Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Myoglobin Solutions
2.2. Substrate Fabrication
2.3. Sample Preparation of Analytes
2.4. Spectra Measurements
2.5. Spectra Processing
2.6. Surface Morphology Studies
3. Results
3.1. Microstructure Analysis
3.2. SERS Spectra of Myoglobin
3.3. Study of Morphological Parameters of Myoglobin Precipitate
3.3.1. AFM Study of Dried Precipitate Morphology
3.3.2. Modeling of Nucleation Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plebani, M.; Zaninotto, M. Diagnostic Strategies Using Myoglobin Measurement in Myocardial Infarction. Clin. Chim. Acta 1998, 272, 69–77. [Google Scholar] [CrossRef]
- Das, G.; Gentile, F.; Coluccio, M.L.; Perri, A.M.; Nicastri, A.; Mecarini, F.; Cojoc, G.; Candeloro, P.; Liberale, C.; De Angelis, F.; et al. Principal Component Analysis Based Methodology to Distinguish Protein SERS Spectra. J. Mol. Struct. 2011, 993, 500–505. [Google Scholar] [CrossRef]
- Boginskaya, I.; Nechaeva, N.; Tikhomirova, V.; Kryukova, O.; Evdokimov, V.; Bulaeva, N.; Golukhova, E.; Ryzhikov, I.; Kost, O.; Afanasev, K.; et al. Human Angiotensin I-converting Enzyme Study by Surface-enhanced Raman Spectroscopy. J. Raman Spectrosc. 2021, 52, 1529–1539. [Google Scholar] [CrossRef]
- Dingari, N.C.; Horowitz, G.L.; Kang, J.W.; Dasari, R.R.; Barman, I. Raman Spectroscopy Provides a Powerful Diagnostic Tool for Accurate Determination of Albumin Glycation. PLoS ONE 2012, 7, e32406. [Google Scholar] [CrossRef]
- Boginskaya, I.; Sedova, M.; Baburin, A.; Afanas’ev, K.; Zverev, A.; Echeistov, V.; Ryzhkov, V.; Rodionov, I.; Tonanaiskii, B.; Ryzhikov, I.; et al. SERS-Active Substrates Nanoengineering Based on e-Beam Evaporated Self-Assembled Silver Films. Appl. Sci. 2019, 9, 3988. [Google Scholar] [CrossRef]
- Barucci, A.; D’Andrea, C.; Farnesi, E.; Banchelli, M.; Amicucci, C.; De Angelis, M.; Hwang, B.; Matteini, P. Label-Free SERS Detection of Proteins Based on Machine Learning Classification of Chemo-Structural Determinants. Analyst 2021, 146, 674–682. [Google Scholar] [CrossRef]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A Review on the Fabrication of Substrates for Surface Enhanced Raman Spectroscopy and Their Applications in Analytical Chemistry. Anal. Chim. Acta 2011, 693, 7–25. [Google Scholar] [CrossRef]
- Bao, Y.; Lai, C.; Zhu, Z.; Fong, H.; Jiang, C. SERS-Active Silver Nanoparticles on Electrospun Nanofibers Facilitated via Oxygen Plasma Etching. RSC Adv. 2013, 3, 8998–9004. [Google Scholar] [CrossRef]
- Li, Z.; Huang, X.; Lu, G. Recent Developments of Flexible and Transparent SERS Substrates. J. Mater. Chem. C 2020, 8, 3956–3969. [Google Scholar] [CrossRef]
- D’Acunto, M. In Situ Surface-Enhanced Raman Spectroscopy of Cellular Components: Theory and Experimental Results. Materials 2019, 12, 1564. [Google Scholar] [CrossRef]
- Petti, L.; Capasso, R.; Rippa, M.; Pannico, M.; La Manna, P.; Peluso, G.; Calarco, A.; Bobeico, E.; Musto, P. A Plasmonic Nanostructure Fabricated by Electron Beam Lithography as a Sensitive and Highly Homogeneous SERS Substrate for Bio-Sensing Applications. Vib. Spectrosc. 2016, 82, 22–30. [Google Scholar] [CrossRef]
- Suresh, V.; Ding, L.; Chew, A.B.; Yap, F.L. Fabrication of Large-Area Flexible SERS Substrates by Nanoimprint Lithography. ACS Appl. Nano Mater. 2018, 1, 886–893. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, S.; Wang, L.; Zhao, J.; Zhu, Z.; Liu, B.; Zhong, J.; Sun, X. Large-Scale Uniform Au Nanodisk Arrays Fabricated via X-ray Interference Lithography for Reproducible and Sensitive SERS Substrate. Nanotechnology 2014, 25, 245301. [Google Scholar] [CrossRef]
- Theiss, J.; Pavaskar, P.; Echternach, P.M.; Muller, R.E.; Cronin, S.B. Plasmonic Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates. Nano Lett. 2010, 10, 2749–2754. [Google Scholar] [CrossRef]
- Semin, D.J.; Rowlen, K.L. Influence of Vapor Deposition Parameters on SERS Active Ag Film Morphology and Optical Properties. Anal. Chem. 1994, 66, 4324–4331. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, B.-B.; Liu, X.-Q.; Zhang, Y.-L.; Xu, Y.; Chen, Q.-D.; Sun, H.-B. Highly Efficient SERS Test Strips. Chem. Commun. 2012, 48, 5913–5915. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Patel, P.H.; Cullum, B.M. Novel Multilayered SERS Substrates for Trace Chemical and Biochemical Analysis. In Proceedings of the Smart Medical and Biomedical Sensor Technology II, Philadelphia, PA, USA, 7 December 2004; pp. 87–97. [Google Scholar]
- Boginskaya, I.; Gainutdinova, A.; Gusev, A.; Mailyan, K.; Mikhailitsyn, A.; Sedova, M.; Vdovichenko, A.; Ryzhikov, I.; Chvalun, S.; Lagarkov, A. Detection of Organic Substances by a SERS Method Using a Special Ag-Poly(Chloro-P-Xylylene)-Ag Sandwich Substrate. Coatings 2020, 10, 799. [Google Scholar] [CrossRef]
- Kulikova, D.P.; Dobronosova, A.A.; Kornienko, V.V.; Nechepurenko, I.A.; Baburin, A.S.; Sergeev, E.V.; Lotkov, E.S.; Rodionov, I.A.; Baryshev, A.V.; Dorofeenko, A.V. Optical Properties of Tungsten Trioxide, Palladium, and Platinum Thin Films for Functional Nanostructures Engineering. Opt. Express 2020, 28, 32049–32060. [Google Scholar] [CrossRef] [PubMed]
- Lotkov, E.S.; Baburin, A.S.; Ryzhikov, I.A.; Sorokina, O.S.; Ivanov, A.I.; Zverev, A.V.; Ryzhkov, V.V.; Bykov, I.V.; Baryshev, A.V.; Panfilov, Y.V.; et al. ITO Film Stack Engineering for Low-Loss Silicon Optical Modulators. Sci. Rep. 2022, 12, 6321. [Google Scholar] [CrossRef] [PubMed]
- Baburin, A.S.; Ivanov, A.I.; Lotkov, E.S.; Sorokina, O.S.; Boginskaya, I.A.; Sergeev, E.V.; Buzaverov, K.A.; Konstantinova, T.G.; Moskalev, D.O.; Issabayeva, Z.; et al. Epitaxial Silver Films Morphology and Optical Properties Evolution over Two Years. Coatings 2020, 10, 911. [Google Scholar] [CrossRef]
- Durmanov, N.N.; Guliev, R.R.; Eremenko, A.V.; Boginskaya, I.A.; Ryzhikov, I.A.; Trifonova, E.A.; Putlyaev, E.V.; Mukhin, A.N.; Kalnov, S.L.; Balandina, M.V.; et al. Non-Labeled Selective Virus Detection with Novel SERS-Active Porous Silver Nanofilms Fabricated by Electron Beam Physical Vapor Deposition. Sens. Actuators B Chem. 2018, 257, 37–47. [Google Scholar] [CrossRef]
- Boginskaya, I.; Safiullin, R.; Tikhomirova, V.; Kryukova, O.; Nechaeva, N.; Bulaeva, N.; Golukhova, E.; Ryzhikov, I.; Kost, O.; Afanasev, K.; et al. Human Angiotensin I-Converting Enzyme Produced by Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022, 10, 1389. [Google Scholar] [CrossRef]
- Slipchenko, E.A.; Boginskaya, I.A.; Safiullin, R.R.; Ryzhikov, I.A.; Sedova, M.V.; Afanasev, K.N.; Nechaeva, N.L.; Kurochkin, I.N.; Merzlikin, A.M.; Lagarkov, A.N. SERS Sensor for Human Glycated Albumin Direct Assay Based on Machine Learning Methods. Chemosensors 2022, 10, 520. [Google Scholar] [CrossRef]
- Grigorenko, A.N.; Roberts, N.W.; Dickinson, M.R.; Zhang, Y. Nanometric Optical Tweezers Based on Nanostructured Substrates. Nat. Photonics 2008, 2, 365–370. [Google Scholar] [CrossRef]
- Iefuji, N.; Murai, R.; Maruyama, M.; Takahashi, Y.; Sugiyama, S.; Adachi, H.; Matsumura, H.; Murakami, S.; Inoue, T.; Mori, Y.; et al. Laser-Induced Nucleation in Protein Crystallization: Local Increase in Protein Concentration Induced by Femtosecond Laser Irradiation. J. Cryst. Growth 2011, 318, 741–744. [Google Scholar] [CrossRef]
- Huettmann, G.; Serbin, J.; Radt, B.; Lange, B.I.; Birngruber, R. Model System for Investigating Laser-Induced Subcellular Microeffects. In Laser-Tissue Interaction XII: Photochemical, Photothermal, and Photomechanical; Duncan, D.D., Jacques, S.L., Johnson, P.C., Eds.; SPIE: Bellingham, WA, USA, 9 July 2001; p. 398. [Google Scholar]
- Lee, H.; Kim, M.S.; Suh, S.W. Raman Spectroscopy of Sulphur-Containing Amino Acids and Their Derivatives Adsorbed on Silver. J. Raman Spectrosc. 1991, 22, 91–96. [Google Scholar] [CrossRef]
- Podstawka, E.; Ozaki, Y.; Proniewicz, L.M. Part I: Surface-Enhanced Raman Spectroscopy Investigation of Amino Acids and Their Homodipeptides Adsorbed on Colloidal Silver. Appl. Spectrosc. 2004, 58, 570–580. [Google Scholar] [CrossRef]
- Stewart, S.; Fredericks, P. Surface-Enhanced Raman Spectroscopy of Amino Acids Adsorbed on an Electrochemically Prepared Silver Surface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1641–1660. [Google Scholar] [CrossRef]
- Stewart, S.; Fredericks, P.M. Surface-Enhanced Raman Spectroscopy of Peptides and Proteins Adsorbed on an Electrochemically Prepared Silver Surface. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1999, 55, 1615–1640. [Google Scholar] [CrossRef]
- Aliaga, A.E.; Garrido, C.; Leyton, P.; Diaz, F.G.; Gomez-Jeria, J.S.; Aguayo, T.; Clavijo, E.; Campos-Vallette, M.M.; Sanchez-Cortes, S. SERS and Theoretical Studies of Arginine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Kitahama, Y.; Egashira, M.; Suzuki, T.; Tanabe, I.; Ozaki, Y. Sensitive Marker Bands for the Detection of Spin States of Heme in Surface-Enhanced Resonance Raman Scattering Spectra of Metmyoglobin. Analyst 2014, 139, 6421–6425. [Google Scholar] [CrossRef] [PubMed]
- McNay, G.; Eustace, D.; Smith, W.E.; Faulds, K.; Graham, D. Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Appl. Spectrosc. 2011, 65, 825–837. [Google Scholar] [CrossRef]
- Murshudov, G.N.; Krzywda, S.; Brzozowski, A.M.; Jaskolski, M.; Scott, E.E.; Klizas, S.A.; Gibson, Q.H.; Olson, J.S.; Wilkinson, A.J. RSCB PBD V68N MET MYOGLOBIN. V68N MET MYOGLOBIN. 1998. Available online: https://www.wwpdb.org/pdb?id=pdb_00001m6m (accessed on 24 May 2023). [CrossRef]
- Diao, Y.; Harada, T.; Myerson, A.S.; Hatton, T.A.; Trout, B.L. The Role of Nanopore Shape in Surface-Induced Crystallization. Nat. Mater. 2011, 10, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.-B.; Cao, H.-L.; Zhang, C.-Y.; Yin, D.-C. A Review on Recent Advances for Nucleants and Nucleation in Protein Crystallization. CrystEngComm 2017, 19, 1143–1155. [Google Scholar] [CrossRef]
- De Yoreo, J.J. Principles of Crystal Nucleation and Growth. Rev. Mineral. Geochem. 2003, 54, 57–93. [Google Scholar] [CrossRef]
- Kertis, F.; Khurshid, S.; Okman, O.; Kysar, J.W.; Govada, L.; Chayen, N.; Erlebacher, J. Heterogeneous Nucleation of Protein Crystals Using Nanoporous Gold Nucleants. J. Mater. Chem. 2012, 22, 21928–21934. [Google Scholar] [CrossRef]
Myoglobin Bands, cm−1 | Amino Acid | Band Assignment | ||
---|---|---|---|---|
Type I | Type II | Type III | ||
278 (w) | [28] | Skeletal def. | ||
306 (w) | ||||
362 (w) | 370 (vw) | Skeletal def. | ||
405 (s) | [28] | Skeletal def. | ||
418 (m) | 425 (vw) | - | - | |
487 (vw) | - | - | ||
525 (w) | 524 (vs) | 524 (m) | - | - |
535 (vw) | - | - | ||
547 (w) | - | - | ||
603 (w) | 610 (m) | 606 (vw) | - | - |
627 (vw) | 625 (vw) | 620–630 (m) Met [29] | νs (C–S) | |
- | 653 (vw) | 644(vw) | 644–686 (m) Met [28] | νs (C–S) |
- | 663 (vw) | 644–686 (m) Met [28] | νs (C–S) | |
- | - | 721 (s) | 721 (s) Asp [30] | δs (COO−) |
770 (s) | 765 (s) | 763 (w) | 772 (w) Val [30] 755 (m) Trp [30] | Indole symm ring |
854 (w) | 861 (vw) | - | 847 (m) Tyr [30] | Fermi resonance between ring breath and out-of-plane ring bend overtone |
892 (m) | - | 895 (vw) | - | - |
874 (m) Trp [30] | Indole NH displ | |||
- | 915 (m) | |||
927 (w) | - | - | 930 (m) Asp [30] | C-COO-str |
937 (w) [2] | α-helix | |||
- | 949 (vw) | - | 947 (vw) Leu-Gly [31] | νs (C–C) |
947 (vw) Val [30] | νs (C–C) | |||
- | - | 981 (vw) | 978 (w) Arg [32] | δs (CH2) (aliphatic fragment) |
985 (vw) Asn [30] | νs (C–C) | |||
- | 1033 (w) | 1037 (w) | 1032 (vw) Ile [30] | νs (C–N) |
1034 (vw) Phe [30] | δs (CH) In-plane | |||
1052 (vs) | 1051 (s) | 1056 (vs) | 1050 (vw) Gln [30] | νs (C–N) |
1050 (w) Ala-Ala [31] | νs (C–N) | |||
Phe | In-phase motion of n(Cε1-Cζ) and n(Cε2-Cζ) coupled with in-phase motion of d(Cζ-Cε1-H) and d(Cζ-Cε2-H) | |||
1066 (s) | 1061 (m) | - | 1066 (w) Gly-Glu (Glu) [31] | νs (C–N) |
1131 (w) | 1134 (vw) | 1134 (vw) | 1130 (vw) Leu [30] | δs (NH3+) |
- | 1188 (m) | - | 1184 (m) Phe [29] | Characteristic aromatic ring bands |
1252 (vw) | - | - | 1230–1300 Amide III [2] | α-helical marker |
1250 (vw) Glu [30] | ω (CH2) | |||
1299 (w) | 1299 (m) | 1300 (vw) | 1303 heme [33] | δs (CH2)2 |
1301 (w) Pro-Leu (Leu) [31] | δs (CH2) | |||
1352 (vw) | - | 1352 (w) | 1352 (vw) Glu [30] | δs (CH2) |
1357 (w) Trp [30] heme | Ring | |||
1353 (m) Met [30] | δs (CH3) | |||
1391 (vw) | 1392 (vw) | - | 1373 (w) heme [28] | - |
- | 1410 (w) | - | - | - |
1441 (m) | 1448 (vw) | 1442 (w) | 1440 (m) Lys [30] | δs (CH2) |
1440 (m) Leu-Gly (Gly) [31] | ||||
1467 (s) | 1468 (s) | 1468 (w) | 1464 (w) Lys [30] | δs (CH2) |
- | 1549 (vw) | - | 1549 (m) Met [29] | - |
1541 heme [33] | νs (Cβ–Cβ) | |||
1607 (vw) | - | - | 1613 (m) Tyr [30] | νs (C2–C3) and νs (C5–C6) in-phase |
1611 heme [33] | νa (Cα–Cm) | |||
- | 1643 (vw) | - | 1643 (m) Met [29] | δs (NH2) |
1639 heme [33] | νa (Cα–Cm) | |||
- | - | 1667 (w) | 1663 (w) Ala-Gln (Gln) [31] | νs (C=O) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boginskaya, I.A.; Slipchenko, E.A.; Sedova, M.V.; Zvyagina, J.Y.; Maximov, A.D.; Baburin, A.S.; Rodionov, I.A.; Merzlikin, A.M.; Ryzhikov, I.A.; Lagarkov, A.N. Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films. Chemosensors 2023, 11, 321. https://doi.org/10.3390/chemosensors11060321
Boginskaya IA, Slipchenko EA, Sedova MV, Zvyagina JY, Maximov AD, Baburin AS, Rodionov IA, Merzlikin AM, Ryzhikov IA, Lagarkov AN. Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films. Chemosensors. 2023; 11(6):321. https://doi.org/10.3390/chemosensors11060321
Chicago/Turabian StyleBoginskaya, Irina A., Ekaterina A. Slipchenko, Marina V. Sedova, Julia Yu. Zvyagina, Alexander D. Maximov, Aleksandr S. Baburin, Ilya A. Rodionov, Alexander M. Merzlikin, Ilya A. Ryzhikov, and Andrey N. Lagarkov. 2023. "Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films" Chemosensors 11, no. 6: 321. https://doi.org/10.3390/chemosensors11060321
APA StyleBoginskaya, I. A., Slipchenko, E. A., Sedova, M. V., Zvyagina, J. Y., Maximov, A. D., Baburin, A. S., Rodionov, I. A., Merzlikin, A. M., Ryzhikov, I. A., & Lagarkov, A. N. (2023). Additional Enhancement of Surface-Enhanced Raman Scattering Spectra of Myoglobin Precipitated under Action of Laser Irradiation on Self-Assembled Nanostructured Surface of Ag Films. Chemosensors, 11(6), 321. https://doi.org/10.3390/chemosensors11060321