Nonlinear Multivariate Regression Algorithms for Improving Precision of Multisensor Potentiometry in Analysis of Spent Nuclear Fuel Reprocessing Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Array
2.2. Samples
2.3. Reference Analysis
2.4. Data Processing
2.4.1. Partial Least Squares (PLS)
2.4.2. Support Vector Machines (SVM)
2.4.3. Random Forest (RF)
2.4.4. Kernel Regularized Least Squares (KRLS)
- Leave one out cross-validation (LOOCV) is a well-known method that estimates the performance of a model by leaving one point out of the full dataset, with the rest being used to train the model. After training, the left-out data point is used to test the model. The process is repeated throughout the whole initial dataset on all the samples. The main disadvantage of this method is that it provides too optimistic/unrealistic results.
- Monte Carlo cross-validation (MCCV) has a somewhat different algorithm. The data are randomly split to make training sets and test sets. In our case, we had 25–75% split in favor of the training set in each iteration. After that, the model is tested by calculating the average error after 100 iterations. This method offers a better insight into the performance of the model and provides somewhat more realistic results than LOOCV.
- Finally, the performance of the regression tools was tested on the most interesting analytes through calculating the RMSEP on the test set that was made by randomly picking the samples from the full dataset. The training set from the remaining samples was used to build the models of corresponding methods.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sood, D.D.; Patil, S.K. Chemistry of nuclear fuel reprocessing: Current status. J. Radioanal. Nucl. Chem. 1996, 203, 547–573. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baron, P.; Nilsson, M. Standard and advanced separation: PUREX processes for nuclear fuel reprocessing. In Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment; Woodhead Publishing: Oxford, UK, 2011; pp. 141–175. [Google Scholar]
- Miguirditchian, M.; Grandjean, S.; Sorel, C.; Vanel, V.; Delahaye, T.; Pillon, S.; Ramond, L.; Ladirat, C.; Giboire, I.; Poinssot, C.; et al. Advanced concepts for uranium and plutonium multi-recycling. In Proceedings of the GLOBAL 2017 International Nuclear Fuel Cycle conference, Seoul, Korea, 24–29 September 2017; p. ffhal-02418116. [Google Scholar]
- Günther-Leopold, I.; Kivel, N.; Waldis, J.K.; Wernli, B. Characterization of nuclear fuels by ICP mass-spectrometric techniques. Anal. Bioanal. Chem. 2008, 390, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Croudace, I.W.; Russell, B.C.; Warwick, P.W. Plasma source mass spectrometry for radioactive waste characterisation in support of nuclear decommissioning: A review. J. Anal. Atom. Spectrom. 2017, 32, 494–526. [Google Scholar] [CrossRef] [Green Version]
- Naumova, Y.A.; Sapozhnikova, N.V.; Egorova, O.N.; Lumpov, A.A. Determination of concentrations of fission products by ICP–AES in solutions from spent nuclear fuel reprocessing. Radiochemistry 2017, 59, 618–623. [Google Scholar] [CrossRef]
- Ache, H.J. Analytical chemistry in nuclear technology. Fresen. J. Anal. Chem. 1992, 343, 852–862. [Google Scholar] [CrossRef]
- The North-East Atlantic Environment Strategy, OSPAR Agreement 2010–2013. 2010. Available online: https://www.cbd.int/doc/nbsap/rbsap/ospar-rbsap.pdf (accessed on 30 December 2021).
- International Atomic Energy Agency Safety Standards, Safety of Nuclear Fuel Reprocessing Facilities, SSG-42. 2017. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/P1744_web.pdf (accessed on 30 December 2021).
- Kirsanov, D.; Rudnitskaya, A.; Legin, A.; Babain, V. UV–Vis spectroscopy with chemometric data treatment: An option for on-line control in nuclear industry. J. Radioanal. Nucl. Chem. 2017, 312, 461–470. [Google Scholar] [CrossRef]
- Tse, P.; Bryan, S.A.; Bessen, N.P.; Lines, A.M.; Shafer, J.C. Review of on-line and near real-time spectroscopic monitoring of processes relevant to nuclear material management. Anal. Chim. Acta 2020, 1107, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Debus, B.; Kirsanov, D.; Ruckebusch, C.; Agafonova-Moroz, M.; Babain, V.; Lumpov, A.; Legin, A. Restoring important process information from complex optical spectra with MCR-ALS: Case study of actinide reduction in spent nuclear fuel reprocessing. Chemom. Intell. Lab. Syst. 2015, 146, 241–249. [Google Scholar] [CrossRef]
- Agafonova-Moroz, M.; Savosina, J.; Voroshilov, Y.; Lukin, S.; Lumpov, A.; Babain, V.; Legin, A.; Kirsanov, D. Quantification of thorium and uranium in real process streams of Mayak radiochemical plant using potentiometric multisensor array. J. Radioanal. Nucl. Chem. 2020, 323, 605–612. [Google Scholar] [CrossRef]
- Savosina, J.; Agafonova-Moroz, M.; Yaroshenko, I.; Ashina, J.; Babain, V.; Lumpov, A.; Legin, A.; Kirsanov, D. Plutonium (IV) quantification in technologically relevant media using potentiometric sensor array. Sensors 2020, 20, 1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleneva, E.; Savosina, J.; Agafonova-Moroz, M.; Lumpov, A.; Babain, V.; Jahatspanian, I.; Legin, A.; Kirsanov, D. Potentiometric multisensor system for tetra-and hexavalent actinide quantification in complex rare earth metal mixtures related to spent nuclear fuel reprocessing. Sens. Actuat. B Chem. 2019, 288, 155–162. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Yang, T.; Sundling, M.C.; Freed, A.S.; Breneman, C.M.; Cramer, S.M. Prediction of pH-dependent chromatographic behavior in ion-exchange systems. Anal. Chem. 2007, 79, 8927–8939. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, L.; Niu, D.; Tan, Z. An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl. Energy 2012, 94, 65–70. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Machine Learning 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rajappan, R.; Shingade, P.D.; Natarajan, R.; Jayaraman, V.K. Quantitative Structure—Property Relationship (QSPR) Prediction of Liquid Viscosities of Pure Organic Compounds Employing Random Forest Regression. Ind. Eng. Chem. Res. 2009, 8, 9708–9712. [Google Scholar] [CrossRef]
- Hainmueller, J.; Hazlett, C. Kernel regularized least squares: Reducing misspecification bias with a flexible and interpretable machine learning approach. Polit. Anal. 2014, 22, 143–168. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Kucheryavskiy, S. Mdatools–R package for chemometrics. Chemom. Intell. Lab. Syst. 2020, 198, 103937. [Google Scholar] [CrossRef]
- Meyer, D.; Dimitriadou, E.; Hornik, K.; Weingessel, A.; Leisch, F.; Chang, C.-C.; Lin, C.-C. 2021, Package ‘e1071’, ver. 1.7–9. Available online: https://cran.r-project.org/web/packages/e1071/index.html (accessed on 30 December 2021).
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. 2018, Package ‘randomForest’, ver. 4.6–14. Available online: https://cran.r-project.org/web/packages/randomForest/ (accessed on 30 December 2021).
- Hainmueller, J.; Hazlett, C. 2017, Package ‘KRLS’, ver. 1.0–0. Available online: https://cran.r-project.org/web/packages/KRLS/index.html (accessed on 30 December 2021).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B. 2021, Package ‘caret’, ver. 6.0–90. Available online: https://cran.r-project.org/web/packages/caret/ (accessed on 30 December 2021).
- Savosina, J.; Agafonova-Moroz, M.; Khaydukova, M.; Legin, A.; Babain, V.; Tolstoy, P.; Kirsanov, D. On the Radiolytic Stability of Potentiometric Sensors with Plasticized Polymeric Membranes. Chemosensors 2021, 9, 214. [Google Scholar] [CrossRef]
Element | RMSECV, Monte Carlo Cross-Validation, Repeats = 100 | Concentration Range *, mg/L | |||
---|---|---|---|---|---|
PLS | SVM | RF | KRLS | ||
U | 125.8 | 49.8 | 70.4 | 47.8 | 4.6–741.7 |
La | 33.9 | 28.7 | 29.1 | 24.7 | 0.1–209.1 |
Ce | 18.1 | 19.5 | 23.7 | 16.9 | 0.1–104.5 |
Sm | 8.8 | 6.6 | 16.7 | 8.1 | 1.2–101.6 |
Zr | 16.6 | 15.4 | 10.4 | 14.3 | 1.2–92.3 |
Mo | 0.34 | 0.33 | 0.43 | 0.30 | 0.6–2.7 |
Zn | 0.89 | 0.25 | 0.88 | 0.79 | 0.7–10.5 |
Ru | 0.94 | 0.94 | 0.74 | 0.81 | 0.0–4.9 |
Fe | 2.84 | 3.56 | 2.44 | 2.79 | 0.0–12.0 |
Ca | 68.1 | 53.7 | 68.7 | 41.7 | 60.8–469.5 |
Am | 0.16 | 0.21 | 0.21 | 0.18 | 1.4–3.8 |
Cm | 0.86 | 0.87 | 0.61 | 0.51 | 1.8–8.0 |
Element | #Samples in the Test Set | RMSEP, mg/L | Concentration Range *, mg/L | |||
---|---|---|---|---|---|---|
PLS | SVM | RF | KRLS | |||
U | 1, 3, 8, 14, 16, 21 | 87.8 | 28.7 | 71.3 | 20.2 | 4.6–741.7 |
Sm | 2, 4, 5, 15, 19, 20 | 17.6 | 7.4 | 18.2 | 6.3 | 1.2–97.3 |
Am | 1, 7, 11, 13, 15, 23 | 0.10 | 0.14 | 0.25 | 0.79 | 1.4–3.8 |
Cm | 1, 9, 11, 13, 21 | 0.68 | 0.46 | 0.57 | 0.39 | 1.8–7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kravić, N.; Savosina, J.; Agafonova-Moroz, M.; Babain, V.; Legin, A.; Kirsanov, D. Nonlinear Multivariate Regression Algorithms for Improving Precision of Multisensor Potentiometry in Analysis of Spent Nuclear Fuel Reprocessing Solutions. Chemosensors 2022, 10, 90. https://doi.org/10.3390/chemosensors10030090
Kravić N, Savosina J, Agafonova-Moroz M, Babain V, Legin A, Kirsanov D. Nonlinear Multivariate Regression Algorithms for Improving Precision of Multisensor Potentiometry in Analysis of Spent Nuclear Fuel Reprocessing Solutions. Chemosensors. 2022; 10(3):90. https://doi.org/10.3390/chemosensors10030090
Chicago/Turabian StyleKravić, Nadan, Julia Savosina, Marina Agafonova-Moroz, Vasily Babain, Andrey Legin, and Dmitry Kirsanov. 2022. "Nonlinear Multivariate Regression Algorithms for Improving Precision of Multisensor Potentiometry in Analysis of Spent Nuclear Fuel Reprocessing Solutions" Chemosensors 10, no. 3: 90. https://doi.org/10.3390/chemosensors10030090
APA StyleKravić, N., Savosina, J., Agafonova-Moroz, M., Babain, V., Legin, A., & Kirsanov, D. (2022). Nonlinear Multivariate Regression Algorithms for Improving Precision of Multisensor Potentiometry in Analysis of Spent Nuclear Fuel Reprocessing Solutions. Chemosensors, 10(3), 90. https://doi.org/10.3390/chemosensors10030090