Solid Fluorescence pH Sensors Based on 1,8-Naphthalimide Copolymers Synthesized by UV Curing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Monomers Based on 1,8-Naphtalimide Derivatives
2.2.1. Synthesis of N-(2-Hydroxyethyl)-4-bromo-1,8-naphthalimide (1a) and N-(2-(2-Hydroxyethoxy)ethyl)-4-bromo-1,8-naphthalimide (1b)
2.2.2. Synthesis of N-(2-Hydroxyethyl)-4-dimethylamine-1,8-naphthalimide (2a) and N-(2-(2-Hydroxyethoxy)ethyl)-4-dimethylamine-1,8-naphthalimide (2b)
2.2.3. Synthesis of 2-(2-(6-(Dimethylamino)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) ethoxy)ethyl Methacrylate (3a) and 2-(6-(Dimethylamino)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl Methacrylate (3b)
2.3. Characterization and Procedures
3. Results
3.1. Characterization of Sensory Materials
3.2. Spectroscopic Characteristic of Monomers (3a and 3b) and Membranes (M3a and M3b)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef] [Green Version]
- Oshchepkov, A.S.; Oshchepkov, M.S.; Oshchepkova, M.V.; Al-Hamry, A.; Kanoun, O.; Kataev, E.A. Naphthalimide-Based Fluorescent Polymers for Molecular Detection. Adv. Opt. Mater. 2021, 11, 2001913–2001943. [Google Scholar] [CrossRef]
- Li, P.; Zhang, D.; Zhang, Y.; Lu, W.; Zhang, J.; Wang, W.; He, Q.; Théato, P.; Chen, T. Aggregation-Caused Quenching-Type Naphthalimide Fluorophores Grafted and Ionized in a 3D Polymeric Hydrogel Network for Highly Fluorescent and Locally Tunable Emission. ACS Macro Lett. 2019, 8, 937–942. [Google Scholar] [CrossRef]
- Gudeika, D. A review of investigation on 4-substituted 1,8-naphthalimide derivatives. Synth. Met. 2020, 262, 116328. [Google Scholar] [CrossRef]
- Poddar, M.; Sivakumar, G.; Misra, R. Donor–acceptor substituted 1,8-naphthalimides: Design, synthesis, and structure–property relationship. J. Mater. Chem. C 2019, 7, 14798–14815. [Google Scholar] [CrossRef]
- Shaki, H.; Gharanjig, K.; Rouhani, S.; Khosravi, A. Synthesis and photophysical properties of some novel fluorescent dyes based on naphthalimide derivatives. J. Photochem. Photobiol. A 2010, 216, 44. [Google Scholar] [CrossRef]
- Sanjuán, A.M.; Reglero Ruiz, J.A.; García, F.C.; García, J.M. Recent developments in sensing devices based on polymeric systems. React. Funct. Polym. 2018, 133, 103–125. [Google Scholar] [CrossRef]
- Jiang, J.; Leng, B.; Xiao, X.; Zhao, P.; Tian, H. “Off-On-Off” fluorescent proton switch synthesized by RAFT polymerization. Polymer 2009, 50, 5681–5684. [Google Scholar] [CrossRef]
- Hladysh, S.; Murmiliuk, A.; Vohlídal, J.; Zedník, J. Attachment of a 1,8-Naphthalimide Moiety to a Conjugated Polythiophene Efficiently Improves the Sensing Abilities of Naphthalimide-Based Materials. Macromol. Chem. Phys. 2019, 220, 1800436–1800446. [Google Scholar] [CrossRef]
- He, H.; Mortellaro, M.A.; Leiner, M.J.P.; Fraatz, R.J.; Tusa, J.K. A Fluorescent Sensor with High Selectivity and Sensitivity for Potassium in Water. J. Am. Chem. Soc. 2003, 125, 1468–1469. [Google Scholar] [CrossRef]
- Lei, S.; Meng, X.; Wang, L.; Zhou, J.; Qin, D.; Duan, H. A Naphthalimide-Based Fluorescent Probe for the Detection and Imaging of Mercury Ions in Living Cells. Chem. Open 2021, 10, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Udhayakumari, D. Detection of toxic fluoride ion via chromogenic and fluorogenic sensing. A comprehensive review of the year 2015–2019. Spectrochim. Acta Part A 2020, 228, 117817–117850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Feng, Q.; Yang, M.; Tang, Y. A ratiometric fluorescent biosensor based on conjugated polymers for sensitive detection of nitroreductase and hypoxia diagnosis in tumor cells. Sens. Actuators B 2020, 318, 128257–128265. [Google Scholar] [CrossRef]
- Huang, S.; Han, R.; Zhuang, Q.; Liu, Y. New photostable naphthalimide-based fluorescent probe for mitochondrial imaging and tracking. Biosens. Bioelectron. 2015, 71, 313–321. [Google Scholar] [CrossRef]
- Li, P.; Zhang, D.; Zhang, Y.; Lu, W.; Wang, W.; Chen, T. Ultrafast and Efficient Detection of Formaldehyde in Aqueous Solutions Using Chitosan-based Fluorescent Polymers. ACS Sens. 2018, 3, 2394–2401. [Google Scholar] [CrossRef] [PubMed]
- Un, H.; Wu, S.; Huang, C.B.; Xuc, Z.; Xu, L. A naphthalimide-based fluorescent probe for highly selective detection of histidine in aqueous solution and its application in in vivo imaging. Chem. Commun. 2015, 15, 3143–3146. [Google Scholar] [CrossRef] [PubMed]
- Staneva, D.; Vasileva-Tonkova, E.; Grozdanov, P.; Vilhelmova-llieva, N.; Nikolova, I.; Grabchev, I. Synthesis and photophysical characterisation of 3-bromo-4-dimethylamino-1,8-naphthalimides and their evaluation as agents for antibacterial photodynamic therapy. J. Photochem. Photobiol. A Chem. 2020, 401, 112730–112737. [Google Scholar] [CrossRef]
- Fernández-Alonso, S.; Corrales, T.; Pablos, J.L.; Catalina, F. Solid fluorescence sensors obtained by functionalization of photocrosslinked water-swollen acrylic membranes with 4-piperazine naphthalimide derivatives. Polymer 2017, 12, 139–150. [Google Scholar] [CrossRef]
- Fernández-Alonso, S.; Corrales, T.; Pablos, J.L.; Catalina, F. A Switchable fluorescence solid sensor for Hg2+ detection in aqueous media based on a photocrosslinked membrane functionalized with (benzimidazolyl)methyl-piperazine derivative of 1,8-naphthalimide. Sens. Actuators B. Chem. 2018, 270, 256–262. [Google Scholar] [CrossRef]
- Grabchev, I.; Qian, X.; Xiao, Y.; Zhang, R. Novel heterogeneous PET fluorescent sensors selective for transition metal ions or protons: Polymers regularly labelled with naphthalimide. New J. Chem. 2002, 26, 920–925. [Google Scholar] [CrossRef]
- Tian, Y.; Su, F.; Weber, W.; Nandakumar, V.; Shumway, B.R.; Jin, Y.; Zhou, X.; Holl, M.R.; Johnson, R.H.; Meldrum, D.R. A series of naphthalimide derivatives as intra and extracellular pH sensors. Biomaterials 2010, 31, 7411–7422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Xiao, X.; Zhao, P.; Tian, H. Colorimetric naked-eye recognizable anion sensors synthesized via RAFT polymerization. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 1551–1556. [Google Scholar] [CrossRef]
- Zhou, L.; Lv, F.; Liu, L.; Wang, S. Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications. Acc. Chem. Res. 2019, 52, 3211–3222. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alonso, S.; Corrales, T.; Pablos, J.L.; Catalina, F. Surface modification of poly(ethylene-butyl acrylate) copolymers by microwave methodology and functionalization with 4-dimethylamino-N-(2-hydroxyethyl)-1,8-naphthalimide for acidity sensing. React. Funct. Polym. 2016, 107, 78–86. [Google Scholar] [CrossRef]
- Pagac, M.; Haiyins, J.; Ma, Q.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef]
- Larraza, I.; Peinado, C.; Abrusci, C.; Catalina, F.; Corrales, T. Hyperbranched polymers as clay surface modifiers for UV-cured nanocomposites with antimicrobial activity. J. Photochem. Photobiol. A Chem. 2011, 224, 46–54. [Google Scholar] [CrossRef]
- Jagtap, A.; More, A. A review on self-initiated and photoinitiator-free system for photopolymerization. Polym. Bull. 2021, 11, 2874. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. Eur. Polym. J. 2021, 143, 110178–110200. [Google Scholar] [CrossRef]
- Allen, N.S.; Corrales, T.; Edge, M.; Catalina, F.; Blanco-Pina, M.; Green, A. Photochemistry and photopolymerization activities of novel phenylthiobenzophenone and diphenylthiophene photoinitiators. Polymer 1998, 39, 903–909. [Google Scholar] [CrossRef]
- Redondo-Foj, B.; Carsí, M.; Ortiz-Serna, P.; Sanchis, M.J.; Vallejos, S.; García, F.; García, J.M. Effect of the Dipole-Dipole interactions in the molecular dynamics of poly(vinylpyrrolidone)-based copolymers. Macromolecules 2014, 47, 5334–5346. [Google Scholar] [CrossRef]
- Panchencko, A.; Fedorova, O.A.; Fedorov, Y.V. Fluorescent and colorimetric chemosensors for cations based on 1,8-naphthalimide derivatives: Design principles and optical signalling mechanisms. Russ. Chem. Rev. 2014, 83, 155–164. [Google Scholar] [CrossRef]
- Zamarreño, C.R.; Bravo, J.; Goicoechea, J.; Matias, I.R.; Arregui, F.J. Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings. Sens. Actuators B 2007, 128, 138–144. [Google Scholar] [CrossRef]
- Frankær, C.G.; Sørensen, T.J. Investigating the Time Response of an Optical pH Sensor Based on a Polysiloxane–Polyethylene Glycol Composite Material Impregnated with a pH-Responsive Triangulenium Dye. ACS Omega 2019, 4, 8381–8389. [Google Scholar] [CrossRef] [PubMed]
Materials | T5 (°C) | Tmax (°C) | Tg (°C) | SD (%) |
---|---|---|---|---|
Mref | 335 | 407 | 60 | 38 |
M3a | 340 | 409 | 59 | 39 |
M3b | 342 | 409 | 54 | 38 |
λABS (nm) | Log ε | λFLU (nm) | ϕFLU | ||
---|---|---|---|---|---|
H2O:EtOH | Hexane | ||||
Derivative 3a | 446 | 4.01 | 546 | 0.01 | 0.72 |
Derivative 3b | 443 | 4.01 | 546 | 0.03 | 0.77 |
Membrane M3a | 428 | - | 520 | - | - |
Membrane M3b | 428 | - | 520 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pablos, J.L.; Hernández, E.; Catalina, F.; Corrales, T. Solid Fluorescence pH Sensors Based on 1,8-Naphthalimide Copolymers Synthesized by UV Curing. Chemosensors 2022, 10, 73. https://doi.org/10.3390/chemosensors10020073
Pablos JL, Hernández E, Catalina F, Corrales T. Solid Fluorescence pH Sensors Based on 1,8-Naphthalimide Copolymers Synthesized by UV Curing. Chemosensors. 2022; 10(2):73. https://doi.org/10.3390/chemosensors10020073
Chicago/Turabian StylePablos, Jesús L., Esther Hernández, Fernando Catalina, and Teresa Corrales. 2022. "Solid Fluorescence pH Sensors Based on 1,8-Naphthalimide Copolymers Synthesized by UV Curing" Chemosensors 10, no. 2: 73. https://doi.org/10.3390/chemosensors10020073
APA StylePablos, J. L., Hernández, E., Catalina, F., & Corrales, T. (2022). Solid Fluorescence pH Sensors Based on 1,8-Naphthalimide Copolymers Synthesized by UV Curing. Chemosensors, 10(2), 73. https://doi.org/10.3390/chemosensors10020073