Tailoring Magnetic Properties and Magnetoimpedance Response in Nanocrystalline (Fe3Ni)81Nb7B12 Ribbons for Sensor Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural and Magnetic Characterisation
3.2. Magnetic Behaviour
3.3. Magnetoimpedance Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leary, A.M.; Ohodnicki, P.R.; McHe, M.E. Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications. JOM 2012, 64, 772–781. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Silveyra, J.M.; Ferrara, E.; Huber, D.L.; Monson, T.C. Soft magnetic materials for a sustainable and electrified world. Science 2018, 362, eaao0195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Ping Liu, J. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Herzer, G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 2013, 61, 718–734. [Google Scholar] [CrossRef]
- Jiles, D. Recent advances and future directions in magnetic materials. Acta Mater. 2003, 51, 5907–5939. [Google Scholar] [CrossRef]
- Luborsky, F.E. Development of Elongated Particle Magnets. J. Appl. Phys. 1961, 32, 171S–183S. [Google Scholar] [CrossRef]
- Zhou, J.; You, J.; Qiu, K. Advances in Fe-based amorphous/nanocrystalline. J. Appl. Phys. 2022, 132, 040702. [Google Scholar] [CrossRef]
- Li, H.; Wang, A.; Liu, T.; Chen, P.; He, A.; Li, Q.; Luan, J.; Liu, C.-T. Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability. Mater. Today 2021, 42, 49–56. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Oguma, S.; Yamauchi, K. New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 1988, 64, 6044–6046. [Google Scholar] [CrossRef]
- Suzuki, K.; Kataoka, N.; Inoue, A.; Makino, A.; Masumoto, T. High Saturation Magnetization and Soft Magnetic Properties of bcc Fe–Zr–B Alloys with Ultrafine Grain Structure. Mater. Trans. JIM 1990, 31, 743–746. [Google Scholar] [CrossRef] [Green Version]
- Makino, A.; Inoue, A.; Masumoto, T. Nanocrystalline Soft Magnetic Fe–M–B (M=Zr, Hf, Nb) Alloys Produced by Crystallization of Amorphous Phase. Mater. Trans. JIM 1995, 36, 924–938. [Google Scholar] [CrossRef] [Green Version]
- Willard, M.A.; Laughlin, D.E.; McHenry, M.E. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. J. Appl. Phys. 1998, 84, 6773–6777. [Google Scholar] [CrossRef]
- Herzer, G. Nanocrystalline soft magnetic materials. Phys. Scr. 1993, T49, 307–314. [Google Scholar] [CrossRef]
- Herzer, G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 1990, 26, 1397–1402. [Google Scholar] [CrossRef]
- Hono, K.; Hiraga, K.; Wang, Q.; Inoue, A.; Sakurai, T. The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Acta Metall. Mater. 1992, 40, 2137–2147. [Google Scholar] [CrossRef]
- Turčanová, J.; Marcin, J.; Kováč, J.; Janičkovič, D.; Švec, P.; Škorvánek, I. Magnetic and Mechanical Properties of Nanocrystalline Fe-Ni-Nb-B Alloys. J. Phys: Conf. Ser. 2009, 144, 012065. [Google Scholar] [CrossRef] [Green Version]
- Švec, P.; Miglierini, M.; Dekan, J.; Turčanová, J.; Vlasák, G.; Škorvánek, I.; Janičkovič, D.; Švec, S.P. Influence of Structure Evolution on Magnetic Properties of Fe-Ni-Nb-B System. IEEE Trans. Magn. 2010, 46, 412–415. [Google Scholar] [CrossRef]
- Kopcewicz, M.; Idzikowski, B.; Kalinowska, J. Mössbauer study of the magnetism and structure of amorphous and nanocrystalline Fe81−xNi𝑥Zr7B12 (x = 10–40) alloys. J. Appl. Phys. 2003, 94, 638–649. [Google Scholar] [CrossRef]
- Kopcewicz, M.; Grabias, A.; Nowicki, P.; Williamson, D.L. Mössbauer and x-ray study of the structure and magnetic properties of amorphous and nanocrystalline Fe81Zr7B12 and Fe79Zr7B12Cu2 alloys. J. Appl. Phys. 1996, 79, 993–1003. [Google Scholar] [CrossRef]
- Panina, L.V.; Mohri, K. Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 1994, 65, 1189–1191. [Google Scholar] [CrossRef]
- Beach, R.S.; Berkowitz, A.E. Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 1994, 64, 3652–3654. [Google Scholar] [CrossRef]
- Beach, R.S.; Berkowitz, A.E. Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon. J. Appl. Phys. 1994, 76, 6209–6213. [Google Scholar] [CrossRef]
- Harrison, E.P.; Turney, G.L.; Rowe, H.; Gollop, H. The Electrical Properties of High Permeability Wires Carrying Alternating Current. Proc. R. Soc. A 1936, 157, 451–479. [Google Scholar]
- Knobel, M.; Pirota, K. Giant magnetoimpedance: Concepts and recent progress. J. Magn. Magn. Mater. 2002, 242–245, 33–40. [Google Scholar] [CrossRef]
- González-Legarreta, L.; Andrejka, F.; Marcin, J.; Švec, P.; Varga, M.; Janičkovič, D.; Švec, S.P.; Škorvánek, I. Magnetoimpedance effect in nanocrystalline Fe73.5Cu1Nb3Si13.5B9 single-layer and bilayer ribbons. J. Alloys Comp. 2016, 688, 94–100. [Google Scholar] [CrossRef]
- Phan, M.-H.; Peng, H.-X.; Wisnom, M.R.; Yu, S.-C. Giant magnetoimpedance effect in ultrasoft FeAlSiBCuNb nanocomposites for sensor applications. J. Appl. Phys. 2005, 98, 1–7. [Google Scholar] [CrossRef]
- Vega, V.; Prida, V.; Hernando, B.; Ipatov, M.; Chizhik, A.; Zhukova, V.; Zhukov, A.; Domínguez, L.; González, J. Improvement of high frequency giant magnetoimpedance effect in CoFeSiB amorphous ribbon with vanishing magnetostriction by electrodeposited Co coating surface layer. J. Mater. Res. Technol. 2021, 15, 6929–6939. [Google Scholar] [CrossRef]
- González-Alonso, D.; González-Legarreta, L.; Corte-León, P.; Zhukova, V.; Ipatov, M.; Blanco, J.M.; Zhukov, A. Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications. Sensors 2020, 20, 3227. [Google Scholar] [CrossRef]
- García, D.; Muñoz, J.; Kurlyandskaya, G.; Vázquez, M.; Ali, M.; Gibbs, M. Induced anisotropy, magnetic domain structure and magnetoimpedance effect in CoFeB amorphous thin films. J. Magn. Magn. Mater. 1999, 191, 339–344. [Google Scholar] [CrossRef]
- Kraus, L. Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy. J. Magn. Magn. Mater. 1999, 195, 764–778. [Google Scholar] [CrossRef]
- Phan, M.-H.; Peng, H.-X. Giant magnetoimpedance materials: Fundamentals and applications. Prog. Mater Sci. 2008, 53, 323–420. [Google Scholar] [CrossRef]
- Panina, L.; Mohri, K.; Uchiyama, T.; Noda, M.; Bushida, K. Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 1995, 31, 1249–1260. [Google Scholar] [CrossRef]
- Yelon, A.; Ménard, D.; Britel, M.; Ciureanu, P. Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent. Appl. Phys. Lett. 1996, 69, 3084–3085. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Lezama, L.; Pasynkova, A.A.; Volchkov, S.O.; Lukshina, V.A.; Larrañaga, A.; Dmitrieva, N.V.; Timofeeva, A.V.; Orue, I. Amorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applications. Materials 2022, 15, 4160. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Saez, S.; Dolabdjian, C.; Melo, L.G.C.; Yelon, A.; Menard, D. Equivalent Magnetic Noise Limit of Low-Cost GMI Magnetometer. IEEE Sens. J. 2009, 9, 159–168. [Google Scholar] [CrossRef]
- Zhukov, A.; Ipatov, M.; Churyukanova, M.; Talaat, A.; JBlanco Zhukova, V. Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. J. Alloys Comp. 2017, 727, 887–901. [Google Scholar] [CrossRef]
- Qin, H.; Yu, X.; Li, B.; Hao, Y.; Huang, S.; Hu, J.; Jiang, M. Sample Length Dependence of Giant Magnetoimpedance in Fe–Zr–Nb–Cu–B Nanocrystalline Ribbons. Mater. Trans. JIM 2005, 46, 1261–1263. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, A.; Dhakal, T.P.; Witanachchi, S.; Le, A.-T.; Phan, M.-H.; Srikanth, H. Critical length and giant magnetoimpedance in Co69Fe4.5Ni1.5Si10B15 amorphous ribbons. Mater. Sci. Eng. B 2010, 172, 146–150. [Google Scholar] [CrossRef]
- Knobel, M.; Vázquez, M.; Kraus, L. Giant Magnetoimpedance. In Handbook of Magnetic Materials, 1st ed.; Buschow, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 15. [Google Scholar]
- Chikazumi, S.; Graham, C. Physics of Ferromagnetism, 2nd ed.; Oxford University Press: Oxford, UK, 1999; pp. 241–243. [Google Scholar]
- Bozorth, R.M. Ferromagnetism; IEEE Press: Piscataway, NJ, USA, 1993; p. 102. [Google Scholar]
- Suzuki, K.; Cadogan, J.M.; Dunlop, J.B.; Sahajwalla, V. Two stage nanostructural formation process in Fe–Nb–B soft magnetic alloys. Appl. Phys. Lett. 1995, 67, 1369–1371. [Google Scholar] [CrossRef]
- Kolano-Burian, A.; Kowalczyk, M.; Grabias, A.; Radoń, A.; Błyskun, P.; Warski, T.; Karpiński, M.; Hawelek, L.; Kulik, T. The influence of ultra-rapid annealing on nanocrystallization and magnetic properties of Fe76−xNi10B14Cux alloys. J. Alloys Comp. 2022, 921, 165943. [Google Scholar] [CrossRef]
- Chen, Z.; Kang, S.; Zhu, Q.; Zhang, K.; Hu, J.; Jiang, Y. Effect of Fe/Ni ratio on amorphization, crystallization kinetics, and magnetic properties of FeNiSiBCuNb alloys. J. Non Cryst. Solids 2022, 595, 121842. [Google Scholar] [CrossRef]
- Švec, P.; Švec Sr, P.; Hosko, J.; Janickovic, D. Formation of monophase Fe23B6-type alloy via crystallization of amorphous Fe–Ni–Nb–B system. J. Alloys Comp. 2014, 590, 87–91. [Google Scholar] [CrossRef]
- Suzuki, K.; Parsons, R.; Zang, B.; Onodera, K.; Kis, H.; Kato, A. Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steel. Appl. Phys. Lett. 2017, 110, 012407. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Hubbard, C.R.; Swanson, H.E.; Mauer, F.A. A silicon powder diffraction standard reference material. J. Appl. Cryst. 1975, 8, 45–48. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 5th ed.; John Willey & Sons, Inc.: New York, NY, USA; London, UK; Sydney, NSW, Australia, 1967; pp. 491–538. [Google Scholar]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. Mater. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Madhu, G.; Bose, V.C.; Maniammal, K.; Aiswarya Raj, A.; Biju, V. Microstrain in nanostructured nickel oxide studied using isotropic and anisotropic models. Physica. B 2013, 421, 87–91. [Google Scholar] [CrossRef]
- Kurlyandskaya, G.V.; Svalov, A.V.; Fernandez, E.; Garcia-Arribas, A.; Barandiaran, J.M. FeNi-based magnetic layered nanostructures: Magnetic properties and giant magnetoimpedance. J. Appl. Phys. 2010, 107, 09C502. [Google Scholar] [CrossRef]
- Zhukov, A.; Talaat, A.; Ipatov, M.; Blanco, J.; Zhukova, V. Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment. J. Alloys Comp. 2014, 615, 610–615. [Google Scholar] [CrossRef]
- Zhukov, A.; Ipatov, M.; Talaat, A.; Blanco, J.M.; Zhukova, V. Tailoring of Magnetic Properties and GMI Effect of Amorphous Microwires by Annealing. In Sensing Technology: Current Status and Future Trends III, 1st ed.; Mason, A., Chandra Mukhopadhyay, S., Padmarani Jayasundera, K., Eds.; Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2015; Volume 11, Smart Sensors, Measurement and Instrumentation; pp. 399–423. ISBN 978-3-319-10947-3. [Google Scholar]
- Škorvánek, I.; Marcin, J.; Krenický, T.; Kováč, J.; Švec, P.; Janičkovič, D. Improved soft magnetic behaviour in field-annealed nanocrystalline Hitperm alloys. J. Magn. Magn. Mater. 2006, 304, 203–207. [Google Scholar] [CrossRef]
- Škorvánek, I.; Marcin, J.; Turčanová, J.; Kováč, J.; Švec, P. Improvement of soft magnetic properties in Fe38Co38Mo8B15Cu amorphous and nanocrystalline alloys by heat treatment in external magnetic field. J. Alloys Comp. 2010, 504S, S135–S138. [Google Scholar] [CrossRef]
- Škorvánek, I.; Marcin, J.; Capik, M.; Varga, M.; Turcǎnová, J.; Kováč, J.; Švec, P.; Janičkovič, D.; Kováč, F.; Stoyka, V. Tailoring of functional properties in Fe-based soft magnetic alloys by thermal processing under magnetic field. Magnetohydrodynamics 2012, 48, 371–377. [Google Scholar]
- Blázquez, J.S.; Marcin, J.; Franco, V.; Conde, A.; Škorvánek, I. Influence of microstructure on the enhancement of soft magnetic character and the induced anisotropy of field annealed HITPERM-type alloys. J. Appl. Phys. 2015, 117, 17A301. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Chlenova, A.A.; Golubeva, E.V.; Volchkov, S.O.; Guo, P.; Shcherbinin, S.V.; Kurlyandskaya, G.V. Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application. Sensors 2019, 19, 2468. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.S.; Kim, C.G. Separation of reversible domain-wall motion and magnetization rotation components in susceptibility spectra of amorphous magnetic materials. Appl. Phys. Lett. 2001, 78, 3280–3282. [Google Scholar] [CrossRef]
- Hernando, B.; Sánchez, M.L.; Prida, V.M.; Tejedor, M.; Vázquez, M. Magnetoimpedance effect in amorphous and nanocrystalline ribbons. J. Appl. Phys. 2001, 90, 4783–4790. [Google Scholar] [CrossRef]
- Kuźmiński, M.; Lachowicz, H.K. Evolution of transverse permeability with DC-field in Co-based metallic glass ribbons. J. Magn. Magn. Mater. 2003, 267, 35–41. [Google Scholar] [CrossRef]
- Laurita, N.; Chaturvedi, A.; Bauer, C.; Jayathilaka, P.; Leary, A.; Miller, C.; Phan, M.-H.; McHenry, M.E.; Srikanth, H. Enhanced giant magnetoimpedance effect and field sensitivity in Co-coated soft ferromagnetic amorphous ribbons. J. Appl. Phys. 2011, 109, 07C706. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, T.; Mishra, A.C.; Srinivas, V.; Nath, T.K.; Srinivas, M.; Majumdar, B. Enhanced magnetoimpedance and field sensitivity in microstructure controlled FeSiCuNbB ribbons. J. Appl. Phys. 2011, 110, 083918. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Laurita, N.; Leary, A.; Phan, M.-H.; McHenry, M.E.; Srikanth, H. Giant magnetoimpedance and field sensitivity in amorphous and nanocrystalline (Co1-xFex)89Zr7B4 (x = 0, 0.025, 0.05, 0.1) ribbons. J. Appl. Phys. 2011, 109, 07B508. [Google Scholar] [CrossRef]
- Dufay, B.; Saez, S.; Dolabdjian, C.; Yelon, A.; Men, D. Development of a High Sensitivity Giant Magneto-Impedance Magnetometer: Comparison with a Commercial Flux-Gate. IEEE Trans. Magn. 2013, 49, 85–88. [Google Scholar] [CrossRef] [Green Version]
Technique | TC (K) | Tx1 (K) | Tp1 (K) | Tx2 (K) | Tp2 (K) |
---|---|---|---|---|---|
M(T) | ~543 | ~726 | ~741 | ~929 | ~944 |
DSC | ~540 | ~728 | ~747 | ~936 | ~950 |
Crystalline Phase | Crystal Structure | Lattice Parameter a (Å) | (hkl) Indexes |
---|---|---|---|
α-/bcc-(Fe,Ni) | ~2.87 ± 0.01 | 110 | |
γ-/fcc-(Fe,Ni) | ~3.59 ± 0.01 | 111 | |
Si-fcc | ~5.43 ± 0.01 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Alonso, D.; Gonzalez-Legarreta, L.; Marcin, J.; Švec, P.; Škorvánek, I. Tailoring Magnetic Properties and Magnetoimpedance Response in Nanocrystalline (Fe3Ni)81Nb7B12 Ribbons for Sensor Applications. Chemosensors 2023, 11, 148. https://doi.org/10.3390/chemosensors11020148
González-Alonso D, Gonzalez-Legarreta L, Marcin J, Švec P, Škorvánek I. Tailoring Magnetic Properties and Magnetoimpedance Response in Nanocrystalline (Fe3Ni)81Nb7B12 Ribbons for Sensor Applications. Chemosensors. 2023; 11(2):148. https://doi.org/10.3390/chemosensors11020148
Chicago/Turabian StyleGonzález-Alonso, David, Lorena Gonzalez-Legarreta, Jozef Marcin, Peter Švec, and Ivan Škorvánek. 2023. "Tailoring Magnetic Properties and Magnetoimpedance Response in Nanocrystalline (Fe3Ni)81Nb7B12 Ribbons for Sensor Applications" Chemosensors 11, no. 2: 148. https://doi.org/10.3390/chemosensors11020148
APA StyleGonzález-Alonso, D., Gonzalez-Legarreta, L., Marcin, J., Švec, P., & Škorvánek, I. (2023). Tailoring Magnetic Properties and Magnetoimpedance Response in Nanocrystalline (Fe3Ni)81Nb7B12 Ribbons for Sensor Applications. Chemosensors, 11(2), 148. https://doi.org/10.3390/chemosensors11020148