Sodium Lauryl Sulfate-Conjugated Cationic Gemini-Surfactant-Capped Gold Nanoparticles as Model System for Biomolecule Recognition
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis and Characterization of Cationic 16-3-16 and 16-6-16 Gemini Surfactants
2.3. Synthesis of Au@16-3-16 and Au@16-6-16 Gemini-Surfactant-Capped Gold Nanoparticles
2.4. Methods
2.4.1. UV/Vis Spectroscopy
2.4.2. Deconvolution Procedure
2.4.3. TEM Measurements
2.4.4. Zeta Potential Measurements
2.4.5. Atomic Force Microscopy Measurements (AFM)
3. Results and Discussion
3.1. Au@16-s-16 Aggregation Induced by Anionic SDS Surfactant: Optimization of Biosensor Configuration
3.2. Binding Interactions and Sensing Mechanism for DNA and Lysozyme Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abhilash, M.; Thomas, D. Biopolymers for Biocomposites and Chemical Sensor Applications. In Biopolymer Composites in Electronics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 405–435. ISBN 9780081009741. [Google Scholar]
- Li, F.; Mahon, A.R.; Barnes, M.A.; Feder, J.; Lodge, D.M.; Hwang, C.-T.; Schafer, R.; Ruggiero, S.T.; Tanner, C.E. Quantitative and Rapid DNA Detection by Laser Transmission Spectroscopy. PLoS ONE 2011, 6, e29224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, V.J.; Easwaran, H.; Zhang, Y.; Griffiths, E.; Belinsky, S.A.; Herman, J.G.; Baylin, S.B.; Carraway, H.E.; Wang, T.-H. MS-QFRET: A Quantum Dot-Based Method for Analysis of DNA Methylation. Genome Res. 2009, 19, 1455–1461. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, F.; Dever, B.; Wang, C.; Li, X.-F.; Le, X.C. Assembling DNA through Affinity Binding to Achieve Ultrasensitive Protein Detection. Angew. Chem. Int. Ed. 2013, 52, 10698–10705. [Google Scholar] [CrossRef]
- Levinson, S.S.; Elin, R.J.; Yam, L. Light Chain Proteinuria and Lysozymuria in a Patient with Acute Monocytic Leukemia. Clin. Chem. 2002, 48, 1131–1132. [Google Scholar] [CrossRef]
- Serra, C.; Vizoso, F.; Alonso, L.; Rodríguez, J.C.; González, L.O.; Fernández, M.; Lamelas, M.L.; Sánchez, L.M.; García-Muñiz, J.L.; Baltasar, A.; et al. Expression and Prognostic Significance of Lysozyme in Male Breast Cancer. Breast Cancer Res. 2002, 4, R16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osserman, E.F.; Lawlor, D.P. Serum and Urinary Lysozime (Muraminidase) in Monocytic and Monomyelocytic Leukemia. J. Exp. Med. 1966, 124, 921–952. [Google Scholar] [CrossRef]
- Noble, R.E.; Fudenberg, H.H. Leukocyte Lysozyme Activity in Myelocytic Leukemia. Blood 1967, 30, 465–473. [Google Scholar] [CrossRef]
- Pruzanski, W.; Platts, M.E. Serum and Urinary Proteins, Lysozyme (Muramidase), and Renal Dysfunction in Mono- and Myelomonocytic Leukemia. J. Clin. Investig. 1970, 49, 1694–1708. [Google Scholar] [CrossRef] [PubMed]
- Bodansky, O. The Leukemias and Lymphomas. In Biochemistry of Human Cancer; Academic Press: Cambridge, MA, USA, 1975; pp. 232–271. ISBN 978-0-12-109850-6. [Google Scholar]
- Moe, P.J.; Haneberg, B.; Finne, P. Serum Lysozyme Activity in Children with Hematological and Malignant Disorders. Acta Paediatr. 1975, 64, 830–832. [Google Scholar] [CrossRef]
- Bener, M.; Şen, F.B.; Kaşgöz, A.; Apak, R. Carrageenan-Based Colorimetric Sensor for Total Antioxidant Capacity Measurement. Sens. Actuators B Chem. 2018, 273, 439–447. [Google Scholar] [CrossRef]
- Lin, T.-W.; Wu, H.-Y.; Tasi, T.-T.; Lai, Y.-H.; Shen, H.-H. Surface-Enhanced Raman Spectroscopy for DNA Detection by the Self-Assembly of Ag Nanoparticles onto Ag Nanoparticle-Graphene Oxide Nanocomposites. Phys. Chem. Chem. Phys. 2015, 17, 18443–18448. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Pu, Z.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Polydopamine Nanospheres: A Biopolymer-Based Fluorescent Sensing Platform for DNA Detection. Sens. Actuators B Chem. 2014, 191, 567–571. [Google Scholar] [CrossRef]
- Wang, P.; Wilson, S.R. Mass Spectrometry-Based Protein Identification by Integrating de Novo Sequencing with Database Searching. BMC Bioinform. 2013, 14 (Suppl. S2), S24. [Google Scholar] [CrossRef] [Green Version]
- Stuting, H.H.; Krull, I.S. Complete On-Line Determination of Biopolymer Molecular Weight via High-Performance Liquid Chromatography Coupled to Low-Angle Laser Light Scattering, Ultraviolet, and Differential Refractive Index Detection. Anal. Chem. 1990, 62, 2107–2114. [Google Scholar] [CrossRef]
- Chen, W.; Xu, D.; Liu, L.; Peng, C.; Zhu, Y.; Ma, W.; Bian, A.; Li, Z.; Yuan, Y.; Jin, Z.; et al. Ultrasensitive Detection of Trace Protein by Western Blot Based on POLY-Quantum Dot Probes. Anal. Chem. 2009, 81, 9194–9198. [Google Scholar] [CrossRef]
- Shen, H.; Qu, F.; Xia, Y.; Jiang, X. Straightforward and Ultrastable Surface Modification of Microfluidic Chips with Norepinephrine Bitartrate Improves Performance in Immunoassays. Anal. Chem. 2018, 90, 3697–3702. [Google Scholar] [CrossRef]
- Hassan, R.A.; Heng, L.Y.; Tan, L.L. Novel DNA Biosensor for Direct Determination of Carrageenan. Sci. Rep. 2019, 9, 6379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tansil, N.C.; Gao, Z. Nanoparticles in Biomolecular Detection. Nano Today 2006, 1, 28–37. [Google Scholar] [CrossRef]
- Sapkota, K.; Dhakal, S. Fret-Based Aptasensor for the Selective and Sensitive Detection of Lysozyme. Sensors 2020, 20, 914. [Google Scholar] [CrossRef] [Green Version]
- Selsted, M.E.; Martinez, R.J. A Simple and Ultrasensitive Enzymatic Assay for the Quantitative Determination of Lysozyme in the Picogram Range. Anal. Biochem. 1980, 109, 67–70. [Google Scholar] [CrossRef]
- Lou, T.; Qiang, H.; Chen, Z. Core-Shell Cu@Au Nanoparticles-Based Colorimetric Aptasensor for the Determination of Lysozyme. Talanta 2017, 163, 132–139. [Google Scholar] [CrossRef]
- Moyano, D.F.; Rana, S.; Bunz, U.H.F.; Rotello, V.M. Gold Nanoparticle-Polymer/Biopolymer Complexes for Protein Sensing. Faraday Discuss 2011, 152, 33–120. [Google Scholar] [CrossRef] [Green Version]
- Lynch, I.; Dawson, K.A. Protein-Nanoparticle Interactions. Nano Today 2008, 3, 40–47. [Google Scholar] [CrossRef]
- Nisar, S.; Chansi; Mathur, A.; Basu, T.; Singh, K.R.B.; Singh, J. Template Free Anisotropically Grown Gold Nanocluster Based Electrochemical Immunosensor for Ultralow Detection of Cardiac Troponin I. Biosensors 2022, 12, 1144. [Google Scholar] [CrossRef]
- Li, Y.; Qian, Z.; Shen, C.; Gao, Z.; Tang, K.; Liu, Z.; Chen, Z. Colorimetric Sensors for Alkaloids Based on the Etching of Au@MnO2 Nanoparticles and MnO2 Nanostars. ACS Appl. Nano Mater. 2021, 4, 8465–8472. [Google Scholar] [CrossRef]
- Tang, L.; Li, J. Plasmon-Based Colorimetric Nanosensors for Ultrasensitive Molecular Diagnostics. ACS Sens. 2017, 2, 857–875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; McKelvie, I.D.; Cattrall, R.W.; Kolev, S.D. Colorimetric Detection Based on Localised Surface Plasmon Resonance of Gold Nanoparticles: Merits, Inherent Shortcomings and Future Prospects. Talanta 2016, 152, 410–422. [Google Scholar] [CrossRef]
- Zhou, S.; Liang, D.; Burger, C.; Yeh, F.; Chu, B. Nanostructures of Complexes Formed by Calf Thymus DNA Interacting with Cationic Surfactants. Biomacromolecules 2004, 5, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Hosokawa, K.; Maeda, M. Rapid Aggregation of Gold Nanoparticles Induced by Non-Cross-Linking DNA Hybridization. J. Am. Chem. Soc. 2003, 125, 8102–8103. [Google Scholar] [CrossRef] [PubMed]
- Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 1997, 277, 1078–1081. [Google Scholar] [CrossRef] [Green Version]
- Kreibig, U.; Genzel, L. Optical Absorption of Small Metallic Particles. Surf. Sci. 1985, 156, 678–700. [Google Scholar] [CrossRef]
- Weitz, D.A.; Huang, J.S.; Lin, M.Y.; Sung, J. Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids. Phys. Rev. Lett. 1985, 54, 1416–1419. [Google Scholar] [CrossRef]
- Kallay, N.; Žalac, S. Stability of Nanodispersions: A Model for Kinetics of Aggregation of Nanoparticles. J. Colloid. Interface Sci. 2002, 253, 70–76. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, Y.; Yu, W.; Xu, L.; Ge, C.; Liu, J.; Gu, N. Linear Aggregation of Gold Nanoparticles in Ethanol. Colloids. Surf. A Phys. Eng. Asp. 2003, 223, 177–183. [Google Scholar] [CrossRef]
- Prasher, R.; Phelan, P.E.; Bhattacharya, P. Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid). Nano Lett. 2006, 6, 1529–1534. [Google Scholar] [CrossRef]
- Pamies, R.; Cifre, J.G.H.; Espín, V.F.; Collado-González, M.; Baños, F.G.D.; de La Torre, J.G. Aggregation Behaviour of Gold Nanoparticles in Saline Aqueous Media. J. Nanoparticle Res. 2014, 16, 2376. [Google Scholar] [CrossRef]
- Iglesias, E.; Prado-Gotor, R. Interaction of Gold Nanoparticles Mediated by Captopril and S-Nitrosocaptopril: The Effect of Manganese Ions in Mild Acid Medium. Phys. Chem. Chem. Phys. 2015, 17, 644–654. [Google Scholar] [CrossRef] [PubMed]
- Bahram, M.; Madrakian, T.; Alizadeh, S. Simultaneous Colorimetric Determination of Morphine and Ibuprofen Based on the Aggregation of Gold Nanoparticles Using Partial Least Square. J. Pharm. Anal. 2017, 7, 411–416. [Google Scholar] [CrossRef]
- Grueso, E.; Giráldez-Pérez, R.M.; Kuliszewska, E.; Guerrero, J.A.; Prado-Gotor, R. Reversible Cationic Gemini Surfactant-Induced Aggregation of Anionic Gold Nanoparticles for Sensing Biomolecules. Colloids. Surf. A Phys. Eng. Asp. 2021, 610, 125893. [Google Scholar] [CrossRef]
- Rogowski, J.L.; Verma, M.S.; Gu, F.X. Discrimination of Proteins Using an Array of Surfactant-Stabilized Gold Nanoparticles. Langmuir 2016, 32, 7621–7629. [Google Scholar] [CrossRef] [PubMed]
- Vasilescu, A.; Wang, Q.; Li, M.; Boukherroub, R.; Szunerits, S. Aptamer-Based Electrochemical Sensing of Lysozyme. Chemosensors 2016, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Grueso, E.; Giráldez-Pérez, R.M.; Prado-Gotor, R. Recent Advances in the Design of Colorimetric Sensors Based on Gold Nanoparticles. In Advanced Nanomaterials; Ikhmayies, S.J., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 445–495. ISBN 978-3-031-11996-5. [Google Scholar]
- Serrano, V.M.; Silva, I.S.P.; Cardoso, A.R.; Sales, M.G.F. Carbon Electrodes with Gold Nanoparticles for the Electrochemical Detection of MiRNA 21-5p. Chemosensors 2022, 10, 189. [Google Scholar] [CrossRef]
- Yu, L.; Li, N. Noble Metal Nanoparticles-Based Colorimetric Biosensor for Visual Quantification: A Mini Review. Chemosensors 2019, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Ma, X.; Ding, C.; Jia, L. Colorimetric Determination of Lysozyme Based on the Aggregation of Gold Nanoparticles Controlled by a Cationic Polymer and an Aptamer. Microchim. Acta 2016, 183, 2353–2359. [Google Scholar] [CrossRef]
- Castillo, P.M.; Fernández-Acejo, F.J.; Carnerero, J.M.; Prado-Gotor, R.; Jimenez-Ruiz, A. Colorimetric, Naked-Eye Detection of Lysozyme in Human Urine with Gold Nanoparticles. Nanomaterials 2021, 11, 612. [Google Scholar] [CrossRef]
- Kanjanawarut, R.; Su, X. Colorimetric Detection of DNA Using Unmodified Metallic Nanoparticles and Peptide Nucleic Acid Probes. Anal. Chem. 2009, 81, 6122–6129. [Google Scholar] [CrossRef]
- Sato, K.; Hosokawa, K.; Maeda, M. Non-Cross-Linking Gold Nanoparticle Aggregation as a Detection Method for Single-Base Substitutions. Nucleic. Acids Res. 2005, 33, e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989; ISBN 0879693096. [Google Scholar]
- Secco, F.; Venturini, M.; Biver, T.; Sánchez, F.; Prado-Gotor, R.; Grueso, E. Solvent Effects on the Kinetics of the Interaction of 1- Pyrenecarboxaldehyde with Calf Thymus DNA. J. Phys. Chem. B 2010, 114, 4686–4691. [Google Scholar] [CrossRef]
- Felsenfeld, G.; Hirschman, S.Z. A Neighbor-Interaction Analysis of the Hypochromism and Spectra of DNA. J. Mol. Biol. 1965, 13, 407–427. [Google Scholar] [CrossRef] [PubMed]
- Kuliszewska, E.; Brecker, L. Gemini Surfactants Foam Formation Ability and Foam Stability Depends on Spacer Length. J. Surfactants Deterg. 2014, 17, 951–957. [Google Scholar] [CrossRef]
- Pozniak, B.P.; Kuliszewska, E. Competition between Substitution and Elimination Reaction Channels from Fragmentation Ratios of Diquaternary Ammonium Bromide and Formate Ion Pairs. Int. J. Mass Spectrom. 2013, 348, 29–38. [Google Scholar] [CrossRef]
- Zana, R.; Benrraou, M.; Rueff, R. Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide) Surfactants. 1. Effect of the Spacer Chain Length on the Critical Micelle Concentration and Micelle Ionization Degree. Langmuir 1991, 7, 1072–1075. [Google Scholar] [CrossRef]
- Giráldez-Pérez, R.M.; Grueso, E.; Lhamyani, S.; Perez-Tejeda, P.; Gentile, A.M.; Kuliszewska, E.; Roman-Perez, J.; el Bekay, R. MiR-21/Gemini Surfactant-Capped Gold Nanoparticles as Potential Therapeutic Complexes: Synthesis, Characterization and in Vivo Nanotoxicity Probes. J. Mol. Liq. 2020, 313, 113577. [Google Scholar] [CrossRef]
- Cheng, H.-W.; Skeete, Z.R.; Crew, E.R.; Shan, S.; Luo, J.; Zhong, C.-J. Chapter 2—Synthesis of Gold Nanoparticles. In Comprehensive Analytical Chemistry; Valcárcel, M., López-Lorente, Á.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 66, pp. 37–79. ISBN 0166-526X. [Google Scholar]
- Benesi, H.A.; Hildebrand, J.H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. [Google Scholar] [CrossRef]
- Hynes, M.J.; Diebler, H. The Binding of Ni2+ to Adenylyl-3′,5′-Adenosine and to Poly(Adenylic Acid). Biophys. Chem. 1982, 16, 79–88. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A General-Purpose Peak Fitting Program. J. Appl. Cryst. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Yang, C.-S.; Shih, M.-S.; Chang, F.-Y. Evolution Study of Photo-Synthesized Gold Nanoparticles by Spectral Deconvolution Model: A Quantitative Approach. New J. Chem. 2006, 30, 729–735. [Google Scholar] [CrossRef]
- Prado-Gotor, R.; Jimenez-Ruiz, A.; Carnerero, J.M.; Grueso, E.; Villa, I. CIELab Chromaticity Evolution to Measure the Binding Free Energy of Non-Colored Biomolecules to Gold Nanoparticles. RSC Adv. 2015, 5, 85039–85045. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svenson, S. Controlling Surfactant Self-Assembly. Curr. Opin. Colloid. Interface Sci. 2004, 9, 201–212. [Google Scholar] [CrossRef]
- Kuong, C.-L.; Chen, W.-Y.; Chen, Y.-C. Semi-Quantitative Determination of Cationic Surfactants in Aqueous Solutions Using Gold Nanoparticles as Reporter Probes. Anal. Bioanal. Chem. 2007, 387, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, J.; García-Povea, A.; Fernández-Palacios, M.; Villar-Navarro, M.; Carnerero, J.M.; Jimenez-Ruiz, A.; Prado-Gotor, R. A Colorimetric Study of the Interaction of Cationic and Anionic Surfactants with Anionic Gold Nanoparticles. Colloid. Polym. Sci. 2017, 295, 2141–2149. [Google Scholar] [CrossRef]
- Bruce, C.D.; Berkowitz, M.L.; Perera, L.; Forbes, M.D.E. Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar Structural Characteristics and Counterion Distribution. J. Phys. Chem. B 2002, 106, 3788–3793. [Google Scholar] [CrossRef]
- Molero, M.; Andreu, R.; González, D.; Calvente, J.J.; López-Pérez, G. Isotropic Model for Micellar Systems: Application to Sodium Dodecyl Sulfate Solutions. Langmuir 2001, 17, 314–322. [Google Scholar] [CrossRef]
- Khan, A.M.; Shah, S.S. Determination of Critical Micelle Concentration (Cmc) of Sodium Dodecyl Sulfate (SDS) and the Effect of Low Concentration of Pyrene on Its Cmc Using ORIGIN Software. J. Chem. Soc. Pak. 2008, 30, 186–191. [Google Scholar]
- Williams, R.J.; Phillips, J.N.; Mysels, K.J. The Critical Micelle Concentration of Sodium Lauryl Sulphate at 25 ° C. Trans. Faraday Soc. 1955, 51, 728–737. [Google Scholar] [CrossRef]
- Freitas, C.; Müller, R.H. Effect of Light and Temperature on Zeta Potential and Physical Stability in Solid Lipid Nanoparticle (SLN®) Dispersions. Int. J. Pharm. 1998, 168, 221–229. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chaudhuri, T.; Moulik, S.P.; Banerjee, M. Internal Charge Transfer Based Ratiometric Interaction of Anionic Surfactant with Calf Thymus DNA Bound Cationic Surfactant: Study I. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 152, 1–7. [Google Scholar] [CrossRef]
- Imoto, T.; Sumi, S.-I.; Tsuru, M.; Yagishita, K. An Analysis of the Interaction of Sodium Dodecyl Sulfate with Lysozyme. Agric. Biol. Chem. 1979, 43, 1809–1815. [Google Scholar] [CrossRef]
- Jafari, M.; Mehrnejad, F. Molecular Insight into Human Lysozyme and Its Ability to Form Amyloid Fibrils in High Concentrations of Sodium Dodecyl Sulfate: A View from Molecular Dynamics Simulations. PLoS ONE 2016, 11, e0165213. [Google Scholar] [CrossRef] [Green Version]
- Biasutti, M.A.; Soltermann, A.T.; García, N.A. Photodynamic Effect in Lysozyme: A Kinetic Study in Different Micellar Media. J. Pept. Res. 2000, 55, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Lad, M.D.; Ledger, V.M.; Briggs, B.; Green, R.J.; Frazier, R.A. Analysis of the SDS-Lysozyme Binding Isotherm. Langmuir 2003, 19, 5098–5103. [Google Scholar] [CrossRef]
- Grueso, E.; López-Pérez, G.; Castellano, M.; Prado-Gotor, R. Thermodynamic and Structural Study of Phenanthroline Derivative Ruthenium Complex/DNA Interactions: Probing Partial Intercalation and Binding Properties. J. Inorg. Biochem. 2012, 106, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, C.; Vesenka, A.; Lin, C.T.; Rees, W.; Guthold, M.; Keller, R. Circular DNA Molecules Imaged in Air by Scanning Force Microscopy. Biochemistry 1992, 31, 22–26. [Google Scholar] [CrossRef] [PubMed]
- International Conference on Harmonization (ICH) Validation of Analytical Procedures: Text and Methodology Q2(R1). 2005. Available online: https://www.ich.org/page/quality-guidelines (accessed on 22 January 2023).
Au@16-3-16/SDS System | Au@16-6-16/SDS System | ||||
---|---|---|---|---|---|
CSDS(M) | λ1, max/nm (Area1) | λ2, max/nm (Area2) | CSDS/M | λ1, max/nm (Area1) | λ2, max/nm (Area2) |
0 | 526 | --- | 0 | 515 | --- |
1.0 × 10−6 | 527 | --- | 1.0 × 10−6 | 517 | --- |
5.0 × 10−6 | 528 | --- | 5.0 × 10−6 | 518 | --- |
1.0 × 10−5 | 528 | --- | 1.0 × 10−5 | 519 | --- |
2.0 × 10−5 | 547 (2.03) | 646 (9.02) | 2.0 × 10−5 | 550 (1.83) | 648 (10.81) |
3.0 × 10−5 | 548 (1.94) | 651 (10.17) | 3.0 × 10−5 | 551 (1.82) | 650 (10.84) |
4.0 × 10−5 | 547 (2.03) | 647 (9.01) | 4.0 × 10−5 | 534 (3.39) | 605 (6.39) |
5.0 × 10−5 | 540 (2.28) | 615 (7.06) | 5.0 × 10−5 | 524 (1.12) | 571 (5.09) |
6.0 × 10−5 | 533 (2.51) | 589 (5.56) | 6.0 × 10−5 | 524 (1.08) | 569 (5.21) |
7.5 × 10−5 (*) | 531 | --- | 7.5 × 10−5 | 528 | --- |
CSDS/M | Au@16-3-16/SDS | Au@16-6-16/SDS |
---|---|---|
0 | (3.6 ± 0.5) nm | (3.9 ± 0.5) nm |
5.0 × 10−5 | (748 ± 11) nm | (400 ± 12) nm |
1.0 × 10−3 | (18 ± 4) nm | (15 ± 4) nm |
K (M−1) | Au@16-3-16 | Au@16-6-16 | SDS |
---|---|---|---|
DNA | (1.2 ± 0.5) × 105 (a) | (5.1 ± 0.5) × 104 (a) | − (b) |
Lysozyme | (8.40 ± 0.04) × 106 (a) | (9.0 ± 0.5) × 105 (a) | 514 (c) |
SDS | (2.5 ± 0.2) × 104 (a) | (1.21 ± 0.13) × 104 (a) |
CBiomolecule/M | Au@16-3-16/Biopolymer/SDS | Au@16-6-16/Biopolymer/SDS |
---|---|---|
0 | (748 ± 11) nm | (400 ± 12) nm |
CDNA = 1.0 × 10−6 | d1 = (220 ± 10) nm, 5% d2 = (43 ± 5) nm, 95% | d1 = (106 ± 14) nm, 2% d2 = (33 ± 7) nm, 98% |
CDNA = 5.0 × 10−4 | d1 = (450 ± 6) nm, 96% d2 = (50 ± 6) nm, 4% | (11.7 ± 1.3) nm |
CLysozyme = 5.0 × 10−8 | (615 ± 21) nm | d1 = (342 ± 17) nm, 7% d2 = (79 ± 3) nm, 93% |
CLysozyme = 1.0 × 10−4 | (44 ± 3) nm | (712 ± 14) nm |
Au@16-3-16/DNA | Au@16-6-16/DNA | ||||
---|---|---|---|---|---|
CDNA(M) | λ1, max/nm (Area1) | λ2, max/nm (Area2) | CDNA/M | λ1, max/nm (Area1) | λ2, max/nm (Area2) |
0 | 548 (1.94) | 651 (10.17) | 0 | 551 (1.82) | 650 (10.84) |
5.0 × 10−8 | 548 (1.68) | 642 (11.08) | 5.0 × 10−8 | 547 (1.87) | 639 (10.01) |
1.0 × 10−7 | 545 (1.65) | 640 (10.73) | 1.0 × 10−7 | 545 (1.70) | 638 (10.15) |
5.0 × 10−7 | 544 (1.66) | 638 (10.71) | 5.0 × 10−7 | 544 (1.73) | 634 (9.51) |
1.0 × 10−6 | 543 (2.02) | 620 (9.17) | 7.5 × 10−7 | 542 (1.71) | 632 (9.93) |
5.0 × 10−6 (*) | ---- | 539 | 1.0 × 10−6 | 542 (1.73) | 629 (9.31) |
5.0 × 10−6 | ---- | 538 |
Au@16-3-16/Lysozyme | Au@16-6-16/Lysozyme | ||||
---|---|---|---|---|---|
CLysozyme(M) | λ1, max/nm (Area1) | λ2, max/nm (Area2) | CLysozyme/M | λ1, max/nm (Area1) | λ2, max/nm (Area2) |
0 | 548 (1.94) | 651 (10.17) | 0 | 551 (1.82) | 650 (10.84) |
1.0 × 10−9 | 545 (1.92) | 640 (12.83) | 1.0 × 10−9 | 547 (1.71) | 637 (10.44) |
5.0 × 10−9 | 545 (1.96) | 639 (9.20) | 5.0 × 10−9 | 543 (1.71) | 629 (9.18) |
1.0 × 10−8 | 545 (2.06) | 637 (10.60) | 7.5 × 10−9 | 541 (1.86) | 628 (9.36) |
5.0 × 10−8 | 544 (2.47) | 631 (8.50) | 1.0 × 10−8 | 542 (1.76) | 627 (9.21) |
1.0 × 10−7 | 543 (2.27) | 623 (8.92) | 5.0 × 10−8 | 541 (1.73) | 625 (9.44) |
5.0 × 10−7 (*) | ---- | 553 | 1.0 × 10−7 | 541 (1.78) | 624 (9.62) |
5.0 × 10−7 | 541 (1.68) | 616 (8.47) | |||
1.0 × 10−6 | 539 (1.70) | 614 (7.07) | |||
5.0 × 10−6 | 534 (1.84) | 604 (7.21) | |||
1.0 × 10−5 (*) | ---- | 586 |
System | m | yo | SD | LOD | LOQ |
---|---|---|---|---|---|
Au@16-3-16/DNA/SDS (water) | −0.519 ± 0.02 | −5.80 ± 0.10 | 0.194 | 8 nM | 24 nM |
Au@16-6-16/DNA/SDS (water) | −0.498 ± 0.02 | −0.570 ±0.10 | 0.198 | 9 nM | 27 nM |
Au@16-3-16/SDS/Lysozyme (water) | −0.44 ± 0.02 | −5.77 ± 0.11 | 0.185 | 0.12 nM | 0.37 nM |
Au@16-616/SDS/Lysozyme (water) | −0.304 ± 0.017 | −4.89 ± 0.08 | 0.109 | 8.5 pM | 25.7 pM |
Au@16-3-16/DNA/SDS (horse serum) | −0.966 ± 0.05 | −10.4 ± 0.30 | 0.230 | 0.24 nM | 0.73 nM |
Au@16-6-16/DNA/SDS (horse serum) | −0.846 ± 0.04 | −9.45 ± 0.30 | 0.240 | 0.50 nM | 1.52 nM |
Au@16-3-16/SDS/Lysozyme (horse serum) | −0.581 ± 0.03 | −8.51 ± 0.25 | 0.140 | 3.1 pM | 9.5 pM |
Au@16-6-16/SDS/Lysozyme (horse serum) | −0.322 ± 0.015 | −5.99 ± 0.14 | 0.143 | 3.5 pM | 11 pM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grueso, E.; Giráldez-Pérez, R.M.; Prado-Gotor, R.; Kuliszewska, E. Sodium Lauryl Sulfate-Conjugated Cationic Gemini-Surfactant-Capped Gold Nanoparticles as Model System for Biomolecule Recognition. Chemosensors 2023, 11, 207. https://doi.org/10.3390/chemosensors11040207
Grueso E, Giráldez-Pérez RM, Prado-Gotor R, Kuliszewska E. Sodium Lauryl Sulfate-Conjugated Cationic Gemini-Surfactant-Capped Gold Nanoparticles as Model System for Biomolecule Recognition. Chemosensors. 2023; 11(4):207. https://doi.org/10.3390/chemosensors11040207
Chicago/Turabian StyleGrueso, Elia, Rosa M. Giráldez-Pérez, Rafael Prado-Gotor, and Edyta Kuliszewska. 2023. "Sodium Lauryl Sulfate-Conjugated Cationic Gemini-Surfactant-Capped Gold Nanoparticles as Model System for Biomolecule Recognition" Chemosensors 11, no. 4: 207. https://doi.org/10.3390/chemosensors11040207
APA StyleGrueso, E., Giráldez-Pérez, R. M., Prado-Gotor, R., & Kuliszewska, E. (2023). Sodium Lauryl Sulfate-Conjugated Cationic Gemini-Surfactant-Capped Gold Nanoparticles as Model System for Biomolecule Recognition. Chemosensors, 11(4), 207. https://doi.org/10.3390/chemosensors11040207