Tobacco Use and Risk Factors for Hypertensive Individuals in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection Procedures
2.3. Study Measures
2.3.1. Dependent Variables
2.3.2. Independent Variables
2.4. Statistical Analyses
- Ysystolic = β0 + β1tobaccouse + β2age + β3gender + β4alcohol + β5BMI + β6marital-status + β7waist-hipratio + β8Physcal-Activity + β9Education + β10wealth+ β11region + β12work
- Ydiastolic = β0 + β1tobaccouse + β2age + β3gender + β4alcohol + β5BMI + β6marital-status+ β7waist-hipratio β8Physical-Activity + β9Education + β10wealth+ β11region + β12work
- Yhypertension = ln (π/1 − π) = β0 + β1tobaccouse + β2age + β3gender + β4alcohol + β5BMI + β6marital-status + β7waist-hipratio+ β8Physical-Activity + β9Education + β10wealth+ β11region + β12work
3. Results
3.1. Characteristics of the Study Population
3.2. Prevalence of Risk Factors among Participants
3.3. Prevalence of Risk Factors among Hypertensive Participants
3.4. Linear Regression of Systolic Blood Pressure and Diastolic Blood Pressure on Tobacco Use
3.5. Multiple Logistic Regression Model
3.6. Sensitivity Analysis
4. Discussion
4.1. Hypertensive Awareness
4.2. Hypertension Risk Factors
4.3. Strengths and Limitations
4.4. Further Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- WHO. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; Bulletin of the World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Addo, J.; Smeeth, L.; Leon, D.A. Hypertension in sub-Saharan Africa: A systematic review. Hypertension 2007, 50, 1012–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, M.D.; Ayah, R.; Njau, E.K.; Wanjiru, R.; Kayima, J.K.; Njeru, E.K.; Mutai, K.K. Prevalence of hypertension and associated cardiovascular risk factors in an urban slum in Nairobi, Kenya: A population-based survey. BMC Public Health 2014, 14, 1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Gourlay, S.G. Cardiovascular Toxicity of Nicotine: Implications for Nicotine Replacement Therapy. J. Am. Coll. Cardiol. 1997, 29, 1422–1431. [Google Scholar] [CrossRef] [Green Version]
- Guwatudde, D.; Nankya-Mutyoba, J.; Kalyesubula, R.; Laurence, C.; Adebamowo, C.; Ajayi, I.; Bajunirwe, F.; Njelekela, M.; Chiwanga, F.S.; Reid, T.G.; et al. The burden of hypertension in sub-Saharan Africa: A four-country cross sectional study. BMC Public Health 2015, 15, 1211. [Google Scholar] [CrossRef] [Green Version]
- Mundan, V.; Muiva, M.; Kimani, S. Physiological, Behavioral, and Dietary Characteristics Associated with Hypertension among Kenyan Defence Forces. ISRN Prev. Med. 2013, 2013, 740143. [Google Scholar] [CrossRef] [Green Version]
- Onyango, M.J.; Kombe, I.; Nyamongo, D.S.; Mwangi, M. A study to determine the prevalence and factors associated with hypertension among employees working at a call centre Nairobi Kenya. Pan Afr. Med. J. 2017, 27, 178. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies from 90 Countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef]
- Ng, M.; Freeman, M.K.; Fleming, T.D.; Robinson, M.; Dwyer-Lindgren, L.; Thomson, B.; Wollum, A.; Sanman, E.; Wulf, S.; Lopez, A.D.; et al. Smoking Prevalence and Cigarette Consumption in 187 Countries, 1980–2012. JAMA 2014, 311, 183–192. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2014; WHO: Geneva, Switzerland, 2014; p. 176. ISBN 978-92-4-156485-4. [Google Scholar]
- Brathwaite, R.; Addo, J.; Smeeth, L.; Lock, K. A Systematic Review of Tobacco Smoking Prevalence and Description of Tobacco Control Strategies in Sub-Saharan African Countries; 2007 to 2014. PLoS ONE 2015, 10, e0132401. [Google Scholar] [CrossRef] [Green Version]
- Mancia, G.; Groppelli, A.; Di Rienzo, M.; Castiglioni, P.; Parati, G. Smoking impairs baroreflex sensitivity in humans. Am. J. Physiol. 1997, 273, H1555–H1560. [Google Scholar] [CrossRef] [PubMed]
- Giannattasio, C.; Mangoni, A.A.; Stella, M.L.; Carugo, S.; Grassi, G.; Mancia, G. Acute effects of smoking on radial artery compliance in humans. J. Hypertens. 1994, 12, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Hall, V.; Thomsen, R.W.; Henriksen, O.; Lohse, N. Diabetes in Sub Saharan Africa 1999–2011: Epidemiology and public health implications. A systematic review. BMC Public Health 2011, 11, 564. [Google Scholar] [CrossRef] [Green Version]
- Van De Vijver, S.; Akinyi, H.; Oti, S.; Olajide, A.; Agyemang, C.; Aboderin, I.; Kyobutungi, C. Status report on hypertension in Africa—Consultative review for the 6th Session of the African Union Conference of Ministers of Health on NCD’s. Pan Afr. Med. J. 2013, 16, 38. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2017: Monitoring Health for The SDGs; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ataklte, F.; Erqou, S.; Kaptoge, S.; Taye, B.; Echouffo-Tcheugui, J.B.; Kengne, A.P. Burden of Undiagnosed Hypertension in Sub-Saharan Africa. Hypertension 2015, 65, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Gakidou, E.; Afshin, A.; Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulle, A.M.; Abera, S.F.; Aboyans, V.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1345–1422. [Google Scholar] [CrossRef] [Green Version]
- Aliyu, S.U.; Chiroma, A.S.; Jajere, A.M.; Gujba, F.K. Prevalence of Physical Inactivity, Hypertension, Obesity and Tobacco Smoking: A Case of NCDs Prevention among Adults in Maiduguri, Nigeria. Am. J. Med. Sci. Med. 2015, 3, 39–47. [Google Scholar] [CrossRef]
- Mathenge, W.; Foster, A.; Kuper, H. Urbanization, ethnicity and cardiovascular risk in a population in transition in Nakuru, Kenya: A population-based survey. BMC Public Health 2010, 10, 569. [Google Scholar] [CrossRef] [Green Version]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar]
- U.S. Department of Health and Human Services. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; U.S. Department of Health and Human Services: Washington, DC, USA, 2010.
- Bloom, D.E.; Cafiero, E.T.; Jané-Llopis, E.; Abrahams-Gessel, S.; Bloom, L.R.; Fathima, S.; Feigl, A.B.; Gaziano, T.; Mowafi, M.; Pandya, A.; et al. The Global Economic Burden of Noncommunicable Diseases; World Economic Forum: Geneva, Switzerland, 2014; pp. 1–46. [Google Scholar]
- WHO. WHO Report on the Global Tobacco Epidemic, 2008—The MPOWER Package; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- WHO; World Heart Federation; World Stroke Organization. Global Atlas on Cardiovascular Disease Prevention and Control. 2011. Available online: whqlibdoc.who.int/publications/2011/9789241564373_eng.pdf (accessed on 12 January 2021).
- Bowman, T.S.; Gaziano, J.M.; Buring, J.E.; Sesso, H.D. A Prospective Study of Cigarette Smoking and Risk of Incident Hypertension in Women. J. Am. Coll. Cardiol. 2007, 50, 2085–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadar, S.; Lip, G.Y.H. Hypertension, 2nd ed.; Oxford University Press: New York, NY, USA, 2015. [Google Scholar]
- Maina, W.K.; Nato, J.N.; Okoth, M.A.; Kiptui, D.J.; Ogwell, A.O. Prevalence of Tobacco Use and Associated Behaviours and Exposures among the Youth in Kenya: Report of the Global Youth Tobacco Survey in 2007. Public Health Res. 2013, 3, 43–49. [Google Scholar] [CrossRef]
- Ministry of Health; Kenyan National Bureau of Statistics; World Health Organization. Kenya STEPwise Survey for Non Communicable Diseases Risk Factors 2015 Report. 2015. Available online: http://aphrc.org/wp-content/uploads/2016/04/Steps-Report-NCD-2015.pdf (accessed on 12 January 2021).
- Kenya National Bureau of Statistics. Kenya Demographic and Health Survey, 2014; Kenya National Bureau of Statistics: Nairobi, Kenya, 2014; Volume 13.
- Ministry of of Health. Kenya National Strategy for the Prevention and Control of Non-Communicable Diseases; Ministry of of Health: Nairobi, Kenya, 2015.
- World Health Organization. The WHO STEPwise Approach to Noncommunicable Disease Risk Factor Surveillance (STEPS); WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Roberts, J.M.; Druzin, M.; August, P.A.; Gaiser, R.R.; Bakris, G.; Granger, J.P.; Jeyabalan, A.; Johnson, D.D.; Karumanchi, S.A.; Lindheimer, M.; et al. Hypertension in pregnancy: Executive summary. Obstet. Gynecol. 2012, 122, 1122–1131. [Google Scholar] [CrossRef]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.W.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for Blood Pressure Measurement in Humans: An AHA Scientific Statement from the Council on High Blood Pressure Research Professional and Public Education Subcommittee. J. Clin. Hypertens. 2005, 7, 102–109. [Google Scholar] [CrossRef]
- Verdecchia, P.; Angeli, F. How can we use the results of ambulatory blood pressure monitoring in clinical practice? Hypertension 2005, 46, 25–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.J.; Chu, C.T. Bayesian clinical trials in action. Stat. Med. 2012, 31, 2955–2972. [Google Scholar] [CrossRef]
- Lemeshow, S.; Moeschberger, M.L. Review of regression methods in biostatistics: Linear, logistic, survival, and repeated measures models by Vittinghoff, Glidden, Shiboski, and McCulloch. Stata J. 2005, 5, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Sedgwick, P. Cross sectional studies: Advantages and disadvantages. BMJ 2014, 348, g2276. [Google Scholar] [CrossRef] [Green Version]
- Awino, B.O.; Ogonda, L.A.; Barno, G.C.; Magak, N.G. Awareness Status and Associated Risk Factors for Hypertension among Adult Patients Attending Yala Sub-County Hospital, Siaya County, Kenya. Public Health Res. 2016, 6, 99–105. [Google Scholar] [CrossRef]
- Salehmohamed, J. Risk factors for hypertension among urban males in Mombasa Kenya. Dar Es Salaam Med. Stud. J. 2010, 15, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, T.S.; Younger-Coleman, N.O.; Tulloch-Reid, M.K.; Bennett, N.R.; Rousseau, A.E.; Knight-Madden, J.M.; Samms-Vaughan, M.E.; Ashley, D.E.; Wilks, R.J. Factors associated with elevated blood pressure or hypertension in Afro-Caribbean youth: A cross-sectional study. PeerJ 2018, 6, 4385. [Google Scholar] [CrossRef] [Green Version]
- Muchira, J.; Stuart-Shor, E.; Kariuki, J.; Mukuna, A.; Ndigirigi, I.; Gakage, L.; Mutuma, V.; Karani, A. Distribution and characteristics of risk factors for cardiovascular–metabolic disease in a rural Kenyan community. Int. J. Afr. Nurs. Sci. 2015, 3, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Nahimana, M.-R.; Nyandwi, A.; Muhimpundu, M.A.; Olu, O.; Condo, J.U.; Rusanganwa, A.; Koama, J.B.; Ngoc, C.T.; Gasherebuka, J.B.; Ota, M.O.; et al. A population-based national estimate of the prevalence and risk factors associated with hypertension in Rwanda: Implications for prevention and control. BMC Public Health 2017, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Maseko, M.J.; Norton, G.R.; Majane, O.H.; Molebatsi, N.; Woodiwiss, A.J. Global cardiovascular risk profiles of untreated hypertensives in an urban, developing community in Africa. Cardiovasc. J. Afr. 2011, 22, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Malta, D.C.; Stopa, S.R.; Andrade, S.S.C.D.A.; Szwarcwald, C.L.; Júnior, J.B.S.; Dos Reis, A.A.C. Cuidado em saúde em adultos com hipertensão arterial autorreferida no Brasil segundo dados da Pesquisa Nacional de Saúde, 2013. Rev. Bras. Epidemiol. 2015, 18 (Suppl. S2), 109–122. [Google Scholar] [CrossRef] [Green Version]
- Primatesta, P.; Falaschetti, E.; Gupta, S.; Marmot, M.G.; Poulter, N.R. Evidence from the Health Survey for England. Hypertension 2001, 37, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Ayo, Y.O.; Omole, O. Snuff use and the risk for hypertension among black South African women. S. Afr. Fam. Pract. 2008, 50, 1. [Google Scholar]
- Olack, B.; Wabwire-Mangen, F.; Smeeth, L.; Montgomery, J.M.; Kiwanuka, N.; Breiman, R.F. Risk factors of hypertension among adults aged 35–64 years living in an urban slum Nairobi, Kenya. BMC Public Health 2015, 15, 1251. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Patni, N.; Sarangi, S.; Singh, M.; Sharma, K.; Vellimana, A.K.; Patra, S. Association of exclusive smokeless tobacco consumption with hypertension in an adult male rural population of India. Tob. Induc. Dis. 2009, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Temu, T.M.; Bahiru, E.; Bukachi, F.; Bloomfield, G.S.; Muiruri, P.; Farquhar, C. Lay beliefs about hypertension among HIV-infected adults in Kenya. Open Heart 2017, 4, e000570. [Google Scholar] [CrossRef] [PubMed]
- Green, M.S.; Jucha, E.; Luz, Y. Blood pressure in smokers and nonsmokers: Epidemiologic findings. Am. Heart J. 1986, 111, 932–940. [Google Scholar] [CrossRef]
- Cois, A.; Ehrlich, R. Analysing the socioeconomic determinants of hypertension in South Africa: A structural equation modelling approach. BMC Public Health 2014, 14, 414. [Google Scholar] [CrossRef] [Green Version]
- Nyarko, S.H.; Ananga, M.K. Prevalence and Predictors of Hypertension History among Ghanaian Men. Ghana J. Geogr. 2017, 9, 50–63. [Google Scholar]
- Papathanasiou, G.; Zerva, E.; Zacharis, I.; Papandreou, M.; Papageorgiou, E.; Tzima, C.; Georgakopoulos, D.; Evangelou, A. Association of High Blood Pressure with Body Mass Index, Smoking and Physical Activity in Healthy Young Adults. Open Cardiovasc. Med. J. 2015, 9, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Sarki, A.M.; Nduka, C.U.; Stranges, S.; Kandala, N.-B.; Uthman, O.A. Prevalence of Hypertension in Low- and Middle-Income Countries. Medicine 2015, 94, e1959. [Google Scholar] [CrossRef] [PubMed]
- Guwatudde, D.; Mutungi, G.; Wesonga, R.; Kajjura, R.; Kasule, H.; Muwonge, J.; Ssenono, V.; Bahendeka, S.K. The Epidemiology of Hypertension in Uganda: Findings from the National Non-Communicable Diseases Risk Factor Survey. PLoS ONE 2015, 10, e0138991. [Google Scholar] [CrossRef] [PubMed]
Overall n (%) | Hypertension | Prevalence | Tobacco Use | |||||
---|---|---|---|---|---|---|---|---|
No | Yes | Never | Current | Former | ||||
n (%) | n (%) | n (%) | n (%) | n (%) | ||||
Gender | Females | 2559 (58.8) | 1959 (57.5) | 600 (63.4) | 23.4 | 2379 (68.6) | 115 (21.0) | 65 (19.0) |
Males | 1793 (41.2) | 1447 (42.5) | 346 (36.6) | 19.3 | 1090 (31.4) | 433 (79.0) | 270 (81.0) | |
Age groups | 18–29 | 1406 (32.3) | 1245 (36.6) | 162 (17.1) | 11.5 | 1259 (36.3) | 93 (17.0) | 54 (16.1) |
30–44 | 1660 (38.1) | 1359 (39.9) | 301 (31.8) | 18.1 | 1313 (37.8) | 226 (41.2) | 121 (36.1) | |
45–59 | 873 (20.1) | 565 (16.6) | 308 (32.6) | 35.3 | 627 (18.1) | 153 (27.9) | 93 (27.8) | |
60–69 | 413 (9.5) | 237 (7.0) | 175 (18.5) | 42.4 | 270 (7.8) | 76 (13.9) | 67 (20.0) | |
Marital status | Single | 774 (17.8) | 668 (19.6) | 106 (11.2) | 13.7 | 648 (18.7) | 78 (14.2) | 48 (14.3) |
Married | 2926 (67.2) | 2289 (67.2) | 637 (67.0) | 21.8 | 2347 (67.7) | 352 (64.2) | 227 (67.8) | |
Divorced/separated | 306 (7.0) | 223 (6.6) | 83 (8.7) | 27.1 | 474 (13.7) | 118 (21.5) | 60 (17.9) | |
Widower | 346 (8.0) | 226 (6.6) | 120 (12.7) | 34.7 | 265 (7.6) | 52 (9.4) | 30 (9.0) | |
Main work | Employed | 822 (18.9) | 631 (18.5) | 191 (20.2) | 23.2 | 618 (17.8) | 117 (21.4) | 87 (26.0) |
Self-employed | 1744 (40.1) | 1364 (40.0) | 380 (40.2) | 21.8 | 1342 (38.7) | 236 (43.1) | 166 (49.6) | |
Unemployed | 433 (9.9) | 345 (10.1) | 88 (9.3) | 20.3 | 307 (8.8) | 85 (15.4) | 41 (12.2) | |
Homemaker | 1066 (24.5) | 838 (24.6) | 228 (24.1) | 21.4 | 955 (27.5) | 86 (15.5) | 25 (7.5) | |
Student | 184 (4.2) | 164 (4.8) | 20 (2.1) | 10.9 | 174 (5.0) | 4 (0.7) | 6 (1.8) | |
Others (retired or Unable to work) | 103 (2.4) | 64 (1.9) | 39 (4.1) | 37.9 | 73 (2.1) | 20 (3.6) | 10 (3.0) | |
Residence | Rural | 2233 (51.3) | 1778 (52.2) | 455 (48.1) | 20.4 | 1759 (50.7) | 309 (56.4) | 165 (49.3) |
Urban | 2119 (48.7) | 1628 (47.8) | 491 (51.9) | 23.2 | 1710 (49.3) | 239 (43.6) | 170 (50.7) | |
Wealth quantile | 1 Poorest | 867 (19.9) | 738 (21.7) | 129 (13.6) | 14.9 | 659 (19.0) | 165 (30.1) | 43 (12.8) |
2 Second | 871 (20.0) | 687 (20.2) | 183 (19.3) | 21 | 675 (19.5) | 120 (21.9) | 76 (22.7) | |
3 Middle | 870 (20.0) | 657 (19.3) | 213 (22.5) | 24.5 | 683 (19.7) | 110 (20.0) | 77 (23.0) | |
4 Fourth | 875 (20.1) | 662 (19.4) | 213 (22.5) | 24.3 | 710 (20.5) | 80 (14.6) | 85 (25.4) | |
5 Richest | 869 (20.0) | 662 (19.4) | 208 (22.0) | 23.9 | 742 (21.4) | 73 (13.3) | 54 (16.0) |
Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|
Systolicmn | 127.44 | 19.91 | 70.67 | 263.67 |
Diastolicmn | 82.61 | 12.1 | 48.33 | 151.67 |
Fasting blood glucose | 4.68 | 1.36 | 1.1 | 24.3 |
Waist–hip ratio | 0.85 | 0.08 | 0.36 | 1.49 |
Body Mass Index (BMI) | 23.48 | 5.09 | 11.4 | 75.16 |
Hip circumference | 94.06 | 13.1 | 45 | 165 |
Waist circumference | 79.6 | 13.73 | 30 | 155 |
Weight | 62.77 | 13.36 | 30 | 171.3 |
Height | 163.76 | 9.36 | 101 | 194.5 |
HDL cholesterol | 3.69 | 1.01 | 2.5 | 10.3 |
Age in single years | 37.82 | 13.46 | 18 | 69 |
Years spent in School | 7.71 | 4.98 | 0 | 30 |
Physical Activity (min) | 370.34 | 253.05 | 0 | 1830 |
Females (n = 600) | Males (n = 346) | χ2 (df) | Overall (n = 4352) | ||||||
---|---|---|---|---|---|---|---|---|---|
% | Confidence Level 95% | % | Confidence Level 95% | % | |||||
Tobacco usage | Never | 91.2 | 88.7 | 93.2 | 57.5 | 52.3 | 62.6 | 149.2 * (2) | 79.7 |
Current user | 4.3 | 2.9 | 6.2 | 23.4 | 19.2 | 28.1 | 12.6 | ||
Former | 4.5 | 3.1 | 6.4 | 19.1 | 15.2 | 23.5 | 7.7 | ||
Waist–hip ratio | Underweight/normal | 20.3 | 17.1 | 23.7 | 59.4 | 54.0 | 64.7 | 219.5 * (2) | 48.5 |
Overweight | 26.3 | 22.8 | 30.0 | 34.3 | 29.2 | 39.6 | 26.2 | ||
Obese | 53.4 | 49.3 | 57.5 | 6.3 | 4.0 | 9.4 | 25.3 | ||
Body mass index (BMI) | Underweight | 4.1 | 2.7 | 5.9 | 10.1 | 7.1 | 13.7 | 52.1 * (3) | 12.0 |
Normal | 36.9 | 33.0 | 41.0 | 53.1 | 47.7 | 58.6 | 56.8 | ||
Overweight | 33.2 | 29.4 | 37.2 | 26.7 | 22.1 | 31.8 | 20.7 | ||
Obese | 25.8 | 22.3 | 29.5 | 10.1 | 7.1 | 13.7 | 10.4 | ||
Alcohol consumption | Never | 77.0 | 73.5 | 80.2 | 37.0 | 32.0 | 42.2 | 209 * (2) | 66.5 |
Past | 14.4 | 11.7 | 17.3 | 13.9 | 10.5 | 17.8 | 12.4 | ||
Current | 8.7 | 6.6 | 11.1 | 49.1 | 43.9 | 54.4 | 21.2 | ||
Second-hand smoke | No | 74.8 | 71.2 | 78.1 | 58.7 | 53.4 | 63.8 | 26.59 * (1) | 68.5 |
Yes | 25.2 | 21.9 | 28.8 | 41.3 | 36.2 | 46.6 | 31.5 | ||
Vegetables consumed per day | Low (<5 servings/day) | 96.7 | 95.0 | 97.9 | 98.5 | 96.6 | 99.4 | 2.49 (1) | 96.3 |
Adequate (>5 servings/day) | 3.3 | 2.1 | 5.0 | 1.5 | 0.6 | 3.4 | 3.7 | ||
Fruit consumed | Low (<5 servings/day) | 94.4 | 92.1 | 96.2 | 94.4 | 91.3 | 96.6 | 0.000 (1) | 94.5 |
Adequate (>5 servings/day) | 5.6 | 3.8 | 7.9 | 5.6 | 3.4 | 8.7 | 5.5 | ||
Minutes of physical activity | Low (<30) | 7.7 | 5.7 | 10.0 | 7.5 | 5.1 | 10.6 | 1.18 (2) | 6.1 |
Adequate (30–60) | 7.0 | 5.2 | 9.3 | 9.0 | 6.3 | 12.3 | 7.0 | ||
High (>60) | 85.3 | 82.3 | 88.0 | 83.5 | 79.3 | 87.1 | 86.9 | ||
Fasting blood glucose | Normal | 79.8 | 76.3 | 83.0 | 83.6 | 79.2 | 87.4 | 1.89 (2) | 88.3 |
Impaired fasting glycaemia | 7.2 | 5.2 | 9.6 | 5.8 | 3.6 | 8.8 | 5.4 | ||
Raised blood glucose | 13.1 | 10.4 | 16.1 | 10.6 | 7.6 | 14.4 | 6.2 |
Variables | Tobacco Use | Alcohol Consumption | BMI | Waist–Hip Ratio | Fasting Blood Glucose | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Never % | Current % | Former % | Never % | Past % | Current % | Overweight % | Obese % | Overweight % | Obese % | Impaired Fasting Glycaemia % | Raised Blood Glucose % | Overall % | ||
Health worker checked blood pressure | No | 47.1 | 71 | 57.8 | 47.5 | 50.7 | 61.7 | 36.8 | 24.8 | 48 | 34.6 | 46.1 | 38.1 | 50.9 |
Yes | 52.9 | 29 | 42.2 | 52.5 | 49.3 | 38.3 | 63.2 | 75.2 | 52 | 65.4 | 53.9 | 61.9 | 49.1 | |
Health worker diagnosed hypertension | No | 78 | 79.9 | 71.6 | 78.8 | 72.5 | 77.3 | 72.7 | 63.2 | 76 | 71.6 | 72 | 55.1 | 77.7 |
Yes | 22 | 20.1 | 28.4 | 21.2 | 27.5 | 22.7 | 27.3 | 36.8 | 24 | 28.4 | 28 | 44.9 | 22.3 | |
Diagnosed with hypertension in the past year | No | 43.4 | 40.6 | 52.5 | 41.9 | 50.7 | 46.3 | 37.3 | 36.6 | 40.7 | 40.3 | 36.4 | 34.3 | 44 |
Yes | 56.6 | 59.4 | 47.5 | 58.1 | 49.3 | 53.8 | 62.7 | 63.4 | 59.3 | 59.7 | 63.6 | 65.7 | 56 | |
Taken prescribed hypertension medication—past 2 weeks | No | 75.7 | 68.8 | 77.5 | 73.6 | 80.8 | 77.5 | 74.5 | 69.1 | 79.3 | 70.6 | 78.8 | 60 | 75.4 |
Yes | 24.3 | 31.3 | 22.5 | 26.4 | 19.2 | 22.5 | 25.5 | 30.9 | 20.7 | 29.4 | 21.2 | 40 | 24.6 | |
Primary source of healthcare | Self-medicate/alternative therapy | 7.6 | 14.2 | 17.4 | 7.6 | 9.7 | 13.8 | 8.6 | 12.2 | 11 | 6.7 | 9.6 | 7.5 | 9.2 |
Dispensary/Community Health Worker | 34.4 | 34.7 | 31.2 | 35.2 | 36.3 | 29.8 | 30.2 | 23.3 | 32.1 | 34.5 | 37.4 | 29 | 34.2 | |
Health Center | 15.7 | 16.7 | 9.6 | 16.7 | 10.6 | 13.9 | 12.2 | 11.7 | 15.1 | 15.6 | 14.6 | 14.3 | 15.4 | |
Referral public hospital (former district/provincial) | 28.5 | 25 | 25.5 | 27.9 | 30 | 26.4 | 31.8 | 30.7 | 27.8 | 30.2 | 28.3 | 33.3 | 27.9 | |
Private Healthcare | 13.7 | 9.4 | 16.2 | 12.5 | 13.4 | 16 | 17.3 | 22.1 | 13.9 | 13 | 10 | 15.9 | 13.4 |
Variable | SYSTOLIC | DIASTOLIC | HYPERTENSION | ||||
---|---|---|---|---|---|---|---|
Coefficients | Coefficients | Odds Ratio | |||||
(Standard Error) | (Standard Error) | (95% Confidence Interval) | |||||
Tobacco use | Current users | 1.46 (1.17) | −3.14 * (1.31) | −0.23 (0.76) | −0.76 (0.78) | 0.94 (0.72–1.27) | 0.88 (0.61–1.28) |
Former users | 7.43 *** (1.52) | −0.79 (1.62) | 0.76 (0.90) | −1.15 (0.89) | 1.48 ** (1.05–2.10) | 0.99 (0.64–1.53) | |
Age range | 30–44 | 1.93 ** (0.71) | 2.04 *** (0.51) | 1.33 * (1.00–1.76) | |||
45–59 | 11.60 *** (1.23) | 6.40 *** (0.68) | 3.53 *** (2.6–4.80) | ||||
60–69 | 22.05 ***(1.85) | 6.16 *** (0.98) | 5.3 *** (3.70–7.46) | ||||
Gender | Males/(females) | 5.93 *** (0.88) | 0.08 (0.56) | 1.02 (0.77–1.35) | |||
Marital Status | Single | 1.66 * (0.83) | 0.44 (0.58) | 0.83 (0.60–1.15) | |||
Divorced/separated | 0.61 (1.16) | 0.42 (0.89) | 1.07 (0.74–1.55) | ||||
Widowed | 0.85 (1.59) | 0.17 (0.80) | 1.23 (0.87–1.74) | ||||
Education Level | Uneducated | 0.22 (1.55) | −0.95 (1.05) | 0.74 (0.47–1.45) | |||
Primary | −0.03 (−1.12) | −1.01 (0.81) | 0.75 (0.52–1.09) | ||||
Secondary | 0.30 (1.06) | 0.28 (0.87) | 1.0 (0.70–1.43) | ||||
Wealth quantile | Second | 1.75 (1.06) | −0.07 (0.71) | 1.09 (0.80–1.51) | |||
Middle | 1.35 (1.04) | 0.30 (0.72) | 1.12 (0.80–1.56) | ||||
Fourth | 1.06 (1.13) | 0.18 80.77) | 1.23 (0.87–1.73) | ||||
Fifth (richest) | 1.40 (1.34) | 0.08 (0.85) | 1.0 (0.67–1.50) | ||||
Residence | Urban | 0.36 (0.91) | 0.9 (0.65) | 1.11 (0.88–1.39) | |||
Occupational status | Self-employed | 1.1 (1.06) | −0.99 (0.82) | 0.96 (0.67–1.37) | |||
Unemployed | 0.35 (1.32) | −0.83 (0.98) | 0.84 (0.54–1.29) | ||||
Homemaker | 1.29 (1.21) | −1.07 (0.89) | 0.96 (0.63–1.46) | ||||
Student | 3.00 * (1.31) | −0.21 (1.03) | 1.5 (0.84–2.76) | ||||
Others (retired, unable to work) | −2.2 (2.89) | −3.41 (1.97) | 0.92 (0.50–1.70) | ||||
Physical Activity | <30 min | −2.41 (1.53) | −1.17 (1.04) | 0.97 (0.68–1.40) | |||
30–60 min | 1.04 (1.31) | 1.34 (0.80) | 1.17 (0.86–1.60) | ||||
Alcohol consumption | Past | 3.29 ** (1.14) | 0.36 (0.69) | 1.18 (0.89–1.57) | |||
Current | 4.08 *** (0.94) | 2.73 *** (0.57) | 1.68 *** (1.24–2.26) | ||||
BMI | Underweight | −6.44 *** (1.14) | −4.04 *** (0.64) | 0.55 *** (0.38–0.78) | |||
Overweight | 4.99 *** (0.87) | 3.25 *** 80.57) | 2.22 ***(1.71–3.56) | ||||
Obese | 8.79 *** (1.38) | 6.28 *** (0.88) | 2.58 *** (1.86–3.56) | ||||
Waist–hip ratio | Overweight | 2.42 ** (0.76) | 1.71 ** (0.51) | 1.37 * (1.07–1.74) | |||
Obese | 2.46 ** (0.90) | 1.00 (0.62) | 1.61 * (1.25–2.09) | ||||
Cons | 126.21 (0.52) | 113.62 *** (1.57) | 82.16 (0.33) | 78.29 *** (1.00) | 0.23 (0.20–0.26) | 0.072 ***(0.04–0.12) | |
R2 | 0.2009 | 0.1294 |
Variable | SYSTOLIC | DIASTOLIC | HYPERTENSION | ||||
---|---|---|---|---|---|---|---|
Coefficients | Coefficients | Odds Ratio | |||||
Tobacco use | Current user | −3.14 * | −3.66 * | −0.756 | 0.249 | 0.882 | 0.873 |
Former | −0.79 | −0.718 | −1.15 | −0.849 | 0.99 | 0.875 | |
Age range | 30–44 | 1.93 ** | 1.61 * | 2.04 *** | 1.64 ** | 1.33 * | 1.32 |
45–59 | 11.6 *** | 12.9 *** | 6.42 *** | 6.3 *** | 3.53 *** | 3.69 *** | |
60–69 | 22 *** | 19.7 *** | 6.16 *** | 4.29 *** | 5.26 *** | 4.71 *** | |
Gender | Males | 5.93 *** | 5.18 *** | 0.0837 | 0.423 | 1.02 | 1.15 |
Marital status | single | 1.66 * | 2.07 * | 0.438 | 0.801 | 0.829 | 0.967 |
divorce/separation | 0.606 | 0.251 | 0.422 | 0.105 | 1.07 | 1.08 | |
widowed | 0.854 | 1.57 | 0.166 | 0.551 | 1.23 | 1.2 | |
Education level | No formal ed. | 0.218 | 0.925 | −0.95 | 0.0787 | 0.74 | 0.909 |
Primary | −0.0255 | 1 | −1.01 | −0.282 | 0.75 | 0.937 | |
Secondary | 0.3 | 0.251 | 0.278 | 0.444 | 1 | 1.04 | |
Wealth | 2 Second | 1.75 | −0.00978 | −0.0652 | −0.865 | 1.1 | 1.03 |
3 Middle | 1.35 | 0.91 | 0.296 | 0.476 | 1.12 | 1.2 | |
4 Fourth | 1.06 | 0.492 | 0.177 | 0.0618 | 1.23 | 1.28 | |
5 Richest | 1.4 | 0.664 | 0.0797 | −0.09 | 1 | 0.979 | |
Residence | Urban | 0.364 | −0.239 | 0.902 | 0.29 | 1.11 | 1.04 |
Occupation | Self-employed | 1.07 | 1.36 | −0.986 | −0.849 | 0.962 | 0.896 |
Unemployed | 0.353 | 0.361 | −0.834 | −0.795 | 0.836 | 0.841 | |
Homemaker | 1.29 | 2.02 | −1.07 | −0.537 | 0.956 | 1.04 | |
Student | 3 * | 2.58 | −0.212 | −0.487 | 1.52 | 1.39 | |
Others | −2.2 | −2.12 | −3.41 | −4.58 * | 0.923 | 0.937 | |
Physical activity | Low | −2.41 | −3.76 * | −1.16 | −1.2 | 0.971 | 0.964 |
Recommended | 1.04 | 0.208 | 1.34 | 0.601 | 1.17 | 1.29 | |
Alcohol | Past | 3.29 ** | 3.38 * | 0.36 | 0.516 | 1.18 | 1.22 |
Current | 4.08 *** | 5.08 *** | 2.73 *** | 2.8 *** | 1.68 *** | 1.74 ** | |
BMI | Underweight | −6.44 *** | −6.59 *** | −4.04 *** | −3.77 *** | 0.546 *** | 0.493 ** |
Overweight | 4.99 *** | 4.3 *** | 3.25 *** | 2.88 *** | 2.21 *** | 2.02 *** | |
Obese | 8.79 *** | 7.68 *** | 6.28 *** | 5.82 *** | 2.57 *** | 2.54 *** | |
Waist–hip ratio | Overweight | 2.42 ** | 1.71 ** | 1.54 * | 1.37 * | 1.41 * | |
Obese | 2.46 ** | 1.33 * | 1.36 | 1.61 *** | 1.63 ** | ||
CVD | yes | −0.0108 | −0.0427 | 1.33 | |||
Fruit | Adequate | −1.39 | −2.01 | 1.1 | |||
Vegetables | Adequate | −4.53 * | 0.405 | 0.707 | |||
Secondhand smoking | −1.67 | −1.03 | |||||
Cholesterol | 1.19 ** | 0.946 *** | 1.2 *** | ||||
Waist–hip ratio | 12.4 ** | ||||||
Blood glucose | 0.471 | ||||||
Fasting blood glucose | Impaired glycaemia | 0.801 | 1.19 | ||||
Raised blood sugar | 2.52 * | 2.29 *** | |||||
Cons | 114 *** | 100 *** | 78.3 *** | 75.5 *** | 0.0721 *** | 0.0298 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walekhwa, S.N.; Kisa, A. Tobacco Use and Risk Factors for Hypertensive Individuals in Kenya. Healthcare 2021, 9, 591. https://doi.org/10.3390/healthcare9050591
Walekhwa SN, Kisa A. Tobacco Use and Risk Factors for Hypertensive Individuals in Kenya. Healthcare. 2021; 9(5):591. https://doi.org/10.3390/healthcare9050591
Chicago/Turabian StyleWalekhwa, Silvia Nanjala, and Adnan Kisa. 2021. "Tobacco Use and Risk Factors for Hypertensive Individuals in Kenya" Healthcare 9, no. 5: 591. https://doi.org/10.3390/healthcare9050591
APA StyleWalekhwa, S. N., & Kisa, A. (2021). Tobacco Use and Risk Factors for Hypertensive Individuals in Kenya. Healthcare, 9(5), 591. https://doi.org/10.3390/healthcare9050591