Risk of Weight Loss in Adult Patients and the Effect of Staffing Registered Dietitians in Kaifukuki (Convalescent) Rehabilitation Wards: A Retrospective Analysis of a Nationwide Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Annual Survey
2.2. Eligibility Criteria and Baseline Characteristics
2.3. Outcome Measures
2.4. Statistical Tests
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolters, M.; Volkert, D.; Streicher, M.; Kiesswetter, E.; Torbahn, G.; O’Connor, E.M.; O’Keeffe, M.; Kelly, M.; O’Herlihy, E.; O’Toole, P.W.; et al. Prevalence of malnutrition using harmonized definitions in older adults from different settings–A MaNuEL study. Clin. Nutr. 2019, 38, 2389–2398. [Google Scholar] [CrossRef] [Green Version]
- Wojzischke, J.; van Wijngaarden, J.; van den Berg, C.; Cetinyurek-Yavuz, A.; Diekmann, R.; Luiking, Y.; Bauer, J. Nutritional status and functionality in geriatric rehabilitation patients: A systematic review and meta-analysis. Eur. Geriatr. Med. 2020, 11, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Marshall, S.; Young, A.; Bauer, J.; Isenring, E. Malnutrition in geriatric rehabilitation: Prevalence, patient outcomes, and criterion validity of the Scored Patient-Generated Subjective Global Assessment and the Mini Nutritional Assessment. J. Acad. Nutr. Diet. 2016, 116, 785–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishioka, S.; Omagari, K.; Nishioka, E.; Mori, N.; Taketani, Y.; Kayashita, J. Concurrent and predictive validity of the Mini Nutritional Assessment Short-Form and the Geriatric Nutritional Risk Index in older stroke rehabilitation patients. J. Hum. Nutr. Diet. 2020, 33, 12–22. [Google Scholar] [CrossRef]
- Takayama, M.; Nishioka, S.; Okamoto, T.; Urushihara, M.; Kiriya, Y.; Shintani, K.; Nakagomi, H. Multicenter survey of dysphagia and nutritional status of stroke patients in Kaifukuki (convalescent) rehabilitation wards. Jpn. J. Compr. Rehabil. Sci. 2018, 9, 11–21. [Google Scholar]
- Deutz, N.E.P.; Ashurst, I.; Ballesteros, M.D.; Bear, D.E.; Cruz-jentoft, A.J.; Genton, L.; Landi, F.; Laviano, A.; Norman, K.; Prado, C.M. The underappreciated role of low muscle mass in the management of malnutrition. J. Am. Med. Dir. Assoc. 2019, 20, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishioka, S.; Okamoto, T.; Takayama, M.; Urushihara, M.; Watanabe, M.; Kiriya, Y.; Shintani, K.; Nakagomi, H.; Kageyama, N. Malnutrition risk predicts recovery of full oral intake among older adult stroke patients undergoing enteral nutrition: Secondary analysis of a multicentre survey (the APPLE study). Clin. Nutr. 2017, 36, 1089–1096. [Google Scholar] [CrossRef]
- Fujitaka, Y.; Tanaka, N.; Nakadai, H.; Sato, R.; Watanabe, M.; Kageyama, N.; Okamoto, T. Differences in FIM improvement rate stratified by nutritional status and age in stroke patients in kaifukuki (convalescent) rehabilitation ward. Jpn. J. Compr. Rehabil. Sci. 2017, 8, 98–103. [Google Scholar]
- Nishioka, S.; Wakabayashi, H.; Nishioka, E.; Yoshida, T.; Mori, N.; Watanabe, R. Nutritional improvement correlates with recovery of activities of daily living among malnourished elderly stroke patients in the convalescent stage: A cross-sectional study. J. Acad. Nutr. Diet. 2016, 116, 837–843. [Google Scholar] [CrossRef]
- Kokura, Y.; Nishioka, S.; Okamoto, T.; Takayama, M.; Miyai, I. Weight gain is associated with improvement in activities of daily living in underweight rehabilitation inpatients: A nationwide survey. Eur. J. Clin. Nutr. 2019, 73, 1601–1604. [Google Scholar] [CrossRef]
- Nishioka, S.; Wakabayashi, H.; Momosaki, R. Nutritional status changes and activities of daily living after hip fracture in convalescent rehabilitation units: A retrospective observational cohort study from the Japan Rehabilitation Nutrition Database. J. Acad. Nutr. Diet. 2018, 118, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Phillips, W. Identifying and Documenting Malnutrition in Inpatient Rehabilitation Facilities. J. Acad. Nutr. Diet. 2019, 119, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Miyai, I.; Sonoda, S.; Nagai, S.; Takayama, Y.; Inoue, Y.; Kakehi, A.; Kurihara, M.; Ishikawa, M. Results of new policies for inpatient rehabilitation coverage in Japan. Neurorehabil. Neural. Repair. 2011, 25, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Kokura, Y.; Okamoto, T.; Takayama, M.; Miyai, I. Assignment of registered dietitians and other healthcare professionals positively affects weight change of underweight patients in convalescent (Kaifukuki) rehabilitation wards: A secondary analysis of a nationwide survey. J. Nutr. Sci. Vitaminol. 2019, 65, 435–442. [Google Scholar] [CrossRef]
- Scherbakov, N.; Pietrock, C.; Sandek, A.; Ebner, N.; Valentova, M.; Springer, J.; Schefold, J.C.; von Haehling, S.; Anker, S.D.; Norman, K.; et al. Body weight changes and incidence of cachexia after stroke. J. Cachexia Sarcopenia Muscle 2019, 10, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Paquereau, J.; Allart, E.; Romon, M.; Rousseaux, M. The long-term nutritional status in stroke patients and its predictive factors. J. Stroke Cerebrovasc. Dis. 2014, 23, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, M.; Liu, M.; Wada, A.; Otsuka, T.; Nishimura, A. Resting energy expenditure in patients with stroke during the subacute phases—Relationships with stroke types, location, severity of paresis, and activities of daily living. Cerebrovasc. Dis. 2015, 39, 170–175. [Google Scholar] [CrossRef]
- Hertroijs, D.; Wijnen, C.; Leistra, E.; Visser, M.; Van Der Heijden, E.; Kruizenga, H. Rehabilitation patients: Undernourished and obese? J. Rehabil. Med. 2012, 44, 696–701. [Google Scholar] [CrossRef] [Green Version]
- Bell, C.L.; Rantanen, T.; Chen, R.; Davis, J.; Petrovitch, H.; Ross, G.W.; Masaki, K. Pre-stroke weight loss is associated with post-stroke mortality among men in the Honolulu-Asia Aging Study. Arch. Phys. Med. Rehabil. 2014, 95, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Kaifukuki Rehabilitation Ward Association. Available online: http://www.rehabili.jp/eng/eng_page.html (accessed on 18 May 2021).
- Chumney, D.; Nollinger, K.; Shesko, K.; Skop, K.; Spencer, M.; Newton, R.A. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: Systematic review. J. Rehabil. Res. Dev. 2010, 47, 17–29. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. The GLIM criteria for the diagnosis of malnutrition–a consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Arterburn, D.; Ichikawa, L.; Ludman, E.J.; Operskalski, B.; Linde, J.A.; Anderson, E.; Rohde, P.; Jeffery, R.W.; Simon, G.E. Validity of clinical body weight measures as substitutes for missing data in a randomized trial. Obes. Res. Clin. Pract. 2008, 2, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Carsley, S.; Parkin, P.C.; Tu, K.; Pullenayegum, E.; Persaud, N.; Maguire, J.L.; Birken, C.S. Reliability of routinely collected anthropometric measurements in primary care. BMC. Med. Res. Methodol. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, D.H.; Johnson, L.E.; Dennis, R.A.; Roberson, P.K.; Garner, K.K.; Padala, P.R.; Padala, K.P.; Bopp, M.M. Nutrient intake, peripheral edema, and weight change in elderly recuperative care patients. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 712–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, J.; Porter, J.; Truby, H.; Huggins, C.E. How does nutritional state change during a subacute admission? Findings and implications for practice. Eur. J. Clin. Nutr. 2016, 70, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Defining undernutrition (malnutrition) in older persons. J. Nutr. Health Aging. 2018, 22, 308–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keeffe, M.; Kelly, M.; O’Herlihy, E.; O’Toole, P.W.; Kearney, P.M.; Timmons, S.; O’Shea, E.; Stanton, C.; Hickson, M.; Rolland, Y.; et al. Potentially modifiable determinants of malnutrition in older adults: A systematic review. Clin. Nutr. 2019, 38, 2477–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deighton, K.; Stensel, D.J. Creating an acute energy deficit without stimulating compensatory increases in appetite: Is there an optimal exercise protocol? Proc. Nutr. Soc. 2014, 73, 352–358. [Google Scholar] [CrossRef] [Green Version]
- Nishioka, S.; Sugawara, H.; Takayama, M.; Urushihara, M.; Watanabe, M.; Kiriya, Y.; Shintani, K.; Nakagomi, H.; Kageyama, N.; Okamoto, T.; et al. Relationship between weight gain, functional recovery and nutrition monitoring in underweight tube-fed stroke patients. Jpn. J. Compr. Rehabil. Sci. 2018, 9, 3–10. [Google Scholar]
- Swan, W.I.; Vivanti, A.; Hakel-Smith, N.A.; Hotson, B.; Orrevall, Y.; Trostler, N.; Beck Howarter, K.; Papoutsakis, C. Nutrition Care Process and Model update: Toward realizing people–centered care and outcomes management. J. Acad. Nutr. Diet. 2017, 117, 2003–2014. [Google Scholar] [CrossRef]
- Wakeham, M.; Christensen, M.; Manzi, J.; Kuhn, E.M.; Scanlon, M.; Goday, P.S.; Mikhailov, T.A. Registered dietitians making a difference: Early medical record documentation of estimated energy requirement in critically ill children is associated with higher daily energy intake and with use of the enteral route. J. Acad. Nutr. Diet. 2013, 113, 1311–1316. [Google Scholar] [CrossRef]
- Reich, M.R.; Ikegami, N.; Shibuya, K.; Takemi, K. 50 years of pursuing a healthy society in Japan. Lancet 2011, 378, 1051–1053. [Google Scholar] [CrossRef]
- Nishioka, S.; Wakabayashi, H.; Maeda, K.; Shamoto, H.; Taketani, Y.; Kayashita, J.; Momosaki, R. Body mass index and recovery of activities of daily living in older patients with femoral fracture: An analysis of a national inpatient database in Japan. Arch. Gerontol. Geriatr. 2020, 87, 104009. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Maeda, K.; Nishioka, S.; Shamoto, H.; Momosaki, R. Impact of body mass index on activities of daily living in inpatients with acute heart failure. J. Nutr. Health Aging 2019, 23, 151–156. [Google Scholar] [CrossRef]
- Shirado, K.; Wakabayashi, H.; Maeda, K.; Momosaki, R. Impact of body mass index on activities of daily living in patients with idiopathic interstitial pneumonias. Healthcare 2020, 8, 385. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Maeda, K.; Wakabayashi, H.; Nishioka, S.; Nagano, A.; Kayashita, J.; Fujishima, I.; Momosaki, R. Predictive validity of body mass index cutoff values used in the Global Leadership Initiative on Malnutrition Criteria for discriminating severe and moderate malnutrition based on in-patients with pneumonia in Asians. JPEN J. Parenter. Enteral. Nutr. 2020. [Google Scholar] [CrossRef]
- Inoue, T.; Wakabayashi, H.; Maeda, K.; Momosaki, R. Body mass index affects postoperative daily activities of older patients after gastrectomy. Eur. Geriatr. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
Factor | All | Class 1 KRWs * | Class 2–6 KRWs † | p Value |
---|---|---|---|---|
Number of individuals, (%) | 39,417 (100) | 25,324 (64.2) | 14,093 (35.8) | |
Age, years, median (IQR) | 81 (73–87) | 81 (72–87) | 82 (74–87) | <0.001 1 |
Female, n (%) | 23,225 (58.9) | 14,714 (58.1) | 8511 (60.4) | <0.001 2 |
Disease, n (%) | <0.001 2 | |||
Stroke | 15,274 (38.8) | 10,328 (40.8) | 4946 (35.1) | |
Other neurological diseases | 3180 (8.1) | 2223 (8.8) | 957 (6.8) | |
Orthopaedic diseases | 18,032 (45.7) | 10,965 (43.3) | 7067 (50.1) | |
Hospital-associated deconditioning | 2931 (7.4) | 1808 (7.1) | 1123 (8.0) | |
Days between onset and admission, median (IQR) | 23 (15–35) | 23 (15–34) | 23 (15–36) | 0.006 1 |
Length of hospitalisation, median (IQR) | 75 (53–91) | 74 (53–91) | 77 (53–90) | <0.001 1 |
FIM, median (IQR) | ||||
Admission | 62 (41–83) | 62 (40–81) | 64 (42–85) | <0.001 1 |
Discharge | 97 (65–115) | 98 (66–115) | 96 (64–114) | <0.001 1 |
Gain | 24 (12–37) | 26 (13–38) | 22 (10–34) | <0.001 1 |
Discharge destination, n (%) | <0.001 2 | |||
Home | 24,982 (63.4) | 16,149 (63.7) | 8833 (62.7) | |
Death | 196 (0.5) | 105 (0.4) | 91 (0.7) | |
Acute care hospital | 2758 (7.0) | 1701 (6.7) | 1057 (7.4) | |
Long-term care hospital | 2097 (5.3) | 1405 (5.6) | 692 (4.9) | |
Long-term care facilities | 9384 (23.8) | 5964 (23.6) | 3420 (24.3) | |
BMI, n (%) | <0.001 2 | |||
Underweight (<18.5 kg/m2) | 12,498 (31.7) | 7816 (30.9) | 4682 (33.2) | |
Normal (18.5 to <23 kg/m2) | 26,919 (68.3) | 17,508 (69.1) | 9411 (66.8) | |
Weight loss, n (%) | 6989 (17.7) | 4382 (17.3) | 2607 (18.5) | 0.003 1 |
Factor | All | KRWs with Exclusively Staffed RDs * | KRWs without Exclusively Staffed RDs | p Value |
---|---|---|---|---|
Number | 14,093 | 1392 (9.9) | 12,701 (90.1) | |
Age, median (IQR) | 82 (74–78) | 82 (74–88) | 82 (74–87) | 0.428 1 |
Female, n (%) | 8511 (60.4) | 852 (61.2) | 7659 (60.3) | 0.512 2 |
Disease, n (%) | 0.040 2 | |||
Stroke | 4946 (35.1) | 475 (34.1) | 4471 (35.2) | |
Other neurological diseases/injuries | 957 (6.8) | 88 (6.3) | 869 (6.8) | |
Orthopaedic diseases/injuries | 7067 (50.1) | 691 (49.6) | 6376 (50.2) | |
Hospital-associated deconditioning | 1123 (8.0) | 138 (10.0) | 985 (7.8) | |
FIM at admission, median (IQR) | 64 (42–85) | 62 (41–83) | 64 (42–85) | 0.020 1 |
Weight loss, n (%) | 2607 (18.5) | 224 (16.1) | 2383 (18.8) | 0.015 2 |
Factor | OR | 95%CI | p Value | |
---|---|---|---|---|
Lower | Upper | |||
Age | 1.017 | 1.014 | 1.020 | <0.001 |
Sex, male | 0.703 | 0.655 | 0.755 | <0.001 |
Disease | ||||
Stroke | Reference | |||
Other neurological diseases/injuries | 0.682 | 0.603 | 0.769 | <0.001 |
Orthopaedic diseases/injuries | 0.827 | 0.772 | 0.887 | <0.001 |
Hospital-associated deconditioning | 0.889 | 0.794 | 0.994 | 0.039 |
Days between onset and admission | 0.993 | 0.991 | 0.995 | <0.001 |
FIM at admission | 0.984 | 0.983 | 0.985 | <0.001 |
Body weight at admission | 1.051 | 1.047 | 1.056 | <0.001 |
Number of nurses | 0.998 | 0.992 | 1.004 | 0.529 |
Daily rehabilitation dose (min/d) | 0.998 | 0.997 | 0.999 | <0.001 |
Class 1 KRWs † | 0.915 | 0.859 | 0.974 | 0.006 |
Factor | OR | 95%CI | p Value | |
---|---|---|---|---|
Lower | Upper | |||
Age | 1.016 | 1.011 | 1.021 | <0.001 |
Sex, male | 0.650 | 0.577 | 0.731 | <0.001 |
Disease | ||||
Stroke | Reference | |||
Other neurological diseases/injuries | 0.745 | 0.603 | 0.915 | 0.005 |
Orthopaedic diseases/injuries | 0.785 | 0.700 | 0.881 | <0.001 |
Hospital-associated deconditioning | 0.823 | 0.683 | 0.987 | 0.036 |
Days between onset and admission | 0.995 | 0.991 | 0.998 | 0.001 |
FIM at admission | 0.983 | 0.981 | 0.985 | <0.001 |
Body weight at admission | 1.056 | 1.048 | 1.064 | <0.001 |
Number of nurses | 1.000 | 0.991 | 1.010 | 0.886 |
Daily rehabilitation dose (min/d) | 0.998 | 0.996 | 0.999 | <0.001 |
Exclusively staffed registered dietitian (≥1 per ward) | 0.810 | 0.683 | 0.955 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishioka, S.; Kokura, Y.; Okamoto, T.; Takayama, M.; Miyai, I. Risk of Weight Loss in Adult Patients and the Effect of Staffing Registered Dietitians in Kaifukuki (Convalescent) Rehabilitation Wards: A Retrospective Analysis of a Nationwide Survey. Healthcare 2021, 9, 753. https://doi.org/10.3390/healthcare9060753
Nishioka S, Kokura Y, Okamoto T, Takayama M, Miyai I. Risk of Weight Loss in Adult Patients and the Effect of Staffing Registered Dietitians in Kaifukuki (Convalescent) Rehabilitation Wards: A Retrospective Analysis of a Nationwide Survey. Healthcare. 2021; 9(6):753. https://doi.org/10.3390/healthcare9060753
Chicago/Turabian StyleNishioka, Shinta, Yoji Kokura, Takatsugu Okamoto, Masako Takayama, and Ichiro Miyai. 2021. "Risk of Weight Loss in Adult Patients and the Effect of Staffing Registered Dietitians in Kaifukuki (Convalescent) Rehabilitation Wards: A Retrospective Analysis of a Nationwide Survey" Healthcare 9, no. 6: 753. https://doi.org/10.3390/healthcare9060753
APA StyleNishioka, S., Kokura, Y., Okamoto, T., Takayama, M., & Miyai, I. (2021). Risk of Weight Loss in Adult Patients and the Effect of Staffing Registered Dietitians in Kaifukuki (Convalescent) Rehabilitation Wards: A Retrospective Analysis of a Nationwide Survey. Healthcare, 9(6), 753. https://doi.org/10.3390/healthcare9060753