Complex Exercise Improves Anti-Inflammatory and Anabolic Effects in Osteoarthritis-Induced Sarcopenia in Elderly Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
2.3. Measurement of Cross-Sectional Area of the Thigh
2.4. Blood Sampling and Biochemical Analysis
2.5. Complex Exercise Program
2.6. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budui, S.L.; Rossi, A.P.; Zamboni, M. The pathogenetic bases of sarcopenia. Clin. Cases Miner. Bone Metab. 2015, 12, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Czerwinski, S.; Van Kan, G.A.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging. 2008, 12, 433–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkina, Y.; von Haehling, S.; Anker, S.D.; Springer, J. The role of myostatin in muscle wasting: An overview. J. Cachexia Sarcopenia Muscle. 2011, 2, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Yarasheski, K.E.; Bhasin, S.; Sinha-Hikim, I.; Pak-Loduca, J.; Gonzalez-Cadavid, N.F. Serum myostatin-immunoreactive protein is increased in 60–92- year old women and men with muscle wasting. J. Nutr. Health Aging 2002, 6, 343–348. [Google Scholar]
- White, T.A.; LeBrasseur, N.K. Myostatin and sarcopenia: Opportunities and challenges—A mini-review. Gerontology 2014, 60, 289–293. [Google Scholar] [CrossRef]
- Chang, J.S.; Kim, T.H.; Nguyen, T.T.; Park, K.S.; Kim, N.; Kong, I.D. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr. Gerontol. Int. 2017, 17, 2266–2273. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.Y.; Mougios, V.; Kabasakalis, A.; Fatouros, I.; Siopi, A.; Douroudos, I.I.; Filippaios, A.; Panagiotou, G.; Park, K.H.; Mantzoros, C.S. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J. Clin. Endocrinol. Metab. 2014, 99, E2154–E2161. [Google Scholar] [CrossRef] [Green Version]
- Hayashida, I.; Tanimoto, Y.; Takahashi, Y.; Kusabiraki, T.; Tamaki, J. Correlation between muscle strength and muscle mass, and their association with walking speed, in community-dwelling elderly Japanese individuals. PLoS ONE. 2014, 9, e111810. [Google Scholar] [CrossRef]
- Erlich, A.T.; Tryon, L.D.; Crilly, M.J.; Memme, J.M.; Moosavi, Z.S.M.; Oliveira, A.N.; Beyfuss, K.; Hood, D.A. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr. Med. Res. 2016, 5, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Konopka, A.R.; Harber, M.P. Skeletal muscle hypertrophy after aerobic exercise training. Exerc. Sport Sci. Rev. 2014, 42, 53–61. [Google Scholar] [CrossRef]
- Seo, D.Y.; Lee, S.R.; Kim, N.; Ko, K.S.; Rhee, B.D.; Han, J. Age-related changes in skeletal muscle mitochondria: The role of exercise. Integr. Med. Res. 2016, 5, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Lira, V.A.; Greene, N.P. Exercise training-induced regulation of mitochondrial quality. Exerc. Sport Sci. Rev. 2012, 40, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Ko, I.G.; Jeong, J.W.; Kim, Y.H.; Jee, Y.S.; Kim, S.E.; Kim, S.H.; Jin, J.J.; Kim, C.J.; Chung, K.J. Aerobic exercise affects myostatin expression in aged rat skeletal muscles: A possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and urethral rhabdosphincter. Int. Neurourol. J. 2014, 18, 77–85. [Google Scholar] [CrossRef]
- Singh, M.A.; Ding, W.; Manfredi, T.J.; Solares, G.S.; O′Neill, E.F.; Clements, K.M.; Ryan, N.D.; Kehayias, J.J.; Fielding, R.A.; Evans, W.J. Insulin-like growth factor of skeletal muscle after weight-lifting exercise in frail elders. Am. J. Physiol. 1999, 277, 135–143. [Google Scholar] [CrossRef]
- Kozakowski, J.; Papoerska, L.; Krassowski, J.; Zgliczynski, S. The effect of growth hormone replacement therapy on markers of bone formation and bone mineral density in elderly men. Pol. Arch. Med. Wewn. 1998, 100, 306–312. (In Polish) [Google Scholar]
- Kreamer, W.J.; Ratamess, N.A.; French, D.N. Resistance training for health and performance. Curr. Sports Med. Rep. 2002, 1, 165–171. [Google Scholar] [CrossRef]
- Roth, S.M.; Martel, G.F.; Ivey, F.M.; Lemmer, J.T.; Tracy, B.L.; Metter, E.J.; Hurley, S.M.; Rogers, M.A. Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Segal, N.A.; Wallace, R. Tolerance of an aquatic power training program by older adults with symptomatic knee osteoarthritis. Arthritis 2012, 2012, 895495. [Google Scholar] [CrossRef] [Green Version]
- Papalia, R.; Zampogna, B.; Torre, G.; Lanotte, A.; Vasta, S.; Albo, E.; Tecame, A.; Denaro, V. Sarcopenia and its relationship with osteoarthritis: Risk factor or direct consequence? Musculoskelet. Surg. 2014, 98, 9–14. [Google Scholar] [CrossRef]
- Kemmler, W.; Teschler, M.; Goisser, S.; Bebenek, M.; von Stengel, S.; Bollheimer, L.C.; Sieber, C.C.; Freiberger, E. Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: Results of the FORMoSA study. Clin. Interv. Aging 2015, 10, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Goldring, M.B.; Otero, M.; Plumb, D.A.; Dragomir, C.; Favero, M.; El Hachem, K.; Hashimoto, K.; Roach, H.I.; Olivotto, E.; Borzì, R.M.; et al. Roles of inflammatory and anabolic cytokines in cartilage metabolism: Signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur. Cells Mater. 2011, 21, 202–220. [Google Scholar] [CrossRef]
- Inglis, J.J.; Nissim, A.; Lees, D.M.; Hunt, S.P.; Chernajovsky, Y.; Kidd, B.L. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Res. Ther. 2005, 7, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Helmak, I.C.; Mikkelsen, U.R.; Børglum, J.; Rothe, A.; Petersen, M.C.; Andersen, O.; Langberg, H.; Kjaer, M. Exercise increase interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: A randomized controlled trial. Arthritis Res. Ther. 2010, 12, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.P.; De Lisio, M.; Parise, G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl. Physiol. Nutr. Metab. 2008, 33, 191–199. [Google Scholar] [CrossRef]
- Heo, J.W.; No, M.H.; Park, D.H.; Kang, J.H.; Kwak, H.B. Aging-induced sarcopenia and exercise. Asian J. Kinesiol. 2017, 19, 43–59. [Google Scholar]
- Takeshima, N.; Rogers, M.E.; Islam, M.M.; Yamauchi, T.; Watanabe, E.; Okada, A. Effect of concurrent aerobic and resistance circuit exercise training on fitness in older adults. Eur. J. Appl. Physiol. 2004, 93, 173–182. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Leenders, M.; Verdijk, L.B.; van der Hoeven, L.; van Kranenburg, J.; Nilwik, R.; van Loon, L.J. Elderly men and women benefit equally from prolonged resistance-type exercise training. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Goodpaster, B.H.; Thaete, F.L.; Kelley, D.E. Composition of skeletal muscle evaluated with computed tomography. Ann. N. Y. Acad. Sci. 2000, 904, 18–24. [Google Scholar] [CrossRef]
- Strandberg, S.; Wretling, M.L.; Wredmark, T.; Shalabi, A. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med. Imaging 2010, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.Y.; Song, Y.J. Effects of 15-week complex exercise program of sarcopenia elderly women on body composition, IGF-1 and hip muscle strength. Korean J. Sport 2020, 18, 621–633. [Google Scholar] [CrossRef]
- Bodine, S.C.; Stitt, T.N.; Gonzalez, M.; Kline, W.O.; Stover, G.L.; Bauerlein, R.; Zlotchenko, E.; Scrimgeour, A.; Lawrence, J.C.; Glass, D.J.; et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and canprevent-74-muscle atrophy in vivo. Nat. Cell Biol. 2001, 3, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Hormones and sarcopenia. Curr. Pharm. Des. 2017, 23, 4484–4492. [Google Scholar] [CrossRef]
- Singh, N.A.; Stavrinos, T.M.; Scarbek, Y.; Galambos, G.; Liber, C.; Singh, M.A.F. A randomized controlled trial of high versus low intensity weight training versus general practitioner care for clinical depression in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 768–776. [Google Scholar] [CrossRef] [Green Version]
- McCall, G.E.; Byrnes, W.C.; Fleck, S.J.; Dickinson, A.; Kraemer, W.J. Acute and chronic hormonalresponses to resistance training designed to promote muscle hypertrophy. Can. J. Appl. Physiol. 1999, 24, 96–107. [Google Scholar] [CrossRef]
- Miyake, M.; Takahashi, H.; Kitagawa, E.; Watanabe, H.; Sakurada, T.; Aso, H.; Yamaguchi, T. AMPK activation by AICAR inhibits myogenic differentiation and myostatin expression in cattle. Cell Tissue Res 2012, 349, 615–623. [Google Scholar] [CrossRef]
- Oksbjerg, N.; Gondret, F.; Vestergaard, M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest. Anim. Endocrinol. 2004, 27, 219–240. [Google Scholar] [CrossRef]
- Lecker, S.H.; Zavin, A.; Cao, P.; Arena, R.; Allsup, K.; Daniels, K.M.; Joseph, J.; Schulze, P.C.; Forman, D.E. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ. Heart Fail. 2012, 5, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, Y.; Ando, D.; Goto, K.; Kiuchi, M.; Yamakita, M.; Koyama, K. High intensity exercise causes greater irisin response compared with lowintensity exercise under similar energy consumption. Tohoku J. Exp. Med. 2014, 233, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Akerstrom, T.C.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Cadavid, N.F.; Taylor, W.E.; Yarasheski, K.; Sinha-Hikim, I.; Ma, K.; Ezzat, S.; Shen, R.; Lalani, R.; Asa, S.; Mamita, M.; et al. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc. Natl. Acad. Sci. USA 1998, 95, 14938–14943. [Google Scholar] [CrossRef] [Green Version]
- Cassatella, M.A. The neutrophil: One of the cellular targets of interleukin-10. Int. J. Clin. Lab. Res. 1998, 28, 148–161. [Google Scholar] [CrossRef]
- Jialal, I.; Devaraj, S. Inflammation, and atherosclerosis. The value of the high senstive C-reactive protein assay as a marker. Am. J. Clin. Pathol. 2001, 116, S108–S115. [Google Scholar]
- Benatti, F.B.; Pedersen, B.K. Exercise as an anti-inflammatory therapy for rheumatic diseases—Myokine regulation. Nat. Rev. Rheumatol. 2014, 11, 86–97. [Google Scholar] [CrossRef]
- Packard, R.R.; Libby, P. Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk predictionatherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clin. Chem. 2008, 54, 24–38. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.P.; Berntsen, A.; Perstrup, L.B.; Eskildsen, P.; Pedersen, B.K. Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scand. J. Med. Sci. Sports 2007, 17, 580–587. [Google Scholar] [CrossRef]
- Drenth, J.P.; Krebber, T.J.; Bijzet; Van Der, M.J.W. Increased circulating cytokine receptor antagonist and exvivo interleukin-1 receptor antagonist and interleukin1 beta production but decreased tumour necrosis factor-alpha production after a 5-km run. Eur. J. Clin. Investig. 1998, 28, 866–872. [Google Scholar] [CrossRef]
- Pederson, B.K.; Steensberg, A.; Fischer, C.; Keller, C.; Ostrowski, K.; Schjerling, P. Exercise and cytokines with particular on muscle-derived IL-6. Exerc. Immunol. Rev. 2001, 7, 18–31. [Google Scholar]
- Kondo, T.; Kobayashi, I.; Murakami, M. Effect of exercise on circulating adipokine levels in obese young women. Endocr. J. 2006, 53, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Monzillo, L.U.; Hamdy, O.; Horton, E.S.; Ledbury, S.; Mullooly, C.; Jarema, C.; Porter, S.; Ovalle, K.; Moussa, A.; Mantzoros, C.S. Effect of lifestyle modification on adipokine levels in obese subjects with insulin resistance. Obes. Res. 2003, 11, 1048–1054. [Google Scholar] [CrossRef] [Green Version]
- Geffken, D.F.; Cushman, M.; Burke, G.L.; Polak, J.F.; Sakkinen, P.A.; Tracy, R.P. Association between physical activity and markers of inflammation in a healthy elderly population. Am. J. Epidemiol. 2001, 153, 242–250. [Google Scholar] [CrossRef]
- Sharp, S.A.; Brouwer, B.J. Isokinetic strength training of the hemiparetic knee: Effects on function and spasticity. Arch. Phys. Med. Rehabil. 1997, 78, 1231–1236. [Google Scholar] [CrossRef]
- Stenholm, S.; Alley, D.; Bandinelli, S.; Griswold, M.E.; Koskinen, S.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. The effect of obesity combined with low muscle strength on decline in mobility in older persons: Results from the InCHIANTI study. Int. J. Obes. 2009, 33, 635–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschenes, M.R. Effects of aging on muscle fibre type and size. Sports Med. 2004, 34, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Associations with selfreported disability and prediction of mortality. J. Gerontal. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.S.; Kim, Y.Y.; Park, H.Y. Circuit Training training iImprovements in Korean wWomen with sSarcopenia. Percept. Mot. Skills 2019, 126, 828–842. [Google Scholar] [CrossRef]
- Gudlaugsson, J.; Aspelund, T.; Gudnason, V.; Olafsdottir, A.S.; Jonsson, P.V.; Arngrimsson, S.A.; Johannsson, E. The effects of 6 months’ multimodal training on functional performance, strength, endurance, and body mass index of older individuals. Are the benefits of training similar among women and men? Laeknabladid 2013, 99, 331–337. [Google Scholar] [PubMed] [Green Version]
Group | Age (Years) | Height (cm) | Weight (kg) | %Fat (%) | SMM (kg) |
---|---|---|---|---|---|
SEG (n = 9) | 64.8 ± 3.80 | 153.9 ± 4.22 | 59.7 ± 6.12 | 33.6 ± 5.01 | 20.6 ± 1.74 |
OSEG (n = 10) | 66.6 ± 3.98 | 151.6 ± 8.61 | 58.0 ± 11.53 | 35.8 ± 5.88 | 20.3 ± 4.41 |
Phase | Type | Exercise Contents | Time | Intensity/Frequency |
---|---|---|---|---|
AP (1–5 weeks) | Warm-up | Dynamic stretching | 10 min | 5 days/week |
Work out | Mat exercise | 30 min | 3 days/week | |
Chair exercise | ||||
Aerobic (walking) | 30 min | 40–50% HRR (RPE 11–12), 5 days/week | ||
Cool down | Static stretching | 10 min | 5 days/week | |
IP (6–10 weeks) | Warm-up | Dynamic stretching | 10 min | 5 days/week |
Work out | Mat & gym ball exercise | 30 min | 3 days/week | |
Aerobic (walking) | 30 min | 50–60% HRR (RPE 12–13), 5 days/week | ||
Cool down | Static stretching | 10 min | 5 days/week | |
MP (11–15 weeks) | Warm-up | Dynamic stretching | 10 min | 5 days/week |
Work out | Mat & gym ball exercise | 30 min | 3 days/week | |
Aerobic (walking) | 40 min | 50–60% HRR (RPE 12–14), 5 days/week | ||
Cool down | Static stretching | 10 min | 5 days/week |
Phase | Type | Exercise Contents | Repetition | Set & Rest |
---|---|---|---|---|
AP (1–5 weeks) | Mat | SLR (4 directions), prone lat. raise, cat & camel, supine lower trunk rot., wall squat | 5–7 reps /3–5 s hold | 2–3 sets (1 min rest after set end) |
Supine pelvic tilt | 10–15 reps /5 s hold | |||
Semi-curl up | 10–15 reps | |||
Chair | Knee EXT. (alternated), hip FLX./knee EXT. (alternated), knee diagonal EXT. (alternated), toe touch floor (alternated), toe touch floor with reaching out hand (alternated), hip abd./add., hip abd./add. with shoulder ext./int. rot., hip abd./add. with shoulder diagonal open arms, hip abd./add. with touching the head, toe & heel touch floor with walking in place (alternated), hip & shoulder abd./add. with walking in place (alternated) | 10–15 reps /activity (with 4/4 beat music)/2 set | 1 min rest after 2 sets | |
IP (6–10 weeks) | Mat | Lower abdominal, prone lying, kneeling hip EXT., kneeling lower trunk rot., wall squat with mini ball, fwd. lunge, kneeling bird dog, lower trunk crawling position | 7–10 reps /3–5 s hold | 2–3 sets (1 min rest after set end) |
Wall resisting calf raise | 10–15 reps /5 s hold | |||
Semi-curl up | 15–20 reps | |||
Gym ball | Heel & toe raise, pelvic tilting (fwd-bwd/lat.) | 15–20 reps | 2–3 sets (1 min rest after set end) | |
Knee EXT., unilat. shoulder FLX. in quadriped bouncing on gym ball, trunk diagonal rot., trunk EXT. in quadriped, unilat. hip FLX. sit on gym ball | 7–10 reps /3–5 s hold | |||
Write alphabet with foot (A–Z) alternated | ||||
MP (11–15 weeks) | Mat | Fwd. & bwd. lunge, single-side bird-dog, standing on one leg, supine bridge with one leg EXT., prone plank, side plank with knee bent | 10 reps /3–5 s hold | 2–3 sets (1 min rest after set end) |
Wall resisting calf raise | 15 reps /3–5 s hold | |||
Gym ball | Hip EXT. with ball under knees, supine knee EXT./FLX., supine int./ext. rot. of leg, hip FLX. in bridge position, knee EXT. in bridge position, hip EXT. with feet on ball | 7–10 reps /3–5 s hold | ||
Reclined mini curl-up on gym ball | 15–20 reps |
Variables | Group | Pre-Intervention | Post-Intervention | Δ-Value | t-Value |
---|---|---|---|---|---|
IGF-1 (ng/mL) | OSEG | 111.17 ± 28.18 | 129.64 ± 28.08 | 18.5 | −4.74 *** |
SEG | 106.99 ± 20.99 | 107.90 ± 14.09 | 0.19 | −0.89 | |
t-value | −0.36 | −2.13 | Group × Time F(1,17) = 12.22 ** | ||
Irisin (ng/mL) | OSEG | 1.69 ± 0.18 | 2.38 ± 0.38 | 0.69 | −6.99 *** |
SEG | 1.86 ± 0.40 | 2.64 ± 0.79 | 0.78 | −4.15 ** | |
t-value | −1.20 | −0.93 | Group × Time F(1,17) = 0.20 | ||
Mstn (pg/mL) | OSEG | 1105.22 ± 277.29 | 775.60 ± 183.35 | −329.61 | 5.45 *** |
SEG | 1006.19 ± 234.35 | 828.72 ± 221.07 | −177.46 | 3.30 ** | |
t-value | 0.84 | −0.57 | Group × Time F(1,17) = 3.47 | ||
IL-10 (pg/mL) | OSEG | 101.93 ± 40.83 | 232.20 ± 74.85 | 130.26 | −7.43 ** |
SEG | 166.68 ± 58.71 | 234.21 ± 54.34 | 67.52 | −3.58 ** | |
t-value | −2.82 * | −0.07 | Group × Time F(1,17) = 5.96 * | ||
TNF-α (pg/mL) | OSEG | 131.77 ± 6.30 | 119.95 ± 7.49 | −11.82 | 4.44 ** |
SEG | 129.72 ± 4.33 | 124.59 ± 2.26 | −5.13 | 3.56 ** | |
t-value | 0.82 | −1.78 | Group × Time F (1,17) = 4.59 * |
Factor | Group | Pre | Post | Δ-Value | t-Value |
---|---|---|---|---|---|
L-TCSA (cm²) | OSEG | 88.48 ± 15.19 | 94.52 ± 14.70 | 6.04 | −8.23 *** |
SEG | 99.62 ± 6.91 | 110.42 ± 6.04 | 10.80 | −6.36 *** | |
t-value | −2.02 | −3.02 ** | Group × Time F(1,17) = 7.12 * | ||
R-TCSA (cm²) | OSEG | 89.36 ± 14.26 | 93.06 ± 16.36 | 3.70 | −3.27 ** |
SEG | 102.44 ± 11.21 | 110.04 ± 6.98 | 7.61 | −3.31 * | |
t-value | −2.20 | −2.88 ** | Group × Time F(1,17) = 2.5 | ||
WOMAC (score) | OSEG | 61.70 ± 17.493 | 40.30 ± 13.132 | −21.40 | 6.24 *** |
SEG | 43.22 ± 13.122 | 35.22 ± 11.278 | −8.00 | 1.99 | |
t-value | 1.77 | −0.52 | Group × Time F(1,17) = 5.83 * | ||
SPPB (score) | OSEG | 6.70 ± 1.160 | 12.10 ± 0.876 | 5.4 | −17.68 *** |
SEG | 8.67 ± 1.500 | 12.44 ± 1.130 | 3.78 | −5.89 ** | |
t-value | −3.21 ** | −0.74 | Group × Time F(1,17) = 5.58 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Bae, J.; Lee, J. Complex Exercise Improves Anti-Inflammatory and Anabolic Effects in Osteoarthritis-Induced Sarcopenia in Elderly Women. Healthcare 2021, 9, 711. https://doi.org/10.3390/healthcare9060711
Park J, Bae J, Lee J. Complex Exercise Improves Anti-Inflammatory and Anabolic Effects in Osteoarthritis-Induced Sarcopenia in Elderly Women. Healthcare. 2021; 9(6):711. https://doi.org/10.3390/healthcare9060711
Chicago/Turabian StylePark, Jaeyong, Jongjin Bae, and Jungchul Lee. 2021. "Complex Exercise Improves Anti-Inflammatory and Anabolic Effects in Osteoarthritis-Induced Sarcopenia in Elderly Women" Healthcare 9, no. 6: 711. https://doi.org/10.3390/healthcare9060711
APA StylePark, J., Bae, J., & Lee, J. (2021). Complex Exercise Improves Anti-Inflammatory and Anabolic Effects in Osteoarthritis-Induced Sarcopenia in Elderly Women. Healthcare, 9(6), 711. https://doi.org/10.3390/healthcare9060711