Diabetes Mellitus—A Risk Factor for Unfavourable Outcome in COVID-19 Patients—The Experience of an Infectious Diseases Regional Hospital
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Weekly Update by Select Demographic and Geographic Characteristics. Available online: https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm#Comorbidities (accessed on 4 May 2021).
- Rodgers, G.P.; Gibbons, G.H. Obesity and Hypertension in the time of COVID-19. JAMA 2020, 324, 1163–1165. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.; Pfeffer, M.A.; Solomon, S.D. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef]
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef]
- Siddiqi, H.K.; Mehra, M.R. COVID-19. illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Erener, S. Diabetes, infection risk and COVID-19. Mol. Metab. 2020, 39, 101044. [Google Scholar] [CrossRef]
- Bouhanick, B.; Cracowski, J.L.; Faillie, J.L. Diabetes and COVID-19. Therapies 2020, 75, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Vardhana, S.A.; Wolchok, J.D. The many faces of the anti-COVID immune response. J. Exp. Med. 2020, 217, e20200678. [Google Scholar] [CrossRef]
- STROBE Statement. Available online: https://www.strobe-statement.org/index.php?id=strobe-home (accessed on 4 May 2021).
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, S.; Tian, S.; Kong, L.Q. Full spectrum of COVID-19 severity still being depicted. Lancet 2020, 395, 947–948. [Google Scholar] [CrossRef]
- Mozafari, N.; Azadi, S.; Mehdi-Alamdarlou, S.; Ashrafi, H.; Azadi, A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med. Hypotheses 2020, 143, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020, 20, 669–677. [Google Scholar] [CrossRef]
- Zhu, L.; She, Z.G.; Cheng, X.; Qin, J.J.; Zhang, X.J.; Cai, J.; Lei, F.; Wang, H.; Xie, J.; Wang, W.; et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020, 31, 1068–1077. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Codo, A.C.; Davanzo, G.G.; Monteiro, L.B.; de Souza, G.F.; Muraro, S.P.; Virgilio-da-Silva, J.V.; Prodonoff, J.S.; Carregari, V.C.; de Biagi Junior, C.; Crunfli, F.; et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 2020, 32, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhoades, A.; Cheng, A.; Peacock, S.; Prescott, H. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID19): A review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Miftode, E.; Luca, C.; Manciuc, C.; Vâță, A.; Hunea, I.; Miftode, L.; Bădescu, A.; Dorneanu, O. Covid-19: A Course Through Stormy Waters. Med. Surg. J. Rev. Med. Chir. 2020, 124, 351–362. [Google Scholar]
- Faust, J.S.; Del Rio, C. Assessment of deaths from COVID-19 and from seasonal influenza. JAMA Intern. Med. 2020, 180, 1045–1046. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Wang, X.; Guo, H.; Fan, Y.; Song, Z.; Lu, Z.; Wang, J.; Zheng, C.; Dong, L.; Ma, Y.; et al. The cytokine profiles and immune response are increased in COVID-19 patients with type 2 Diabetes mellitus. J. Diabetes Res. 2021, 2021, 9526701. [Google Scholar] [CrossRef]
- Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017, 17, 233–247. [Google Scholar] [CrossRef]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, D.O.; Barffour, I.K.; Boye, A.; Aninagyei, E.; Ocansey, S.; Morna, M.T. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed. Pharmacother. 2020, 131, 110748. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Holman, N.; Knighton, P.; Kar, P.; O’Keefe, J.; Curley, M.; Weaver, A.; Barron, E.; Bakhai, C.; Khunti, K.; Wareham, N.J.; et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study. Lancet Diabetes Endocrinol. 2020, 8, 823–833. [Google Scholar] [CrossRef]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Drucker, D.J. Coronavirus infections and type 2 diabetes–shared pathways with therapeutic implications. Endocr. Rev. 2020, 41, 457–470. [Google Scholar] [CrossRef]
- Yang, J.K.; Feng, Y.; Yuan, M.Y.; Yuan, S.Y.; Fu, H.J.; Wu, B.Y.; Sun, G.Z.; Yang, G.R.; Zhang, X.L.; Wang, L.; et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet. Med. 2020, 23, 623–628. [Google Scholar] [CrossRef]
- Mazucanti, H.; Egan, J.M. SARS-CoV-2 disease severity and diabetes: Why the connection and what is to be done? Immun. Ageing 2020, 17, 21. [Google Scholar] [CrossRef]
- Carey, I.M.; Critchley, J.A.; DeWilde, S.; Harris, T.; Hosking, F.J.; Cook, D.G. Risk of infection in type 1 and type 2 diabetes compared with the general population: A matched cohort study. Diabetes Care 2018, 41, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Critchley, J.A.; Carey, I.M.; Harris, T.; DeWilde, S.; Hosking, F.J.; Cook, D.G. Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study. Diabetes Care 2018, 41, 2127–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.; Bae, J.H.; Kwon, H.S.; Nauck, M.A. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat. Rev. Endocrinol. 2020, 17, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Gianchandani, R.; Esfandiari, N.H.; Ang, L.; Iyengar, J.; Knotts, S.; Choksi, P.; Pop-Busui, R. Managing hyperglycemia in the COVID-19 inflammatory storm. Diabetes 2020, 69, 2048–2053. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Girgis, C.M.; Cheung, N.W. COVID-19 and diabetes: Insulin requirements parallel illness severity in critically unwell patients. Clin. Endocrinol. 2020, 93, 390–393. [Google Scholar] [CrossRef]
- Tleyjeh, I.M.; Kashour, Z.; Damlaj, M.; Riaz, M.; Tlayjeh, H.; Altannir, M.; Altannir, Y.; Al-Tannir, M.; Tleyjeh, R.; Hassett, L.; et al. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 215–227. [Google Scholar] [CrossRef]
- Svennevig, K.; Kolset, S.O.; Bangstad, H.J. Increased syndecan-1 in serum is related to early nephropathy in type 1 diabetes mellitus patients. Diabetologia 2006, 49, 2214–2216. [Google Scholar] [CrossRef] [Green Version]
- Alattar, R.; Ibrahim, T.; Shaar, S.H.; Abdalla, S.; Shukri, K.; Daghfal, J.N.; Khatib, M.Y.; Aboukamar, M.; Abukhattab, M.; Alsoub, H.A.; et al. Tocilizumab for the treatment of severe coronavirus disease 2019. J. Med. Virol. 2020, 92, 2042–2049. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef]
- Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020, 53, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, Y.; Mehta, R.; Karnik, N.; Kulkarni, U.; Gokhale, S. Tocilizumab improves survival in patients with persistent hypoxia in severe COVID-19 pneumonia. EClinicalMedicine 2020, 24, 100467. [Google Scholar] [CrossRef] [PubMed]
Month | No. | % |
---|---|---|
March | 10 | 4 |
April | 24 | 9.6 |
May | 25 | 10.7 |
June | 30 | 11.9 |
July | 24 | 9.6 |
August | 33 | 13 |
September | 49 | 19.6 |
October | 55 | 22.6 |
COVID-19 Deceased Patients (n = 250) | No | % |
---|---|---|
<40 years | 2 | 0.8 |
40–49 years | 18 | 7.2 |
50–59 years | 36 | 14.4 |
60–69 years | 58 | 23.2 |
70–79 years | 72 | 28.8 |
80–89 years | 55 | 22.0 |
90+ years | 9 | 3.6 |
COVID-19 Deceased Patients (n = 250) | Females | Males | Entire Group | p Values for Chi2 Test |
---|---|---|---|---|
Age < 65 | 16 | 60 | 76 | 0.037 |
Age > 65 | 59 | 115 | 174 |
COVID-19 Patients with Type 2 DM + (n = 634) | No (%) | COVID-19 Patients Non-DM (No = 3351) | No (%) | p Values for Chi2 Test |
---|---|---|---|---|
High Arterial Blood Pressure | 197 (31.1%) | High Arterial Blood Pressure | 825 (24.6%) | 0.001 |
Obesity | 155 (24.5%) | Obesity | 626 (18.6%) | 0.001 |
Chronic Kidney Disease | 90 (14.2%) | Chronic Kidney Disease | 611 (18.2%) | 0.014 |
Neoplasia | 79 (12.5%) | Neoplasia | 590 (17.6%) | 0.050 |
Autoimmune diseases | 28 (4.4%) | Autoimmune diseases | 117 (3.5%) | 0.254 |
Liver Cirrhosis | 20 (3.2%) | Liver Cirrhosis | 99 (3.0%) | 0.786 |
COVID-19 Deceased Patients (n = 250) | Age < 65 | Age > 65 | Males (no/%) | Females (no/%) | ICU Admission |
---|---|---|---|---|---|
with DM (n = 91) | 25 (28.1%) | 66 (71.9%) | 53 (57.8%) | 38 (42.2%) | 66 (71.9%) |
without DM (n = 159) | 53 (33.6%) | 106 (66.4%) | 96 (60.2%) | 63 (39.8%) | 113 (70.8%) |
COVID-19 Patients | Total Number of Patients (n = 3985) | with DM (n = 634) | without DM (n = 3351) | Chi2 Test | |||
---|---|---|---|---|---|---|---|
χ2 | p | RR | IC95% | ||||
Severe form(respiratory failure) | 870 | 193 (30.4%) | 677 (20.2%) | 32.15 | 0.001 | 1.51 | 1.32–1.73 |
chest X-ray picture suggestive for bronchopneumonia | 144 | 20 (3.2%) | 124 (3.2%) | 0.001 | 0.938 | 1.00 | 0.62–1.58 |
chest X-ray picture suggestive for interstitial pneumonia | 383 | 54 (8.5%) | 329 (8.4%) | 0.005 | 0.993 | 1.01 | 0.76–1.34 |
patients treated with Tocilizumab | 349 | 103 (16.3%) | 246 (7.3%) | 52.89 | 0.001 | 2.21 | 1.97–2.74 |
deaths number | 250 | 91 (36.4%) | 159 (53.4%) | 82.08 | 0.001 | 3.03 | 2.37–3.86 |
Covid-19 Patients | IL-6 Normal Values (<3.8 pg/mL) | Il-6 < 50 pg/mL | Il-6 > 50 pg/mL |
---|---|---|---|
With DM (n = 634) | 202 (31.9%) | 174 (27.4%) | 258 (40.7%) |
Without DM (n = 3351) | 2056 (61.4 %) | 375 (11.2%) | 920 (27.5%) |
COVID-19 Patients | Favourable Outcome | Deaths | p Values for Chi2 Test |
---|---|---|---|
Patients with DM treated with Tocilizumab (n = 103) | 79 (76.7%) | 24 (23.3%) | 0.001 |
Nondiabetic patients treated with Tocilizumab (n = 246) | 87 (35.3)% | 159 (64.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miftode, E.; Miftode, L.; Coman, I.; Prepeliuc, C.; Obreja, M.; Stămăteanu, O.; Părângă, T.G.; Leca, D.; Pleşca, C.E. Diabetes Mellitus—A Risk Factor for Unfavourable Outcome in COVID-19 Patients—The Experience of an Infectious Diseases Regional Hospital. Healthcare 2021, 9, 788. https://doi.org/10.3390/healthcare9070788
Miftode E, Miftode L, Coman I, Prepeliuc C, Obreja M, Stămăteanu O, Părângă TG, Leca D, Pleşca CE. Diabetes Mellitus—A Risk Factor for Unfavourable Outcome in COVID-19 Patients—The Experience of an Infectious Diseases Regional Hospital. Healthcare. 2021; 9(7):788. https://doi.org/10.3390/healthcare9070788
Chicago/Turabian StyleMiftode, Egidia, Larisa Miftode, Ioana Coman, Cristian Prepeliuc, Maria Obreja, Oana Stămăteanu, Tudorița Gabriela Părângă, Daniela Leca, and Claudia Elena Pleşca. 2021. "Diabetes Mellitus—A Risk Factor for Unfavourable Outcome in COVID-19 Patients—The Experience of an Infectious Diseases Regional Hospital" Healthcare 9, no. 7: 788. https://doi.org/10.3390/healthcare9070788
APA StyleMiftode, E., Miftode, L., Coman, I., Prepeliuc, C., Obreja, M., Stămăteanu, O., Părângă, T. G., Leca, D., & Pleşca, C. E. (2021). Diabetes Mellitus—A Risk Factor for Unfavourable Outcome in COVID-19 Patients—The Experience of an Infectious Diseases Regional Hospital. Healthcare, 9(7), 788. https://doi.org/10.3390/healthcare9070788