Low Grip Strength and Muscle Mass Increase the Prevalence of Osteopenia and Osteoporosis in Elderly Women
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Test Procedure
2.3. Bone Mineral Density
2.4. Sarcopenia
2.5. Grip Strength Test
2.6. Muscle Mass Measurement
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorentzon, M.; Cummings, S.R. Osteoporosis: the evolution of a diagnosis. J. Intern. Med. 2015, 277, 650–661. [Google Scholar] [CrossRef]
- Akkawi, I.; Zmerly, H. Osteoporosis: current concepts. Joints 2018, 6, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Wade, S.; Strader, C.; Fitzpatrick, L.; Anthony, M.; O’Malley, C. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch. Osteoporos. 2014, 9, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, R.; Büsselberg, D. Osteoporosis: An under-recognized public health problem: Local and global risk factors and its regional and worldwide prevalence. J. Local Glob. Health Sci. 2016, 2016, 2–14. [Google Scholar] [CrossRef]
- Klein-Nulend, J.; van Oers, R.F.; Bakker, A.D.; Bacabac, R.G. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J. Biomech. 2015, 48, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Clynes, M.A.; Harvey, N.C.; Curtis, E.M.; Fuggle, N.R.; Dennison, E.M.; Cooper, C. The epidemiology of osteoporosis. Br. Med. Bull. 2020, 133, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Z.; Zhuang, H.F.; Cai, S.Q.; Lin, C.K.; Wang, P.W.; Yan, L.S.; Lin, J.K.; Yu, H.M. Low grip strength is a strong risk factor of osteoporosis in postmenopausal women. Orthop. Surg. 2018, 10, 17–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsatti, F.L.; Nahas, E.A.; Nahas-Neto, J.; Orsatti, C.L.; Marocolo, M.; Barbosa-Neto, O.; da Mota, G.R. Low appendicular muscle mass is correlated with femoral neck bone mineral density loss in postmenopausal women. BMC Musculoskelet. Disord. 2011, 12, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Liu, Y.; Tian, Q.; Papasian, C.; Hu, T.; Deng, H.-W. Relationship of sarcopenia and body composition with osteoporosis. Osteoporos. Int. 2016, 27, 473–482. [Google Scholar] [CrossRef]
- Shin, C.S.; Choi, H.J.; Kim, M.J.; Kim, J.T.; Yu, S.H.; Koo, B.K.; Cho, H.Y.; Cho, S.W.; Kim, S.W.; Park, Y.J. Prevalence and risk factors of osteoporosis in Korea: A community-based cohort study with lumbar spine and hip bone mineral density. Bone 2010, 47, 378–387. [Google Scholar] [CrossRef]
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.-J.; Ha, Y.-C.; Park, H.-M. Prevalence of sarcopenia in the Korean woman based on the Korean national health and nutritional examination surveys. J. Bone Metab. 2016, 23, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.M.; de Oliveira, R.J.; Raposo, R.; Neri, S.G.R.; Gadelha, A.B. Stages of sarcopenia, bone mineral density, and the prevalence of osteoporosis in older women. Arch. Osteoporos. 2019, 14, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.-Y.; Beaudart, C.; Buckinx, F.; Bruyère, O. Osteoporosis and sarcopenia: two diseases or one? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Moayyeri, A.; Soltani, A.; Tabari, N.K.; Sadatsafavi, M.; Hossein-neghad, A.; Larijani, B. Discordance in diagnosis of osteoporosis using spine and hip bone densitometry. BMC Endocr. Disord. 2005, 5, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACSM. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2017. [Google Scholar]
- Edwards, M.; Dennison, E.; Sayer, A.A.; Fielding, R.; Cooper, C. Osteoporosis and sarcopenia in older age. Bone 2015, 80, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tao, Y.; Hyman, M.; Li, J.; Chen, Y. Osteoporosis in China. Osteoporos. Int. 2009, 20, 1651–1662. [Google Scholar] [CrossRef]
- Cauley, J.A. Public health impact of osteoporosis. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2013, 68, 1243–1251. [Google Scholar] [CrossRef] [Green Version]
- Miyakoshi, N.; Hongo, M.; Mizutani, Y.; Shimada, Y. Prevalence of sarcopenia in Japanese women with osteopenia and osteoporosis. J. Bone Miner. Metab. 2013, 31, 556–561. [Google Scholar] [CrossRef]
- Van Kan, G.A. Epidemiology and consequences of sarcopenia. JNHA J. Nutr. Health Aging 2009, 13, 708–712. [Google Scholar] [CrossRef]
- Limpawattana, P.; Kotruchin, P.; Pongchaiyakul, C. Sarcopenia in Asia. Osteoporos. Sarcopenia 2015, 1, 92–97. [Google Scholar] [CrossRef] [Green Version]
- WHO, G. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ. Tech Rep. Ser. 1994, 843, 1–129. [Google Scholar]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J. Gerontol. Series A Biomed. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Won, C.W. Prevalence of sarcopenia in community-dwelling older adults using the definition of the European Working Group on Sarcopenia in Older People 2: findings from the Korean Frailty and Aging Cohort Study. Age Ageing 2019, 48, 910–916. [Google Scholar] [CrossRef]
- Beaudart, C.; Reginster, J.-Y.; Slomian, J.; Buckinx, F.; Dardenne, N.; Quabron, A.; Slangen, C.; Gillain, S.; Petermans, J.; Bruyere, O. Estimation of sarcopenia prevalence using various assessment tools. Exp. Gerontol. 2015, 61, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, H.; Jee, H. Effects of socioeconomic status, health behavior, and physical activity on the prevalence of metabolic syndrome. J. Exerc. Rehabil. 2018, 14, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Miller, G.E. Socioeconomic status and health: mediating and moderating factors. Annu. Rev. Clin. Psychol. 2013, 9, 723–749. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, B.R.; Andersen, H.; Haddock, B.; Hovind, P.; Schwarz, P.; Suetta, C. Prevalence of muscle dysfunction concomitant with osteoporosis in a home-dwelling Danish population aged 65–93 years-The Copenhagen Sarcopenia Study. Exp. Gerontol. 2020, 138, 110974–110981. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, K.; He, M. Association between grip strength and bone mineral density in general US population of NHANES 2013–2014. Arch. Osteoporos. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Dixon, W.; Lunt, M.; Pye, S.; Reeve, J.; Felsenberg, D.; Silman, A.; O’neill, T. Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology 2005, 44, 642–646. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, Y.; Makizako, H.; Kiyama, R.; Tomioka, K.; Nakai, Y.; Kubozono, T.; Takenaka, T.; Ohishi, M. The association between osteoporosis and grip strength and skeletal muscle mass in community-dwelling older women. Int. J. Environ. Res. Public Health 2019, 16, 1228–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, M. Prevalence and associated risk factors of osteoporosis in post-menopausal women in North India. Mal. J. Nutr. 2013, 19, 285–292. [Google Scholar]
- Hauger, A.V.; Bergland, A.; Holvik, K.; Ståhle, A.; Emaus, N.; Strand, B.H. Osteoporosis and osteopenia in the distal forearm predict all-cause mortality independent of grip strength: 22-year follow-up in the population-based Tromsø Study. Osteoporos. Int. 2018, 29, 2447–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingsworth, J.W.; Hashizume, A.; Jablon, S. Correlations between tests of aging in Hiroshima subjects—An attempt to define” physiologic age”. Yale J. Biol. Med. 1965, 38, 11–26. [Google Scholar] [PubMed]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. 1984, 9, 222–226. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, K.; Choi, Y.C. Relative Grip Strength Cut-Point and Metabolic Syndrome in the Elderly: Korea National Health and Nutrition Examination Survey 2014–2017. J. Men’s Health 2019, 15, 47–57. [Google Scholar]
- Kim, H.; Kim, Y.H.; Kim, W. Association of Low Muscle Mass and Isokinetic Strength with Metabolic Syndrome. J. Men’s Health 2020, 16, 50–58. [Google Scholar] [CrossRef]
- Lawman, H.G.; Troiano, R.P.; Perna, F.M.; Wang, C.-Y.; Fryar, C.D.; Ogden, C.L. Associations of relative handgrip strength and cardiovascular disease biomarkers in US adults, 2011–2012. Am. J. Prev. Med. 2016, 50, 677–683. [Google Scholar] [CrossRef]
- Bredella, M.A.; Ghomi, R.H.; Thomas, B.J.; Torriani, M.; Brick, D.J.; Gerweck, A.V.; Misra, M.; Klibanski, A.; Miller, K.K. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity 2010, 18, 2227–2233. [Google Scholar] [CrossRef] [Green Version]
- Bosaeus, I.; Wilcox, G.; Rothenberg, E.; Strauss, B.J. Skeletal muscle mass in hospitalized elderly patients: Comparison of measurements by single-frequency BIA and DXA. Clin. Nutr. 2014, 33, 426–431. [Google Scholar] [CrossRef]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and agreement of various InBody body composition analyzers as compared to dual-energy X-ray absorptiometry in healthy men and women. J. Clin. Densitom. 2018, 23, 443–450. [Google Scholar] [CrossRef]
- Antonio, J.; Kenyon, M.; Ellerbroek, A.; Carson, C.; Burgess, V.; Tyler-Palmer, D.; Mike, J.; Roberts, J.; Angeli, G.; Peacock, C. Comparison of Dual-Energy X-Ray Absorptiometry (DXA) versus a Multi-frequency Bioelectrical Impedance (InBody 770) Device for Body Composition Assessment after a 4-Week Hypoenergetic Diet. J. Funct. Morphol. Kinesiol. 2019, 4, 23–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyzos, S.A.; Margioris, A.N. Sarcopenic obesity. Hormones 2018, 17, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Barr, S.I.; McKay, H.A. Nutrition, exercise, and bone status in youth. Int. J. Sport Nutr. Exerc. Metab. 1998, 8, 124142. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Lee, Y.-K.; So, W.-Y. Relationship of Physical Activity Type, Nutrition, and Bone Mineral Density in Korean Adolescents. J. Men’s Health 2017, 13, 8–15. [Google Scholar]
- Filip, R.S.; Zagórski, J. Bone mineral density and osteoporosis in rural and urban women. Epidemiological study of the Lublin region (Eastern Poland). Annals Agric. Environ. Med. 2001, 8, 221–226. [Google Scholar]
Variables | Normal BMD | Osteopenia | Osteoporosis | p |
---|---|---|---|---|
n (%) | 231 (31.5%) | 351 (47.8%) | 152 (20.7%) | |
Age, years | 64.3 ± 4.0 | 65.3 ± 4.7 a | 67.2 ± 4.1 b,c | <0.001 * |
Height, cm | 158.2 ± 5.0 | 156.1 ± 3.9 a | 156.3 ± 4.6 b | <0.001 * |
Weight, kg | 61.8 ± 9.4 | 55.4 ± 5.9 a | 55.8 ± 6.7 b | <0.001 * |
BMI, kg/m2 | 24.7 ± 3.9 | 22.7 ± 2.1 a | 22.8 ± 2.6 b | <0.001 * |
Bone mass, g/cm2 | 1.147 ± 0.132 | 0.934 ± 0.060 a | 0.807 ± 0.047 b,c | <0.001 * |
Bone mineral density, T-score | 0.4 ± 1.1 | −1.8 ± 0.5 a | −2.8 ± 0.4 b,c | <0.001 * |
Grip strength, kg | 23.8 ± 4.6 | 21.3 ± 4.2 a | 19.2 ± 4.2 b,c | <0.001 * |
≥18 kg, n (%) | 199 (86.1%) | 291 (82.9%) | 120 (78.9%) | 0.033 * |
<18 kg, n (%) | 32 (13.9%) | 60 (17.1%) | 32 (21.1%) | |
Muscle mass, ASM/H2 | 6.6 ± 0.7 | 6.2 ± 0.4 a | 5.9 ± 0.5 b,c | <0.001 * |
≥5.7 kg/m2, n (%) | 210 (90.9%) | 274 (78.1%) | 104 (68.4%) | <0.001 * |
<5.7 kg/m2, n (%) | 21 (9.1%) | 77 (21.9%) | 48 (31.6%) | |
Sarcopenia diagnosis | ||||
Non-sarcopenia | 171 (74.0%) | 201 (57.2%) | 71 (46.7%) | <0.001 * |
Pre-sarcopenia | 43 (18.6%) | 122 (34.8%) | 59 (38.8%) | |
Sarcopenia | 17 (7.4%) | 28 (8.0%) | 22 (14.5%) | |
Monthly income, KRW | ||||
>7,000,000 | 44 (19.0%) | 62 (17.7%) | 20 (13.1%) | 0.016 * |
5,000,000 to 7,000,000 | 115 (49.8%) | 152 (43.3%) | 58 (38.2%) | |
<5,000,000 | 72 (31.2%) | 137 (39.0%) | 74 (48.7%) | |
Education level | ||||
To graduate school | 26 (11.2%) | 32 (9.2%) | 11 (7.3%) | 0.107 * |
To college | 84 (36.4%) | 116 (33.0%) | 40 (26.3%) | |
To high school or under | 121 (52.4%) | 203 (57.8%) | 101 (66.4%) |
Variables | Classification | Normal BMD (n = 231) | Osteopenia (n = 351) | Osteoporosis (n = 152) | p |
---|---|---|---|---|---|
Smoking status, (%) | None | 215 (93.0%) | 318 (90.6%) | 137 (90.1%) | 0.072 |
Quit | 8 (3.5%) | 21 (6.0%) | 11 (7.3%) | ||
Present | 8 (3.5%) | 12 (3.4%) | 4 (2.6%) | ||
Alcohol frequency, (%) | None | 135 (58.5%) | 213 (60.7%) | 92 (60.5%) | <0.001 * |
1 day/month | 58 (25.1%) | 79 (22.5%) | 30 (19.7%) | ||
2–4 days/month | 27 (11.7%) | 38 (10.8%) | 14 (9.2%) | ||
2–3 days/week | 7 (3.0%) | 8 (2.3%) | 9 (5.9%) | ||
4–7 days/week | 4 (1.7%) | 13 (3.7%) | 7 (4.6%) | ||
Aerobic exercise frequency, (%) | None | 30 (13.0%) | 60 (17.1%) | 39 (25.7%) | 0.124 |
1–2 days/week | 71 (30.7%) | 110 (31.3%) | 49 (32.2%) | ||
3–4 days/week | 83 (35.9%) | 120 (31.2%) | 42 (27.6%) | ||
5–7 days/week | 47 (20.3%) | 61 (17.4%) | 22 (14.5%) | ||
Strength exercise frequency, (%) | None | 125 (54.1%) | 205 (58.4%) | 98 (64.5%) | 0.021 * |
1–2 days/week | 27 (11.7%) | 77 (21.9%) | 31 (20.4%) | ||
3–4 days/week | 61 (26.4%) | 56 (16.0%) | 19 (12.5%) | ||
5–7 days/week | 18 (7.8%) | 13 (3.7%) | 4 (2.6%) |
Variables | Group | Model 1 | Model 2 | ||
---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | ||
Grip strength | Q1 | 1 | - | 1 | - |
Q2 | 1.008 (0.609–2.164) | 0.144 | 1.024 (0.796–2.433) | 0.124 | |
Q3 | 1.052 (0.855–2.622) | 0.156 | 1.491 (0.990–3.531) | 0.101 | |
Q4 | 1.443 (1.048–5.407) | <0.001 * | 1.593 (1.109–3.393) | <0.001 * | |
Muscle mass | Q1 | 1 | - | 1 | - |
Q2 | 1.018 (0.793–2.096) | 0.251 | 1.176 (0.849–2.926) | 0.150 | |
Q3 | 1.343 (0.936–3.603) | 0.235 | 1.220 (1.061–4.551) | 0.201 | |
Q4 | 1.521 (1.177–4.130) | <0.001 * | 1.810 (1.649–4.031) | <0.001 * | |
Grip strength | ≥18 kg | 1 | - | 1 | - |
<18 kg | 1.115 (1.015–3.125) | 0.027 * | 1.280 (1.114–4.159) | <0.001 * | |
Muscle mass | ≥5.7 kg/m2 | 1 | - | 1 | - |
<5.7 kg/m2 | 1.185 (1.125–4.874) | <0.001 * | 1.810 (2.037–5.767) | 0.021 * | |
Sarcopenia | Nonsarcopenia | 1 | - | 1 | - |
Presarcopenia | 1.710 (1.022–3.874) | 0.030 * | 2.010 (1.015–4.141) | 0.004 * | |
Sarcopenia | 2.011 (1.249–4.057) | <0.001 * | 2.451 (1.112–5.254) | 0.011 * |
Variables | Group | Model 1 | Model 2 | ||
---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | ||
Grip strength | Q1 | 1 | - | 1 | - |
Q2 | 1.011 (0.777–3.631) | 0.254 | 1.869 (1.091–4.402) | 0.421 | |
Q3 | 1.716 (1.199–4.337) | 0.322 | 1.240 (1.372–4.546) | 0.011 * | |
Q4 | 2.265 (1.851–5.742) | <0.001 * | 2.512 (1.569–5.644) | <0.001 * | |
Muscle mass | Q1 | 1 | - | 1 | |
Q2 | 1.024 (0.431–2.436) | 0.557 | 1.740 (1.019–4.172) | 0.043 * | |
Q3 | 1.805 (1.359–5.780) | 0.002 * | 1.278 (1.058–4.820) | 0.026 * | |
Q4 | 2.073 (1.123–6.358) | 0.026 * | 2.875 (1.803–6.854) | <0.001 * | |
Grip strength | ≥18 kg | 1 | - | 1 | - |
<18 kg | 1.259 (1.010–3.505) | 0.008 * | 1.334 (1.007–2.886) | 0.032 * | |
Muscle mass | ≥5.7 kg/m2 | 1 | - | 1 | - |
<5.7 kg/m2 | 2.097 (1.035–5.895) | 0.040 * | 2.268 (1.532–8.357) | <0.001 * | |
Sarcopenia | Non-sarcopenia | 1 | - | 1 | - |
Pre-sarcopenia | 2.600 (1.058–5.045) | 0.012 * | 2.812 (1.155–6.845) | 0.005 * | |
Sarcopenia | 2.508 (1.145–5.845) | <0.001 * | 3.137 (1.799–7.036) | <0.001 * |
Variables | Cut-Off | AUC (95% CI) | Sensitivity | Specificity | p |
---|---|---|---|---|---|
Grip strength | |||||
Osteopenia | 22.6 kg | 0.595 (0.325–0.894) | 90.5 | 32.6 | 0.017 * |
Osteoporosis | 23.1 kg | 0.593 (0.312–0.912) | 85.7 | 40.4 | 0.022 * |
ASM/H2 | |||||
Osteopenia | 6.4 kg/m2 | 0.705 (0.428–0.974) | 81.1 | 53.3 | 0.016 * |
Osteoporosis | 6.5 kg/m2 | 0.587 (0.287–0.891) | 76.2 | 41.1 | 0.022 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Lee, J.Y.; Kim, Y.H. Low Grip Strength and Muscle Mass Increase the Prevalence of Osteopenia and Osteoporosis in Elderly Women. Healthcare 2021, 9, 476. https://doi.org/10.3390/healthcare9040476
Lee K, Lee JY, Kim YH. Low Grip Strength and Muscle Mass Increase the Prevalence of Osteopenia and Osteoporosis in Elderly Women. Healthcare. 2021; 9(4):476. https://doi.org/10.3390/healthcare9040476
Chicago/Turabian StyleLee, Kyujin, Ji Young Lee, and Yong Hwan Kim. 2021. "Low Grip Strength and Muscle Mass Increase the Prevalence of Osteopenia and Osteoporosis in Elderly Women" Healthcare 9, no. 4: 476. https://doi.org/10.3390/healthcare9040476
APA StyleLee, K., Lee, J. Y., & Kim, Y. H. (2021). Low Grip Strength and Muscle Mass Increase the Prevalence of Osteopenia and Osteoporosis in Elderly Women. Healthcare, 9(4), 476. https://doi.org/10.3390/healthcare9040476