27, 401–421. [Google Scholar] [CrossRef]
- Meredith-Jones, K.; Waters, D.; Legge, M.; Jones, L. Upright water-based exercise to improve cardiovascular and metabolic health: A qualitative review. Complement. Ther. Med. 2011, 19, 93–103. [Google Scholar] [CrossRef]
- Kim, I.S.; Chung, S.H.; Park, Y.J.; Kang, H.Y. The effectiveness of an aquarobic exercise program for patients with osteoarthritis. Appl. Nurs. Res. 2012, 25, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Seals, D.R.; Hagberg, J.M.; Spina, R.J.; Rogers, M.A.; Schechtman, K.B.; Ehsani, A.A. Enhanced left ventricular performance in endurance trained older men. Circulation 1994, 89, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Becker, D.; Clark, L.T.; Cooper, R.S.; Denke, M.A.; Howard, J.; Hunninghake, D.B.; Illingworth, D.R.; Luepker, R.V.; McBride, P.; et al. Detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). Circulation 2002, 106, 3143–3421. [Google Scholar]
- Hwang, A.C.; Liu, L.K.; Lee, W.J.; Chen, L.Y.; Peng, L.N.; Lin, M.H.; Chen, L.K. Association of frailty and cardiometabolic risk among community-dwelling middle-aged and older people: Results from the I-Lan longitudinal aging study. Rejuvenation Res. 2015, 18, 564–572. [Google Scholar] [CrossRef]
- Giordano, S.; Hage, F.G.; Xing, D.; Chen, Y.F.; Allon, S.; Chen, C.; Oparil, S. Estrogen and cardiovascular disease: Is timing everything? Am. J. Med. Sci. 2015, 350, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Cunha, R.M.; Arsa, G.; Neves, E.B.; Lopes, L.C.; Santana, F.; Noleto, M.V.; Rolim, T.I.; Lehnen, A.M. Water aerobics is followed by short-time and immediate systolic blood pressure reduction in overweight and obese hypertensive women. J. Am. Soc. Hypertens. 2016, 10, 570–577. [Google Scholar] [CrossRef]
- Arca, E.A.; Martinelli, B.; Martin, L.C.; Waisberg, C.B.; da Silva Franco, R.J. Aquatic exercise is as effective as dry land training to blood pressure reduction in postmenopausal hypertensive women. Physiother. Res. Int. 2014, 19, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Hesselink, M.K.C.; Schrauwen-Hinderling, V.; Schrauwen, P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2016, 12, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Sylow, L.; Kleinert, M.; Richter, E.A.; Jensen, T.E. Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 2017, 13, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.-S.; Son, W.-M. Combined exercise is a modality for improving insulin resistance and aging-related hormone biomarkers in elderly Korean women. Exp. Gerontol. 2018, 114, 13–18. [Google Scholar] [CrossRef]
- Chavanelle, V.; Boisseau, N.; Otero, Y.F.; Combaret, L.; Dardevet, D.; Montaurier, C.; Delcros, G.; Peltier, S.L.; Sirvent, P. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Sci. Rep. 2017, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Brooks, N.; Layne, J.E.; Gordon, P.L.; Roubenoff, R.; Nelson, M.E.; Castaneda-Sceppa, C. Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int. J. Med. Sci. 2007, 4, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Boxer, R.S.; Kleppinger, A.; Brindisi, J.; Feinn, R.; Burleson, J.A.; Kenny, A.M. Effects of dehydroepiandrosterone (DHEA) on cardiovascular risk factors in older women with frailty characteristics. Age Ageing 2010, 39, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Chahal, H.S.; Drake, W.M. The endocrine system and ageing. J. Pathol. 2007, 211, 173–180. [Google Scholar] [CrossRef]
- Ohlsson, C.; Vandenput, L. Tivesten DHEA and mortality: What is the nature of the association? J. Steroid Biochem. Mol. Biol. 2015, 145, 248–253. [Google Scholar] [CrossRef]
- Rutkowski, K.; Sowa, P.; Rutkowska-Talipska, J.; Kuryliszyn-Moskal, A.; Rutkowski, R. Dehydroepiandrosterone (DHEA): Hypes and hopes. Drugs 2014, 74, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Tivesten, Å.; Vandenput, L.; Carlzon, D.; Nilsson, M.; Karlsson, M.K.; Ljunggren, Ö.; Barrett-Connor, E.; Mellström, D.; Ohlsson, C. Dehydroepiandrosterone and its sulfate predict the 5-year risk of coronary heart disease events in elderly men. J. Am. Coll. Cardiol. 2014, 64, 1801–1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Powell, L.H.; Crawford, S.; Lasley, B.; Sutton-Tyrrell, K. Menopause and the metabolic syndrome: The study of women’s health across the nation. Arch. Intern. Med. 2008, 168, 1568–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noyan, V.; Yucel, A.; Sagsoz, N. The association of androgenic sex steroids with serum lipid levels in postmenopausal women. Acta Obstet. Gynecol. Scand. 2004, 83, 487–490. [Google Scholar] [CrossRef]
- Mohammed, M.; AL-Habori, M.; Abdullateef, A.; Saif-Ali, R. Impact of Metabolic Syndrome Factors on Testosterone and SHBG in Type 2 Diabetes Mellitus and Metabolic Syndrome. J. Diabetes Res. 2018, 2018, 4926789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Age (y) | Height (cm) | Weight (kg) | BMI (kg/m2) | SMM (kg) | % BF (%) | |
---|---|---|---|---|---|---|---|
Group | |||||||
Exercise(n = 12) | 74.36 ± 3.78 | 154.27 ± 3.93 | 56.54 ± 7.38 | 23.73 ± 2.19 | 21.65 ± 1.64 | 30.41 ± 5.53 | |
Control(n = 10) | 75.90 ± 4.23 | 153.00 ± 4.08 | 58.45 ± 2.44 | 24.99 ± 1.11 | 20.18 ± 1.23 | 34.31 ± 4.45 | |
t | −0.880 | 0.728 | 0.812 | −1.816 | 2.293 * | 1.768 |
Variable | Mean Square | F | R2 | ||
---|---|---|---|---|---|
SMM-pre (kg) | 14.861 | 9.898 ** | 0.669 | ||
SMM-post (kg) | Exercise (n = 12) | 21.85 ± 1.83 | 14.327 | 9.542 ** | |
Control (n = 10) | 19.10 ± 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Ha, M.-S.; Ha, S.-M.; Kim, D.-Y. Aquatic Exercise Positively Affects Physiological Frailty among Postmenopausal Women: A Randomized Controlled Clinical Trial. Healthcare 2021, 9, 409. https://doi.org/10.3390/healthcare9040409
Kim J-H, Ha M-S, Ha S-M, Kim D-Y. Aquatic Exercise Positively Affects Physiological Frailty among Postmenopausal Women: A Randomized Controlled Clinical Trial. Healthcare. 2021; 9(4):409. https://doi.org/10.3390/healthcare9040409
Chicago/Turabian StyleKim, Ji-Hyeon, Min-Seong Ha, Soo-Min Ha, and Do-Yeon Kim. 2021. "Aquatic Exercise Positively Affects Physiological Frailty among Postmenopausal Women: A Randomized Controlled Clinical Trial" Healthcare 9, no. 4: 409. https://doi.org/10.3390/healthcare9040409
APA StyleKim, J.-H., Ha, M.-S., Ha, S.-M., & Kim, D.-Y. (2021). Aquatic Exercise Positively Affects Physiological Frailty among Postmenopausal Women: A Randomized Controlled Clinical Trial. Healthcare, 9(4), 409. https://doi.org/10.3390/healthcare9040409